#ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ #define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ typedef int TensorIndex; #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #include "unsupported/Eigen/CXX11/Tensor" #include "benchmark.h" #define BENCHMARK_RANGE(bench, lo, hi) \ BENCHMARK(bench)->Range(lo, hi) using Eigen::Tensor; using Eigen::TensorMap; // TODO(bsteiner): also templatize on the input type since we have users // for int8 as well as floats. template <typename Device, typename T> class BenchmarkSuite { public: BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n) : m_(m), k_(k), n_(n), device_(device) { initialize(); } BenchmarkSuite(const Device& device, size_t m) : m_(m), k_(m), n_(m), device_(device) { initialize(); } ~BenchmarkSuite() { device_.deallocate(a_); device_.deallocate(b_); device_.deallocate(c_); } void memcpy(int num_iters) { eigen_assert(m_ == k_ && k_ == n_); StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { device_.memcpy(c_, a_, m_ * m_ * sizeof(T)); } // Record the number of values copied per second finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); } void typeCasting(int num_iters) { eigen_assert(m_ == n_); Eigen::array<TensorIndex, 2> sizes; if (sizeof(T) >= sizeof(int)) { sizes[0] = m_; sizes[1] = k_; } else { sizes[0] = m_ * sizeof(T) / sizeof(int); sizes[1] = k_ * sizeof(T) / sizeof(int); } const TensorMap<Tensor<int, 2, 0, TensorIndex>, Eigen::Aligned> A((int*)a_, sizes); TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, sizes); StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { B.device(device_) = A.template cast<T>(); } // Record the number of values copied per second finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); } void random(int num_iters) { eigen_assert(m_ == k_ && k_ == n_); Eigen::array<TensorIndex, 2> sizes; sizes[0] = m_; sizes[1] = m_; TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = C.random(); } // Record the number of random numbers generated per second finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); } void slicing(int num_iters) { eigen_assert(m_ == k_ && k_ == n_); Eigen::array<TensorIndex, 2> sizes; sizes[0] = m_; sizes[1] = m_; const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); const Eigen::DSizes<TensorIndex, 2> quarter_sizes(m_/2, m_/2); const Eigen::DSizes<TensorIndex, 2> first_quadrant(0, 0); const Eigen::DSizes<TensorIndex, 2> second_quadrant(0, m_/2); const Eigen::DSizes<TensorIndex, 2> third_quadrant(m_/2, 0); const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(m_/2, m_/2); StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.slice(first_quadrant, quarter_sizes).device(device_) = A.slice(first_quadrant, quarter_sizes); C.slice(second_quadrant, quarter_sizes).device(device_) = B.slice(second_quadrant, quarter_sizes); C.slice(third_quadrant, quarter_sizes).device(device_) = A.slice(third_quadrant, quarter_sizes); C.slice(fourth_quadrant, quarter_sizes).device(device_) = B.slice(fourth_quadrant, quarter_sizes); } // Record the number of values copied from the rhs slice to the lhs slice // each second finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); } void rowChip(int num_iters) { Eigen::array<TensorIndex, 2> input_size; input_size[0] = k_; input_size[1] = n_; const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); Eigen::array<TensorIndex, 1> output_size; output_size[0] = n_; TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = B.chip(iter % k_, 0); } // Record the number of values copied from the rhs chip to the lhs. finalizeBenchmark(static_cast<int64_t>(n_) * num_iters); } void colChip(int num_iters) { Eigen::array<TensorIndex, 2> input_size; input_size[0] = k_; input_size[1] = n_; const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); Eigen::array<TensorIndex, 1> output_size; output_size[0] = n_; TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = B.chip(iter % n_, 1); } // Record the number of values copied from the rhs chip to the lhs. finalizeBenchmark(static_cast<int64_t>(n_) * num_iters); } void shuffling(int num_iters) { eigen_assert(m_ == n_); Eigen::array<TensorIndex, 2> size_a; size_a[0] = m_; size_a[1] = k_; const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); Eigen::array<TensorIndex, 2> size_b; size_b[0] = k_; size_b[1] = m_; TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); Eigen::array<int, 2> shuffle; shuffle[0] = 1; shuffle[1] = 0; StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { B.device(device_) = A.shuffle(shuffle); } // Record the number of values shuffled from A and copied to B each second finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); } void padding(int num_iters) { eigen_assert(m_ == k_); Eigen::array<TensorIndex, 2> size_a; size_a[0] = m_; size_a[1] = k_-3; const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); Eigen::array<TensorIndex, 2> size_b; size_b[0] = k_; size_b[1] = m_; TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); #if defined(EIGEN_HAS_INDEX_LIST) Eigen::IndexPairList<Eigen::type2indexpair<0, 0>, Eigen::type2indexpair<2, 1> > paddings; #else Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings; paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0); paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1); #endif StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { B.device(device_) = A.pad(paddings); } // Record the number of values copied from the padded tensor A each second finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); } void striding(int num_iters) { eigen_assert(m_ == k_); Eigen::array<TensorIndex, 2> size_a; size_a[0] = m_; size_a[1] = k_; const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); Eigen::array<TensorIndex, 2> size_b; size_b[0] = m_; size_b[1] = k_/2; TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); #ifndef EIGEN_HAS_INDEX_LIST Eigen::array<TensorIndex, 2> strides; strides[0] = 1; strides[1] = 2; #else // Take advantage of cxx11 to give the compiler information it can use to // optimize the code. Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> > strides; #endif StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { B.device(device_) = A.stride(strides); } // Record the number of values copied from the padded tensor A each second finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); } void broadcasting(int num_iters) { Eigen::array<TensorIndex, 2> size_a; size_a[0] = m_; size_a[1] = 1; const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); Eigen::array<TensorIndex, 2> size_c; size_c[0] = m_; size_c[1] = n_; TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, size_c); #ifndef EIGEN_HAS_INDEX_LIST Eigen::array<int, 2> broadcast; broadcast[0] = 1; broadcast[1] = n_; #else // Take advantage of cxx11 to give the compiler information it can use to // optimize the code. Eigen::IndexList<Eigen::type2index<1>, int> broadcast; broadcast.set(1, n_); #endif StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = A.broadcast(broadcast); } // Record the number of values broadcasted from A and copied to C each second finalizeBenchmark(static_cast<int64_t>(m_) * n_ * num_iters); } void coeffWiseOp(int num_iters) { eigen_assert(m_ == k_ && k_ == n_); Eigen::array<TensorIndex, 2> sizes; sizes[0] = m_; sizes[1] = m_; const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = A * A.constant(static_cast<T>(3.14)) + B * B.constant(static_cast<T>(2.7)); } // Record the number of FLOP executed per second (2 multiplications and // 1 addition per value) finalizeBenchmark(static_cast<int64_t>(3) * m_ * m_ * num_iters); } void algebraicFunc(int num_iters) { eigen_assert(m_ == k_ && k_ == n_); Eigen::array<TensorIndex, 2> sizes; sizes[0] = m_; sizes[1] = m_; const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = A.rsqrt() + B.sqrt() * B.square(); } // Record the number of FLOP executed per second (assuming one operation // per value) finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); } void transcendentalFunc(int num_iters) { eigen_assert(m_ == k_ && k_ == n_); Eigen::array<TensorIndex, 2> sizes; sizes[0] = m_; sizes[1] = m_; const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = A.exp() + B.log(); } // Record the number of FLOP executed per second (assuming one operation // per value) finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); } // Row reduction void rowReduction(int num_iters) { Eigen::array<TensorIndex, 2> input_size; input_size[0] = k_; input_size[1] = n_; const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); Eigen::array<TensorIndex, 1> output_size; output_size[0] = n_; TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); #ifndef EIGEN_HAS_INDEX_LIST Eigen::array<TensorIndex, 1> sum_along_dim; sum_along_dim[0] = 0; #else // Take advantage of cxx11 to give the compiler information it can use to // optimize the code. Eigen::IndexList<Eigen::type2index<0>> sum_along_dim; #endif StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = B.sum(sum_along_dim); } // Record the number of FLOP executed per second (assuming one operation // per value) finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); } // Column reduction void colReduction(int num_iters) { Eigen::array<TensorIndex, 2> input_size; input_size[0] = k_; input_size[1] = n_; const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B( b_, input_size); Eigen::array<TensorIndex, 1> output_size; output_size[0] = k_; TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C( c_, output_size); #ifndef EIGEN_HAS_INDEX_LIST Eigen::array<TensorIndex, 1> sum_along_dim; sum_along_dim[0] = 1; #else // Take advantage of cxx11 to give the compiler information it can use to // optimize the code. Eigen::IndexList<Eigen::type2index<1>> sum_along_dim; #endif StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = B.sum(sum_along_dim); } // Record the number of FLOP executed per second (assuming one operation // per value) finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); } // Full reduction void fullReduction(int num_iters) { Eigen::array<TensorIndex, 2> input_size; input_size[0] = k_; input_size[1] = n_; const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B( b_, input_size); Eigen::array<TensorIndex, 0> output_size; TensorMap<Tensor<T, 0, 0, TensorIndex>, Eigen::Aligned> C( c_, output_size); StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = B.sum(); } // Record the number of FLOP executed per second (assuming one operation // per value) finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); } // do a contraction which is equivalent to a matrix multiplication void contraction(int num_iters) { Eigen::array<TensorIndex, 2> sizeA; sizeA[0] = m_; sizeA[1] = k_; Eigen::array<TensorIndex, 2> sizeB; sizeB[0] = k_; sizeB[1] = n_; Eigen::array<TensorIndex, 2> sizeC; sizeC[0] = m_; sizeC[1] = n_; const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizeA); const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizeB); TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizeC); typedef typename Tensor<T, 2>::DimensionPair DimPair; Eigen::array<DimPair, 1> dims; dims[0] = DimPair(1, 0); StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = A.contract(B, dims); } // Record the number of FLOP executed per second (size_ multiplications and // additions for each value in the resulting tensor) finalizeBenchmark(static_cast<int64_t>(2) * m_ * n_ * k_ * num_iters); } void convolution(int num_iters, int kernel_x, int kernel_y) { Eigen::array<TensorIndex, 2> input_sizes; input_sizes[0] = m_; input_sizes[1] = n_; TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, input_sizes); Eigen::array<TensorIndex, 2> kernel_sizes; kernel_sizes[0] = kernel_x; kernel_sizes[1] = kernel_y; TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, kernel_sizes); Eigen::array<TensorIndex, 2> result_sizes; result_sizes[0] = m_ - kernel_x + 1; result_sizes[1] = n_ - kernel_y + 1; TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, result_sizes); Eigen::array<TensorIndex, 2> dims; dims[0] = 0; dims[1] = 1; StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = A.convolve(B, dims); } // Record the number of FLOP executed per second (kernel_size // multiplications and additions for each value in the resulting tensor) finalizeBenchmark(static_cast<int64_t>(2) * (m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * num_iters); } private: void initialize() { a_ = (T *) device_.allocate(m_ * k_ * sizeof(T)); b_ = (T *) device_.allocate(k_ * n_ * sizeof(T)); c_ = (T *) device_.allocate(m_ * n_ * sizeof(T)); // Initialize the content of the memory pools to prevent asan from // complaining. device_.memset(a_, 12, m_ * k_ * sizeof(T)); device_.memset(b_, 23, k_ * n_ * sizeof(T)); device_.memset(c_, 31, m_ * n_ * sizeof(T)); //BenchmarkUseRealTime(); } inline void finalizeBenchmark(int64_t num_items) { #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) { device_.synchronize(); } #endif StopBenchmarkTiming(); SetBenchmarkFlopsProcessed(num_items); } TensorIndex m_; TensorIndex k_; TensorIndex n_; T* a_; T* b_; T* c_; Device device_; }; #endif // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_