// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_BLAS_COMMON_H #define EIGEN_BLAS_COMMON_H #include "../Eigen/Core" #include "../Eigen/Jacobi" #include <complex> #ifndef SCALAR #error the token SCALAR must be defined to compile this file #endif #include "../Eigen/src/misc/blas.h" #define NOTR 0 #define TR 1 #define ADJ 2 #define LEFT 0 #define RIGHT 1 #define UP 0 #define LO 1 #define NUNIT 0 #define UNIT 1 #define INVALID 0xff #define OP(X) ( ((X)=='N' || (X)=='n') ? NOTR \ : ((X)=='T' || (X)=='t') ? TR \ : ((X)=='C' || (X)=='c') ? ADJ \ : INVALID) #define SIDE(X) ( ((X)=='L' || (X)=='l') ? LEFT \ : ((X)=='R' || (X)=='r') ? RIGHT \ : INVALID) #define UPLO(X) ( ((X)=='U' || (X)=='u') ? UP \ : ((X)=='L' || (X)=='l') ? LO \ : INVALID) #define DIAG(X) ( ((X)=='N' || (X)=='n') ? NUNIT \ : ((X)=='U' || (X)=='u') ? UNIT \ : INVALID) inline bool check_op(const char* op) { return OP(*op)!=0xff; } inline bool check_side(const char* side) { return SIDE(*side)!=0xff; } inline bool check_uplo(const char* uplo) { return UPLO(*uplo)!=0xff; } namespace Eigen { #include "BandTriangularSolver.h" #include "GeneralRank1Update.h" #include "PackedSelfadjointProduct.h" #include "PackedTriangularMatrixVector.h" #include "PackedTriangularSolverVector.h" #include "Rank2Update.h" } using namespace Eigen; typedef SCALAR Scalar; typedef NumTraits<Scalar>::Real RealScalar; typedef std::complex<RealScalar> Complex; enum { IsComplex = Eigen::NumTraits<SCALAR>::IsComplex, Conj = IsComplex }; typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> PlainMatrixType; typedef Map<Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > MatrixType; typedef Map<const Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > ConstMatrixType; typedef Map<Matrix<Scalar,Dynamic,1>, 0, InnerStride<Dynamic> > StridedVectorType; typedef Map<Matrix<Scalar,Dynamic,1> > CompactVectorType; template<typename T> Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > matrix(T* data, int rows, int cols, int stride) { return Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride)); } template<typename T> Map<const Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > matrix(const T* data, int rows, int cols, int stride) { return Map<const Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride)); } template<typename T> Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > make_vector(T* data, int size, int incr) { return Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr)); } template<typename T> Map<const Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > make_vector(const T* data, int size, int incr) { return Map<const Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr)); } template<typename T> Map<Matrix<T,Dynamic,1> > make_vector(T* data, int size) { return Map<Matrix<T,Dynamic,1> >(data, size); } template<typename T> Map<const Matrix<T,Dynamic,1> > make_vector(const T* data, int size) { return Map<const Matrix<T,Dynamic,1> >(data, size); } template<typename T> T* get_compact_vector(T* x, int n, int incx) { if(incx==1) return x; typename Eigen::internal::remove_const<T>::type* ret = new Scalar[n]; if(incx<0) make_vector(ret,n) = make_vector(x,n,-incx).reverse(); else make_vector(ret,n) = make_vector(x,n, incx); return ret; } template<typename T> T* copy_back(T* x_cpy, T* x, int n, int incx) { if(x_cpy==x) return 0; if(incx<0) make_vector(x,n,-incx).reverse() = make_vector(x_cpy,n); else make_vector(x,n, incx) = make_vector(x_cpy,n); return x_cpy; } #define EIGEN_BLAS_FUNC(X) EIGEN_CAT(SCALAR_SUFFIX,X##_) #endif // EIGEN_BLAS_COMMON_H