// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. static bool g_called; #define EIGEN_SCALAR_BINARY_OP_PLUGIN { g_called |= (!internal::is_same<LhsScalar,RhsScalar>::value); } #include "main.h" template<typename MatrixType> void linearStructure(const MatrixType& m) { using std::abs; /* this test covers the following files: CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h */ typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; Index rows = m.rows(); Index cols = m.cols(); // this test relies a lot on Random.h, and there's not much more that we can do // to test it, hence I consider that we will have tested Random.h MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); Scalar s1 = internal::random<Scalar>(); while (abs(s1)<RealScalar(1e-3)) s1 = internal::random<Scalar>(); Index r = internal::random<Index>(0, rows-1), c = internal::random<Index>(0, cols-1); VERIFY_IS_APPROX(-(-m1), m1); VERIFY_IS_APPROX(m1+m1, 2*m1); VERIFY_IS_APPROX(m1+m2-m1, m2); VERIFY_IS_APPROX(-m2+m1+m2, m1); VERIFY_IS_APPROX(m1*s1, s1*m1); VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2); VERIFY_IS_APPROX((-m1+m2)*s1, -s1*m1+s1*m2); m3 = m2; m3 += m1; VERIFY_IS_APPROX(m3, m1+m2); m3 = m2; m3 -= m1; VERIFY_IS_APPROX(m3, m2-m1); m3 = m2; m3 *= s1; VERIFY_IS_APPROX(m3, s1*m2); if(!NumTraits<Scalar>::IsInteger) { m3 = m2; m3 /= s1; VERIFY_IS_APPROX(m3, m2/s1); } // again, test operator() to check const-qualification VERIFY_IS_APPROX((-m1)(r,c), -(m1(r,c))); VERIFY_IS_APPROX((m1-m2)(r,c), (m1(r,c))-(m2(r,c))); VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c))); VERIFY_IS_APPROX((s1*m1)(r,c), s1*(m1(r,c))); VERIFY_IS_APPROX((m1*s1)(r,c), (m1(r,c))*s1); if(!NumTraits<Scalar>::IsInteger) VERIFY_IS_APPROX((m1/s1)(r,c), (m1(r,c))/s1); // use .block to disable vectorization and compare to the vectorized version VERIFY_IS_APPROX(m1+m1.block(0,0,rows,cols), m1+m1); VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), m1.cwiseProduct(m1)); VERIFY_IS_APPROX(m1 - m1.block(0,0,rows,cols), m1 - m1); VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1); } // Make sure that complex * real and real * complex are properly optimized template<typename MatrixType> void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; RealScalar s = internal::random<RealScalar>(); MatrixType m1 = MatrixType::Random(rows, cols); g_called = false; VERIFY_IS_APPROX(s*m1, Scalar(s)*m1); VERIFY(g_called && "real * matrix<complex> not properly optimized"); g_called = false; VERIFY_IS_APPROX(m1*s, m1*Scalar(s)); VERIFY(g_called && "matrix<complex> * real not properly optimized"); g_called = false; VERIFY_IS_APPROX(m1/s, m1/Scalar(s)); VERIFY(g_called && "matrix<complex> / real not properly optimized"); g_called = false; VERIFY_IS_APPROX(s+m1.array(), Scalar(s)+m1.array()); VERIFY(g_called && "real + matrix<complex> not properly optimized"); g_called = false; VERIFY_IS_APPROX(m1.array()+s, m1.array()+Scalar(s)); VERIFY(g_called && "matrix<complex> + real not properly optimized"); g_called = false; VERIFY_IS_APPROX(s-m1.array(), Scalar(s)-m1.array()); VERIFY(g_called && "real - matrix<complex> not properly optimized"); g_called = false; VERIFY_IS_APPROX(m1.array()-s, m1.array()-Scalar(s)); VERIFY(g_called && "matrix<complex> - real not properly optimized"); } void test_linearstructure() { g_called = true; VERIFY(g_called); // avoid `unneeded-internal-declaration` warning. for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( linearStructure(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( linearStructure(Matrix2f()) ); CALL_SUBTEST_3( linearStructure(Vector3d()) ); CALL_SUBTEST_4( linearStructure(Matrix4d()) ); CALL_SUBTEST_5( linearStructure(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); CALL_SUBTEST_6( linearStructure(MatrixXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_7( linearStructure(MatrixXi (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_8( linearStructure(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); CALL_SUBTEST_9( linearStructure(ArrayXXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_10( linearStructure(ArrayXXcf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_11( real_complex<Matrix4cd>() ); CALL_SUBTEST_11( real_complex<MatrixXcf>(10,10) ); CALL_SUBTEST_11( real_complex<ArrayXXcf>(10,10) ); } #ifdef EIGEN_TEST_PART_4 { // make sure that /=scalar and /scalar do not overflow // rational: 1.0/4.94e-320 overflow, but m/4.94e-320 should not Matrix4d m2, m3; m3 = m2 = Matrix4d::Random()*1e-20; m2 = m2 / 4.9e-320; VERIFY_IS_APPROX(m2.cwiseQuotient(m2), Matrix4d::Ones()); m3 /= 4.9e-320; VERIFY_IS_APPROX(m3.cwiseQuotient(m3), Matrix4d::Ones()); } #endif }