// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Benoit Jacob <benoitjacob@google.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include <iostream> #include <cstdint> #include <cstdlib> #include <vector> #include <algorithm> #include <fstream> #include <string> #include <cmath> #include <cassert> #include <cstring> #include <memory> #include <Eigen/Core> using namespace std; const int default_precision = 4; // see --only-cubic-sizes bool only_cubic_sizes = false; // see --dump-tables bool dump_tables = false; uint8_t log2_pot(size_t x) { size_t l = 0; while (x >>= 1) l++; return l; } uint16_t compact_size_triple(size_t k, size_t m, size_t n) { return (log2_pot(k) << 8) | (log2_pot(m) << 4) | log2_pot(n); } // just a helper to store a triple of K,M,N sizes for matrix product struct size_triple_t { uint16_t k, m, n; size_triple_t() : k(0), m(0), n(0) {} size_triple_t(size_t _k, size_t _m, size_t _n) : k(_k), m(_m), n(_n) {} size_triple_t(const size_triple_t& o) : k(o.k), m(o.m), n(o.n) {} size_triple_t(uint16_t compact) { k = 1 << ((compact & 0xf00) >> 8); m = 1 << ((compact & 0x0f0) >> 4); n = 1 << ((compact & 0x00f) >> 0); } bool is_cubic() const { return k == m && m == n; } }; ostream& operator<<(ostream& s, const size_triple_t& t) { return s << "(" << t.k << ", " << t.m << ", " << t.n << ")"; } struct inputfile_entry_t { uint16_t product_size; uint16_t pot_block_size; size_triple_t nonpot_block_size; float gflops; }; struct inputfile_t { enum class type_t { unknown, all_pot_sizes, default_sizes }; string filename; vector<inputfile_entry_t> entries; type_t type; inputfile_t(const string& fname) : filename(fname) , type(type_t::unknown) { ifstream stream(filename); if (!stream.is_open()) { cerr << "couldn't open input file: " << filename << endl; exit(1); } string line; while (getline(stream, line)) { if (line.empty()) continue; if (line.find("BEGIN MEASUREMENTS ALL POT SIZES") == 0) { if (type != type_t::unknown) { cerr << "Input file " << filename << " contains redundant BEGIN MEASUREMENTS lines"; exit(1); } type = type_t::all_pot_sizes; continue; } if (line.find("BEGIN MEASUREMENTS DEFAULT SIZES") == 0) { if (type != type_t::unknown) { cerr << "Input file " << filename << " contains redundant BEGIN MEASUREMENTS lines"; exit(1); } type = type_t::default_sizes; continue; } if (type == type_t::unknown) { continue; } switch(type) { case type_t::all_pot_sizes: { unsigned int product_size, block_size; float gflops; int sscanf_result = sscanf(line.c_str(), "%x %x %f", &product_size, &block_size, &gflops); if (3 != sscanf_result || !product_size || product_size > 0xfff || !block_size || block_size > 0xfff || !isfinite(gflops)) { cerr << "ill-formed input file: " << filename << endl; cerr << "offending line:" << endl << line << endl; exit(1); } if (only_cubic_sizes && !size_triple_t(product_size).is_cubic()) { continue; } inputfile_entry_t entry; entry.product_size = uint16_t(product_size); entry.pot_block_size = uint16_t(block_size); entry.gflops = gflops; entries.push_back(entry); break; } case type_t::default_sizes: { unsigned int product_size; float gflops; int bk, bm, bn; int sscanf_result = sscanf(line.c_str(), "%x default(%d, %d, %d) %f", &product_size, &bk, &bm, &bn, &gflops); if (5 != sscanf_result || !product_size || product_size > 0xfff || !isfinite(gflops)) { cerr << "ill-formed input file: " << filename << endl; cerr << "offending line:" << endl << line << endl; exit(1); } if (only_cubic_sizes && !size_triple_t(product_size).is_cubic()) { continue; } inputfile_entry_t entry; entry.product_size = uint16_t(product_size); entry.pot_block_size = 0; entry.nonpot_block_size = size_triple_t(bk, bm, bn); entry.gflops = gflops; entries.push_back(entry); break; } default: break; } } stream.close(); if (type == type_t::unknown) { cerr << "Unrecognized input file " << filename << endl; exit(1); } if (entries.empty()) { cerr << "didn't find any measurements in input file: " << filename << endl; exit(1); } } }; struct preprocessed_inputfile_entry_t { uint16_t product_size; uint16_t block_size; float efficiency; }; bool lower_efficiency(const preprocessed_inputfile_entry_t& e1, const preprocessed_inputfile_entry_t& e2) { return e1.efficiency < e2.efficiency; } struct preprocessed_inputfile_t { string filename; vector<preprocessed_inputfile_entry_t> entries; preprocessed_inputfile_t(const inputfile_t& inputfile) : filename(inputfile.filename) { if (inputfile.type != inputfile_t::type_t::all_pot_sizes) { abort(); } auto it = inputfile.entries.begin(); auto it_first_with_given_product_size = it; while (it != inputfile.entries.end()) { ++it; if (it == inputfile.entries.end() || it->product_size != it_first_with_given_product_size->product_size) { import_input_file_range_one_product_size(it_first_with_given_product_size, it); it_first_with_given_product_size = it; } } } private: void import_input_file_range_one_product_size( const vector<inputfile_entry_t>::const_iterator& begin, const vector<inputfile_entry_t>::const_iterator& end) { uint16_t product_size = begin->product_size; float max_gflops = 0.0f; for (auto it = begin; it != end; ++it) { if (it->product_size != product_size) { cerr << "Unexpected ordering of entries in " << filename << endl; cerr << "(Expected all entries for product size " << hex << product_size << dec << " to be grouped)" << endl; exit(1); } max_gflops = max(max_gflops, it->gflops); } for (auto it = begin; it != end; ++it) { preprocessed_inputfile_entry_t entry; entry.product_size = it->product_size; entry.block_size = it->pot_block_size; entry.efficiency = it->gflops / max_gflops; entries.push_back(entry); } } }; void check_all_files_in_same_exact_order( const vector<preprocessed_inputfile_t>& preprocessed_inputfiles) { if (preprocessed_inputfiles.empty()) { return; } const preprocessed_inputfile_t& first_file = preprocessed_inputfiles[0]; const size_t num_entries = first_file.entries.size(); for (size_t i = 0; i < preprocessed_inputfiles.size(); i++) { if (preprocessed_inputfiles[i].entries.size() != num_entries) { cerr << "these files have different number of entries: " << preprocessed_inputfiles[i].filename << " and " << first_file.filename << endl; exit(1); } } for (size_t entry_index = 0; entry_index < num_entries; entry_index++) { const uint16_t entry_product_size = first_file.entries[entry_index].product_size; const uint16_t entry_block_size = first_file.entries[entry_index].block_size; for (size_t file_index = 0; file_index < preprocessed_inputfiles.size(); file_index++) { const preprocessed_inputfile_t& cur_file = preprocessed_inputfiles[file_index]; if (cur_file.entries[entry_index].product_size != entry_product_size || cur_file.entries[entry_index].block_size != entry_block_size) { cerr << "entries not in same order between these files: " << first_file.filename << " and " << cur_file.filename << endl; exit(1); } } } } float efficiency_of_subset( const vector<preprocessed_inputfile_t>& preprocessed_inputfiles, const vector<size_t>& subset) { if (subset.size() <= 1) { return 1.0f; } const preprocessed_inputfile_t& first_file = preprocessed_inputfiles[subset[0]]; const size_t num_entries = first_file.entries.size(); float efficiency = 1.0f; size_t entry_index = 0; size_t first_entry_index_with_this_product_size = 0; uint16_t product_size = first_file.entries[0].product_size; while (entry_index < num_entries) { ++entry_index; if (entry_index == num_entries || first_file.entries[entry_index].product_size != product_size) { float efficiency_this_product_size = 0.0f; for (size_t e = first_entry_index_with_this_product_size; e < entry_index; e++) { float efficiency_this_entry = 1.0f; for (auto i = subset.begin(); i != subset.end(); ++i) { efficiency_this_entry = min(efficiency_this_entry, preprocessed_inputfiles[*i].entries[e].efficiency); } efficiency_this_product_size = max(efficiency_this_product_size, efficiency_this_entry); } efficiency = min(efficiency, efficiency_this_product_size); if (entry_index < num_entries) { first_entry_index_with_this_product_size = entry_index; product_size = first_file.entries[entry_index].product_size; } } } return efficiency; } void dump_table_for_subset( const vector<preprocessed_inputfile_t>& preprocessed_inputfiles, const vector<size_t>& subset) { const preprocessed_inputfile_t& first_file = preprocessed_inputfiles[subset[0]]; const size_t num_entries = first_file.entries.size(); size_t entry_index = 0; size_t first_entry_index_with_this_product_size = 0; uint16_t product_size = first_file.entries[0].product_size; size_t i = 0; size_triple_t min_product_size(first_file.entries.front().product_size); size_triple_t max_product_size(first_file.entries.back().product_size); if (!min_product_size.is_cubic() || !max_product_size.is_cubic()) { abort(); } if (only_cubic_sizes) { cerr << "Can't generate tables with --only-cubic-sizes." << endl; abort(); } cout << "struct LookupTable {" << endl; cout << " static const size_t BaseSize = " << min_product_size.k << ";" << endl; const size_t NumSizes = log2_pot(max_product_size.k / min_product_size.k) + 1; const size_t TableSize = NumSizes * NumSizes * NumSizes; cout << " static const size_t NumSizes = " << NumSizes << ";" << endl; cout << " static const unsigned short* Data() {" << endl; cout << " static const unsigned short data[" << TableSize << "] = {"; while (entry_index < num_entries) { ++entry_index; if (entry_index == num_entries || first_file.entries[entry_index].product_size != product_size) { float best_efficiency_this_product_size = 0.0f; uint16_t best_block_size_this_product_size = 0; for (size_t e = first_entry_index_with_this_product_size; e < entry_index; e++) { float efficiency_this_entry = 1.0f; for (auto i = subset.begin(); i != subset.end(); ++i) { efficiency_this_entry = min(efficiency_this_entry, preprocessed_inputfiles[*i].entries[e].efficiency); } if (efficiency_this_entry > best_efficiency_this_product_size) { best_efficiency_this_product_size = efficiency_this_entry; best_block_size_this_product_size = first_file.entries[e].block_size; } } if ((i++) % NumSizes) { cout << " "; } else { cout << endl << " "; } cout << "0x" << hex << best_block_size_this_product_size << dec; if (entry_index < num_entries) { cout << ","; first_entry_index_with_this_product_size = entry_index; product_size = first_file.entries[entry_index].product_size; } } } if (i != TableSize) { cerr << endl << "Wrote " << i << " table entries, expected " << TableSize << endl; abort(); } cout << endl << " };" << endl; cout << " return data;" << endl; cout << " }" << endl; cout << "};" << endl; } float efficiency_of_partition( const vector<preprocessed_inputfile_t>& preprocessed_inputfiles, const vector<vector<size_t>>& partition) { float efficiency = 1.0f; for (auto s = partition.begin(); s != partition.end(); ++s) { efficiency = min(efficiency, efficiency_of_subset(preprocessed_inputfiles, *s)); } return efficiency; } void make_first_subset(size_t subset_size, vector<size_t>& out_subset, size_t set_size) { assert(subset_size >= 1 && subset_size <= set_size); out_subset.resize(subset_size); for (size_t i = 0; i < subset_size; i++) { out_subset[i] = i; } } bool is_last_subset(const vector<size_t>& subset, size_t set_size) { return subset[0] == set_size - subset.size(); } void next_subset(vector<size_t>& inout_subset, size_t set_size) { if (is_last_subset(inout_subset, set_size)) { cerr << "iterating past the last subset" << endl; abort(); } size_t i = 1; while (inout_subset[inout_subset.size() - i] == set_size - i) { i++; assert(i <= inout_subset.size()); } size_t first_index_to_change = inout_subset.size() - i; inout_subset[first_index_to_change]++; size_t p = inout_subset[first_index_to_change]; for (size_t j = first_index_to_change + 1; j < inout_subset.size(); j++) { inout_subset[j] = ++p; } } const size_t number_of_subsets_limit = 100; const size_t always_search_subsets_of_size_at_least = 2; bool is_number_of_subsets_feasible(size_t n, size_t p) { assert(n>0 && p>0 && p<=n); uint64_t numerator = 1, denominator = 1; for (size_t i = 0; i < p; i++) { numerator *= n - i; denominator *= i + 1; if (numerator > denominator * number_of_subsets_limit) { return false; } } return true; } size_t max_feasible_subset_size(size_t n) { assert(n > 0); const size_t minresult = min<size_t>(n-1, always_search_subsets_of_size_at_least); for (size_t p = 1; p <= n - 1; p++) { if (!is_number_of_subsets_feasible(n, p+1)) { return max(p, minresult); } } return n - 1; } void find_subset_with_efficiency_higher_than( const vector<preprocessed_inputfile_t>& preprocessed_inputfiles, float required_efficiency_to_beat, vector<size_t>& inout_remainder, vector<size_t>& out_subset) { out_subset.resize(0); if (required_efficiency_to_beat >= 1.0f) { cerr << "can't beat efficiency 1." << endl; abort(); } while (!inout_remainder.empty()) { vector<size_t> candidate_indices(inout_remainder.size()); for (size_t i = 0; i < candidate_indices.size(); i++) { candidate_indices[i] = i; } size_t candidate_indices_subset_size = max_feasible_subset_size(candidate_indices.size()); while (candidate_indices_subset_size >= 1) { vector<size_t> candidate_indices_subset; make_first_subset(candidate_indices_subset_size, candidate_indices_subset, candidate_indices.size()); vector<size_t> best_candidate_indices_subset; float best_efficiency = 0.0f; vector<size_t> trial_subset = out_subset; trial_subset.resize(out_subset.size() + candidate_indices_subset_size); while (true) { for (size_t i = 0; i < candidate_indices_subset_size; i++) { trial_subset[out_subset.size() + i] = inout_remainder[candidate_indices_subset[i]]; } float trial_efficiency = efficiency_of_subset(preprocessed_inputfiles, trial_subset); if (trial_efficiency > best_efficiency) { best_efficiency = trial_efficiency; best_candidate_indices_subset = candidate_indices_subset; } if (is_last_subset(candidate_indices_subset, candidate_indices.size())) { break; } next_subset(candidate_indices_subset, candidate_indices.size()); } if (best_efficiency > required_efficiency_to_beat) { for (size_t i = 0; i < best_candidate_indices_subset.size(); i++) { candidate_indices[i] = candidate_indices[best_candidate_indices_subset[i]]; } candidate_indices.resize(best_candidate_indices_subset.size()); } candidate_indices_subset_size--; } size_t candidate_index = candidate_indices[0]; auto candidate_iterator = inout_remainder.begin() + candidate_index; vector<size_t> trial_subset = out_subset; trial_subset.push_back(*candidate_iterator); float trial_efficiency = efficiency_of_subset(preprocessed_inputfiles, trial_subset); if (trial_efficiency > required_efficiency_to_beat) { out_subset.push_back(*candidate_iterator); inout_remainder.erase(candidate_iterator); } else { break; } } } void find_partition_with_efficiency_higher_than( const vector<preprocessed_inputfile_t>& preprocessed_inputfiles, float required_efficiency_to_beat, vector<vector<size_t>>& out_partition) { out_partition.resize(0); vector<size_t> remainder; for (size_t i = 0; i < preprocessed_inputfiles.size(); i++) { remainder.push_back(i); } while (!remainder.empty()) { vector<size_t> new_subset; find_subset_with_efficiency_higher_than( preprocessed_inputfiles, required_efficiency_to_beat, remainder, new_subset); out_partition.push_back(new_subset); } } void print_partition( const vector<preprocessed_inputfile_t>& preprocessed_inputfiles, const vector<vector<size_t>>& partition) { float efficiency = efficiency_of_partition(preprocessed_inputfiles, partition); cout << "Partition into " << partition.size() << " subsets for " << efficiency * 100.0f << "% efficiency" << endl; for (auto subset = partition.begin(); subset != partition.end(); ++subset) { cout << " Subset " << (subset - partition.begin()) << ", efficiency " << efficiency_of_subset(preprocessed_inputfiles, *subset) * 100.0f << "%:" << endl; for (auto file = subset->begin(); file != subset->end(); ++file) { cout << " " << preprocessed_inputfiles[*file].filename << endl; } if (dump_tables) { cout << " Table:" << endl; dump_table_for_subset(preprocessed_inputfiles, *subset); } } cout << endl; } struct action_t { virtual const char* invokation_name() const { abort(); return nullptr; } virtual void run(const vector<string>&) const { abort(); } virtual ~action_t() {} }; struct partition_action_t : action_t { virtual const char* invokation_name() const override { return "partition"; } virtual void run(const vector<string>& input_filenames) const override { vector<preprocessed_inputfile_t> preprocessed_inputfiles; if (input_filenames.empty()) { cerr << "The " << invokation_name() << " action needs a list of input files." << endl; exit(1); } for (auto it = input_filenames.begin(); it != input_filenames.end(); ++it) { inputfile_t inputfile(*it); switch (inputfile.type) { case inputfile_t::type_t::all_pot_sizes: preprocessed_inputfiles.emplace_back(inputfile); break; case inputfile_t::type_t::default_sizes: cerr << "The " << invokation_name() << " action only uses measurements for all pot sizes, and " << "has no use for " << *it << " which contains measurements for default sizes." << endl; exit(1); break; default: cerr << "Unrecognized input file: " << *it << endl; exit(1); } } check_all_files_in_same_exact_order(preprocessed_inputfiles); float required_efficiency_to_beat = 0.0f; vector<vector<vector<size_t>>> partitions; cerr << "searching for partitions...\r" << flush; while (true) { vector<vector<size_t>> partition; find_partition_with_efficiency_higher_than( preprocessed_inputfiles, required_efficiency_to_beat, partition); float actual_efficiency = efficiency_of_partition(preprocessed_inputfiles, partition); cerr << "partition " << preprocessed_inputfiles.size() << " files into " << partition.size() << " subsets for " << 100.0f * actual_efficiency << " % efficiency" << " \r" << flush; partitions.push_back(partition); if (partition.size() == preprocessed_inputfiles.size() || actual_efficiency == 1.0f) { break; } required_efficiency_to_beat = actual_efficiency; } cerr << " " << endl; while (true) { bool repeat = false; for (size_t i = 0; i < partitions.size() - 1; i++) { if (partitions[i].size() >= partitions[i+1].size()) { partitions.erase(partitions.begin() + i); repeat = true; break; } } if (!repeat) { break; } } for (auto it = partitions.begin(); it != partitions.end(); ++it) { print_partition(preprocessed_inputfiles, *it); } } }; struct evaluate_defaults_action_t : action_t { struct results_entry_t { uint16_t product_size; size_triple_t default_block_size; uint16_t best_pot_block_size; float default_gflops; float best_pot_gflops; float default_efficiency; }; friend ostream& operator<<(ostream& s, const results_entry_t& entry) { return s << "Product size " << size_triple_t(entry.product_size) << ": default block size " << entry.default_block_size << " -> " << entry.default_gflops << " GFlop/s = " << entry.default_efficiency * 100.0f << " %" << " of best POT block size " << size_triple_t(entry.best_pot_block_size) << " -> " << entry.best_pot_gflops << " GFlop/s" << dec; } static bool lower_efficiency(const results_entry_t& e1, const results_entry_t& e2) { return e1.default_efficiency < e2.default_efficiency; } virtual const char* invokation_name() const override { return "evaluate-defaults"; } void show_usage_and_exit() const { cerr << "usage: " << invokation_name() << " default-sizes-data all-pot-sizes-data" << endl; cerr << "checks how well the performance with default sizes compares to the best " << "performance measured over all POT sizes." << endl; exit(1); } virtual void run(const vector<string>& input_filenames) const override { if (input_filenames.size() != 2) { show_usage_and_exit(); } inputfile_t inputfile_default_sizes(input_filenames[0]); inputfile_t inputfile_all_pot_sizes(input_filenames[1]); if (inputfile_default_sizes.type != inputfile_t::type_t::default_sizes) { cerr << inputfile_default_sizes.filename << " is not an input file with default sizes." << endl; show_usage_and_exit(); } if (inputfile_all_pot_sizes.type != inputfile_t::type_t::all_pot_sizes) { cerr << inputfile_all_pot_sizes.filename << " is not an input file with all POT sizes." << endl; show_usage_and_exit(); } vector<results_entry_t> results; vector<results_entry_t> cubic_results; uint16_t product_size = 0; auto it_all_pot_sizes = inputfile_all_pot_sizes.entries.begin(); for (auto it_default_sizes = inputfile_default_sizes.entries.begin(); it_default_sizes != inputfile_default_sizes.entries.end(); ++it_default_sizes) { if (it_default_sizes->product_size == product_size) { continue; } product_size = it_default_sizes->product_size; while (it_all_pot_sizes != inputfile_all_pot_sizes.entries.end() && it_all_pot_sizes->product_size != product_size) { ++it_all_pot_sizes; } if (it_all_pot_sizes == inputfile_all_pot_sizes.entries.end()) { break; } uint16_t best_pot_block_size = 0; float best_pot_gflops = 0; for (auto it = it_all_pot_sizes; it != inputfile_all_pot_sizes.entries.end() && it->product_size == product_size; ++it) { if (it->gflops > best_pot_gflops) { best_pot_gflops = it->gflops; best_pot_block_size = it->pot_block_size; } } results_entry_t entry; entry.product_size = product_size; entry.default_block_size = it_default_sizes->nonpot_block_size; entry.best_pot_block_size = best_pot_block_size; entry.default_gflops = it_default_sizes->gflops; entry.best_pot_gflops = best_pot_gflops; entry.default_efficiency = entry.default_gflops / entry.best_pot_gflops; results.push_back(entry); size_triple_t t(product_size); if (t.k == t.m && t.m == t.n) { cubic_results.push_back(entry); } } cout << "All results:" << endl; for (auto it = results.begin(); it != results.end(); ++it) { cout << *it << endl; } cout << endl; sort(results.begin(), results.end(), lower_efficiency); const size_t n = min<size_t>(20, results.size()); cout << n << " worst results:" << endl; for (size_t i = 0; i < n; i++) { cout << results[i] << endl; } cout << endl; cout << "cubic results:" << endl; for (auto it = cubic_results.begin(); it != cubic_results.end(); ++it) { cout << *it << endl; } cout << endl; sort(cubic_results.begin(), cubic_results.end(), lower_efficiency); cout.precision(2); vector<float> a = {0.5f, 0.20f, 0.10f, 0.05f, 0.02f, 0.01f}; for (auto it = a.begin(); it != a.end(); ++it) { size_t n = min(results.size() - 1, size_t(*it * results.size())); cout << (100.0f * n / (results.size() - 1)) << " % of product sizes have default efficiency <= " << 100.0f * results[n].default_efficiency << " %" << endl; } cout.precision(default_precision); } }; void show_usage_and_exit(int argc, char* argv[], const vector<unique_ptr<action_t>>& available_actions) { cerr << "usage: " << argv[0] << " <action> [options...] <input files...>" << endl; cerr << "available actions:" << endl; for (auto it = available_actions.begin(); it != available_actions.end(); ++it) { cerr << " " << (*it)->invokation_name() << endl; } cerr << "the input files should each contain an output of benchmark-blocking-sizes" << endl; exit(1); } int main(int argc, char* argv[]) { cout.precision(default_precision); cerr.precision(default_precision); vector<unique_ptr<action_t>> available_actions; available_actions.emplace_back(new partition_action_t); available_actions.emplace_back(new evaluate_defaults_action_t); vector<string> input_filenames; action_t* action = nullptr; if (argc < 2) { show_usage_and_exit(argc, argv, available_actions); } for (int i = 1; i < argc; i++) { bool arg_handled = false; // Step 1. Try to match action invokation names. for (auto it = available_actions.begin(); it != available_actions.end(); ++it) { if (!strcmp(argv[i], (*it)->invokation_name())) { if (!action) { action = it->get(); arg_handled = true; break; } else { cerr << "can't specify more than one action!" << endl; show_usage_and_exit(argc, argv, available_actions); } } } if (arg_handled) { continue; } // Step 2. Try to match option names. if (argv[i][0] == '-') { if (!strcmp(argv[i], "--only-cubic-sizes")) { only_cubic_sizes = true; arg_handled = true; } if (!strcmp(argv[i], "--dump-tables")) { dump_tables = true; arg_handled = true; } if (!arg_handled) { cerr << "Unrecognized option: " << argv[i] << endl; show_usage_and_exit(argc, argv, available_actions); } } if (arg_handled) { continue; } // Step 3. Default to interpreting args as input filenames. input_filenames.emplace_back(argv[i]); } if (dump_tables && only_cubic_sizes) { cerr << "Incompatible options: --only-cubic-sizes and --dump-tables." << endl; show_usage_and_exit(argc, argv, available_actions); } if (!action) { show_usage_and_exit(argc, argv, available_actions); } action->run(input_filenames); }