// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_HOMOGENEOUS_H #define EIGEN_HOMOGENEOUS_H namespace Eigen { /** \geometry_module \ingroup Geometry_Module * * \class Homogeneous * * \brief Expression of one (or a set of) homogeneous vector(s) * * \param MatrixType the type of the object in which we are making homogeneous * * This class represents an expression of one (or a set of) homogeneous vector(s). * It is the return type of MatrixBase::homogeneous() and most of the time * this is the only way it is used. * * \sa MatrixBase::homogeneous() */ namespace internal { template<typename MatrixType,int Direction> struct traits<Homogeneous<MatrixType,Direction> > : traits<MatrixType> { typedef typename traits<MatrixType>::StorageKind StorageKind; typedef typename ref_selector<MatrixType>::type MatrixTypeNested; typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested; enum { RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ? int(MatrixType::RowsAtCompileTime) + 1 : Dynamic, ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ? int(MatrixType::ColsAtCompileTime) + 1 : Dynamic, RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime, ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = RowsAtCompileTime, MaxColsAtCompileTime = ColsAtCompileTime, TmpFlags = _MatrixTypeNested::Flags & HereditaryBits, Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit) : RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit) : TmpFlags }; }; template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl; template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl; } // end namespace internal template<typename MatrixType,int _Direction> class Homogeneous : public MatrixBase<Homogeneous<MatrixType,_Direction> >, internal::no_assignment_operator { public: typedef MatrixType NestedExpression; enum { Direction = _Direction }; typedef MatrixBase<Homogeneous> Base; EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous) EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix) : m_matrix(matrix) {} EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); } EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); } EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; } template<typename Rhs> EIGEN_DEVICE_FUNC inline const Product<Homogeneous,Rhs> operator* (const MatrixBase<Rhs>& rhs) const { eigen_assert(int(Direction)==Horizontal); return Product<Homogeneous,Rhs>(*this,rhs.derived()); } template<typename Lhs> friend EIGEN_DEVICE_FUNC inline const Product<Lhs,Homogeneous> operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs) { eigen_assert(int(Direction)==Vertical); return Product<Lhs,Homogeneous>(lhs.derived(),rhs); } template<typename Scalar, int Dim, int Mode, int Options> friend EIGEN_DEVICE_FUNC inline const Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous > operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs) { eigen_assert(int(Direction)==Vertical); return Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous>(lhs,rhs); } template<typename Func> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar,Scalar)>::type redux(const Func& func) const { return func(m_matrix.redux(func), Scalar(1)); } protected: typename MatrixType::Nested m_matrix; }; /** \geometry_module \ingroup Geometry_Module * * \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as the last coefficient. * * This can be used to convert affine coordinates to homogeneous coordinates. * * \only_for_vectors * * Example: \include MatrixBase_homogeneous.cpp * Output: \verbinclude MatrixBase_homogeneous.out * * \sa VectorwiseOp::homogeneous(), class Homogeneous */ template<typename Derived> EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::HomogeneousReturnType MatrixBase<Derived>::homogeneous() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); return HomogeneousReturnType(derived()); } /** \geometry_module \ingroup Geometry_Module * * \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of the matrix. * * This can be used to convert affine coordinates to homogeneous coordinates. * * Example: \include VectorwiseOp_homogeneous.cpp * Output: \verbinclude VectorwiseOp_homogeneous.out * * \sa MatrixBase::homogeneous(), class Homogeneous */ template<typename ExpressionType, int Direction> EIGEN_DEVICE_FUNC inline Homogeneous<ExpressionType,Direction> VectorwiseOp<ExpressionType,Direction>::homogeneous() const { return HomogeneousReturnType(_expression()); } /** \geometry_module \ingroup Geometry_Module * * \brief homogeneous normalization * * \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient. * * This can be used to convert homogeneous coordinates to affine coordinates. * * It is essentially a shortcut for: * \code this->head(this->size()-1)/this->coeff(this->size()-1); \endcode * * Example: \include MatrixBase_hnormalized.cpp * Output: \verbinclude MatrixBase_hnormalized.out * * \sa VectorwiseOp::hnormalized() */ template<typename Derived> EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::HNormalizedReturnType MatrixBase<Derived>::hnormalized() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); return ConstStartMinusOne(derived(),0,0, ColsAtCompileTime==1?size()-1:1, ColsAtCompileTime==1?1:size()-1) / coeff(size()-1); } /** \geometry_module \ingroup Geometry_Module * * \brief column or row-wise homogeneous normalization * * \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last coefficient of each column (or row). * * This can be used to convert homogeneous coordinates to affine coordinates. * * It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this. * * Example: \include DirectionWise_hnormalized.cpp * Output: \verbinclude DirectionWise_hnormalized.out * * \sa MatrixBase::hnormalized() */ template<typename ExpressionType, int Direction> EIGEN_DEVICE_FUNC inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType VectorwiseOp<ExpressionType,Direction>::hnormalized() const { return HNormalized_Block(_expression(),0,0, Direction==Vertical ? _expression().rows()-1 : _expression().rows(), Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient( Replicate<HNormalized_Factors, Direction==Vertical ? HNormalized_SizeMinusOne : 1, Direction==Horizontal ? HNormalized_SizeMinusOne : 1> (HNormalized_Factors(_expression(), Direction==Vertical ? _expression().rows()-1:0, Direction==Horizontal ? _expression().cols()-1:0, Direction==Vertical ? 1 : _expression().rows(), Direction==Horizontal ? 1 : _expression().cols()), Direction==Vertical ? _expression().rows()-1 : 1, Direction==Horizontal ? _expression().cols()-1 : 1)); } namespace internal { template<typename MatrixOrTransformType> struct take_matrix_for_product { typedef MatrixOrTransformType type; EIGEN_DEVICE_FUNC static const type& run(const type &x) { return x; } }; template<typename Scalar, int Dim, int Mode,int Options> struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> > { typedef Transform<Scalar, Dim, Mode, Options> TransformType; typedef typename internal::add_const<typename TransformType::ConstAffinePart>::type type; EIGEN_DEVICE_FUNC static type run (const TransformType& x) { return x.affine(); } }; template<typename Scalar, int Dim, int Options> struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> > { typedef Transform<Scalar, Dim, Projective, Options> TransformType; typedef typename TransformType::MatrixType type; EIGEN_DEVICE_FUNC static const type& run (const TransformType& x) { return x.matrix(); } }; template<typename MatrixType,typename Lhs> struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> > { typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType; typedef typename remove_all<MatrixType>::type MatrixTypeCleaned; typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned; typedef typename make_proper_matrix_type< typename traits<MatrixTypeCleaned>::Scalar, LhsMatrixTypeCleaned::RowsAtCompileTime, MatrixTypeCleaned::ColsAtCompileTime, MatrixTypeCleaned::PlainObject::Options, LhsMatrixTypeCleaned::MaxRowsAtCompileTime, MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType; }; template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> : public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> > { typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType; typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned; typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested; EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs) : m_lhs(take_matrix_for_product<Lhs>::run(lhs)), m_rhs(rhs) {} EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); } EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); } template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const { // FIXME investigate how to allow lazy evaluation of this product when possible dst = Block<const LhsMatrixTypeNested, LhsMatrixTypeNested::RowsAtCompileTime, LhsMatrixTypeNested::ColsAtCompileTime==Dynamic?Dynamic:LhsMatrixTypeNested::ColsAtCompileTime-1> (m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs; dst += m_lhs.col(m_lhs.cols()-1).rowwise() .template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols()); } typename LhsMatrixTypeCleaned::Nested m_lhs; typename MatrixType::Nested m_rhs; }; template<typename MatrixType,typename Rhs> struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> > { typedef typename make_proper_matrix_type<typename traits<MatrixType>::Scalar, MatrixType::RowsAtCompileTime, Rhs::ColsAtCompileTime, MatrixType::PlainObject::Options, MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime>::type ReturnType; }; template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> : public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> > { typedef typename remove_all<typename Rhs::Nested>::type RhsNested; EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs) {} EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); } EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); } template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const { // FIXME investigate how to allow lazy evaluation of this product when possible dst = m_lhs * Block<const RhsNested, RhsNested::RowsAtCompileTime==Dynamic?Dynamic:RhsNested::RowsAtCompileTime-1, RhsNested::ColsAtCompileTime> (m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols()); dst += m_rhs.row(m_rhs.rows()-1).colwise() .template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows()); } typename MatrixType::Nested m_lhs; typename Rhs::Nested m_rhs; }; template<typename ArgType,int Direction> struct evaluator_traits<Homogeneous<ArgType,Direction> > { typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind; typedef HomogeneousShape Shape; }; template<> struct AssignmentKind<DenseShape,HomogeneousShape> { typedef Dense2Dense Kind; }; template<typename ArgType,int Direction> struct unary_evaluator<Homogeneous<ArgType,Direction>, IndexBased> : evaluator<typename Homogeneous<ArgType,Direction>::PlainObject > { typedef Homogeneous<ArgType,Direction> XprType; typedef typename XprType::PlainObject PlainObject; typedef evaluator<PlainObject> Base; EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) : Base(), m_temp(op) { ::new (static_cast<Base*>(this)) Base(m_temp); } protected: PlainObject m_temp; }; // dense = homogeneous template< typename DstXprType, typename ArgType, typename Scalar> struct Assignment<DstXprType, Homogeneous<ArgType,Vertical>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense> { typedef Homogeneous<ArgType,Vertical> SrcXprType; EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &) { Index dstRows = src.rows(); Index dstCols = src.cols(); if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) dst.resize(dstRows, dstCols); dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression(); dst.row(dst.rows()-1).setOnes(); } }; // dense = homogeneous template< typename DstXprType, typename ArgType, typename Scalar> struct Assignment<DstXprType, Homogeneous<ArgType,Horizontal>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense> { typedef Homogeneous<ArgType,Horizontal> SrcXprType; EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &) { Index dstRows = src.rows(); Index dstCols = src.cols(); if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) dst.resize(dstRows, dstCols); dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression(); dst.col(dst.cols()-1).setOnes(); } }; template<typename LhsArg, typename Rhs, int ProductTag> struct generic_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag> { template<typename Dest> EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous<LhsArg,Horizontal>& lhs, const Rhs& rhs) { homogeneous_right_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst); } }; template<typename Lhs,typename Rhs> struct homogeneous_right_product_refactoring_helper { enum { Dim = Lhs::ColsAtCompileTime, Rows = Lhs::RowsAtCompileTime }; typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type LinearBlockConst; typedef typename remove_const<LinearBlockConst>::type LinearBlock; typedef typename Rhs::ConstRowXpr ConstantColumn; typedef Replicate<const ConstantColumn,Rows,1> ConstantBlock; typedef Product<Lhs,LinearBlock,LazyProduct> LinearProduct; typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr; }; template<typename Lhs, typename Rhs, int ProductTag> struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, HomogeneousShape, DenseShape> : public evaluator<typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs>::Xpr> { typedef Product<Lhs, Rhs, LazyProduct> XprType; typedef homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs> helper; typedef typename helper::ConstantBlock ConstantBlock; typedef typename helper::Xpr RefactoredXpr; typedef evaluator<RefactoredXpr> Base; EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) : Base( xpr.lhs().nestedExpression() .lazyProduct( xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols()) ) + ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) ) {} }; template<typename Lhs, typename RhsArg, int ProductTag> struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag> { template<typename Dest> EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs) { homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst); } }; // TODO: the following specialization is to address a regression from 3.2 to 3.3 // In the future, this path should be optimized. template<typename Lhs, typename RhsArg, int ProductTag> struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, TriangularShape, HomogeneousShape, ProductTag> { template<typename Dest> static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs) { dst.noalias() = lhs * rhs.eval(); } }; template<typename Lhs,typename Rhs> struct homogeneous_left_product_refactoring_helper { enum { Dim = Rhs::RowsAtCompileTime, Cols = Rhs::ColsAtCompileTime }; typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type LinearBlockConst; typedef typename remove_const<LinearBlockConst>::type LinearBlock; typedef typename Lhs::ConstColXpr ConstantColumn; typedef Replicate<const ConstantColumn,1,Cols> ConstantBlock; typedef Product<LinearBlock,Rhs,LazyProduct> LinearProduct; typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr; }; template<typename Lhs, typename Rhs, int ProductTag> struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, HomogeneousShape> : public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression>::Xpr> { typedef Product<Lhs, Rhs, LazyProduct> XprType; typedef homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression> helper; typedef typename helper::ConstantBlock ConstantBlock; typedef typename helper::Xpr RefactoredXpr; typedef evaluator<RefactoredXpr> Base; EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) : Base( xpr.lhs().template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() ) + ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) ) {} }; template<typename Scalar, int Dim, int Mode,int Options, typename RhsArg, int ProductTag> struct generic_product_impl<Transform<Scalar,Dim,Mode,Options>, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag> { typedef Transform<Scalar,Dim,Mode,Options> TransformType; template<typename Dest> EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg,Vertical>& rhs) { homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst); } }; template<typename ExpressionType, int Side, bool Transposed> struct permutation_matrix_product<ExpressionType, Side, Transposed, HomogeneousShape> : public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape> {}; } // end namespace internal } // end namespace Eigen #endif // EIGEN_HOMOGENEOUS_H