// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "common.h" /** ZHEMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian matrix. */ int EIGEN_BLAS_FUNC(hemv)(const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *px, const int *incx, const RealScalar *pbeta, RealScalar *py, const int *incy) { typedef void (*functype)(int, const Scalar*, int, const Scalar*, Scalar*, Scalar); static const functype func[2] = { // array index: UP (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run), // array index: LO (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run), }; const Scalar* a = reinterpret_cast<const Scalar*>(pa); const Scalar* x = reinterpret_cast<const Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar alpha = *reinterpret_cast<const Scalar*>(palpha); Scalar beta = *reinterpret_cast<const Scalar*>(pbeta); // check arguments int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*lda<std::max(1,*n)) info = 5; else if(*incx==0) info = 7; else if(*incy==0) info = 10; if(info) return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6); if(*n==0) return 1; const Scalar* actual_x = get_compact_vector(x,*n,*incx); Scalar* actual_y = get_compact_vector(y,*n,*incy); if(beta!=Scalar(1)) { if(beta==Scalar(0)) make_vector(actual_y, *n).setZero(); else make_vector(actual_y, *n) *= beta; } if(alpha!=Scalar(0)) { int code = UPLO(*uplo); if(code>=2 || func[code]==0) return 0; func[code](*n, a, *lda, actual_x, actual_y, alpha); } if(actual_x!=x) delete[] actual_x; if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy); return 1; } /** ZHBMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian band matrix, with k super-diagonals. */ // int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, // RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) // { // return 1; // } /** ZHPMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian matrix, supplied in packed form. */ // int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) // { // return 1; // } /** ZHPR performs the hermitian rank 1 operation * * A := alpha*x*conjg( x' ) + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n hermitian matrix, supplied in packed form. */ int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap) { typedef void (*functype)(int, Scalar*, const Scalar*, RealScalar); static const functype func[2] = { // array index: UP (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run), // array index: LO (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run), }; Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* ap = reinterpret_cast<Scalar*>(pap); RealScalar alpha = *palpha; int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; if(info) return xerbla_(SCALAR_SUFFIX_UP"HPR ",&info,6); if(alpha==Scalar(0)) return 1; Scalar* x_cpy = get_compact_vector(x, *n, *incx); int code = UPLO(*uplo); if(code>=2 || func[code]==0) return 0; func[code](*n, ap, x_cpy, alpha); if(x_cpy!=x) delete[] x_cpy; return 1; } /** ZHPR2 performs the hermitian rank 2 operation * * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, * * where alpha is a scalar, x and y are n element vectors and A is an * n by n hermitian matrix, supplied in packed form. */ int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap) { typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar); static const functype func[2] = { // array index: UP (internal::packed_rank2_update_selector<Scalar,int,Upper>::run), // array index: LO (internal::packed_rank2_update_selector<Scalar,int,Lower>::run), }; Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar* ap = reinterpret_cast<Scalar*>(pap); Scalar alpha = *reinterpret_cast<Scalar*>(palpha); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; if(info) return xerbla_(SCALAR_SUFFIX_UP"HPR2 ",&info,6); if(alpha==Scalar(0)) return 1; Scalar* x_cpy = get_compact_vector(x, *n, *incx); Scalar* y_cpy = get_compact_vector(y, *n, *incy); int code = UPLO(*uplo); if(code>=2 || func[code]==0) return 0; func[code](*n, ap, x_cpy, y_cpy, alpha); if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy; return 1; } /** ZHER performs the hermitian rank 1 operation * * A := alpha*x*conjg( x' ) + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n hermitian matrix. */ int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda) { typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&); static const functype func[2] = { // array index: UP (selfadjoint_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run), // array index: LO (selfadjoint_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run), }; Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* a = reinterpret_cast<Scalar*>(pa); RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*lda<std::max(1,*n)) info = 7; if(info) return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6); if(alpha==RealScalar(0)) return 1; Scalar* x_cpy = get_compact_vector(x, *n, *incx); int code = UPLO(*uplo); if(code>=2 || func[code]==0) return 0; func[code](*n, a, *lda, x_cpy, x_cpy, alpha); matrix(a,*n,*n,*lda).diagonal().imag().setZero(); if(x_cpy!=x) delete[] x_cpy; return 1; } /** ZHER2 performs the hermitian rank 2 operation * * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, * * where alpha is a scalar, x and y are n element vectors and A is an n * by n hermitian matrix. */ int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar); static const functype func[2] = { // array index: UP (internal::rank2_update_selector<Scalar,int,Upper>::run), // array index: LO (internal::rank2_update_selector<Scalar,int,Lower>::run), }; Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar alpha = *reinterpret_cast<Scalar*>(palpha); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*lda<std::max(1,*n)) info = 9; if(info) return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6); if(alpha==Scalar(0)) return 1; Scalar* x_cpy = get_compact_vector(x, *n, *incx); Scalar* y_cpy = get_compact_vector(y, *n, *incy); int code = UPLO(*uplo); if(code>=2 || func[code]==0) return 0; func[code](*n, a, *lda, x_cpy, y_cpy, alpha); matrix(a,*n,*n,*lda).diagonal().imag().setZero(); if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy; return 1; } /** ZGERU performs the rank 1 operation * * A := alpha*x*y' + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. */ int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar alpha = *reinterpret_cast<Scalar*>(palpha); int info = 0; if(*m<0) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*lda<std::max(1,*m)) info = 9; if(info) return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6); if(alpha==Scalar(0)) return 1; Scalar* x_cpy = get_compact_vector(x,*m,*incx); Scalar* y_cpy = get_compact_vector(y,*n,*incy); internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy; return 1; } /** ZGERC performs the rank 1 operation * * A := alpha*x*conjg( y' ) + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. */ int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar alpha = *reinterpret_cast<Scalar*>(palpha); int info = 0; if(*m<0) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*lda<std::max(1,*m)) info = 9; if(info) return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6); if(alpha==Scalar(0)) return 1; Scalar* x_cpy = get_compact_vector(x,*m,*incx); Scalar* y_cpy = get_compact_vector(y,*n,*incy); internal::general_rank1_update<Scalar,int,ColMajor,false,Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy; return 1; }