// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_ANGLEAXIS_H #define EIGEN_ANGLEAXIS_H namespace Eigen { /** \geometry_module \ingroup Geometry_Module * * \class AngleAxis * * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis * * \param _Scalar the scalar type, i.e., the type of the coefficients. * * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized. * * The following two typedefs are provided for convenience: * \li \c AngleAxisf for \c float * \li \c AngleAxisd for \c double * * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily * mimic Euler-angles. Here is an example: * \include AngleAxis_mimic_euler.cpp * Output: \verbinclude AngleAxis_mimic_euler.out * * \note This class is not aimed to be used to store a rotation transformation, * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) * and transformation objects. * * \sa class Quaternion, class Transform, MatrixBase::UnitX() */ namespace internal { template<typename _Scalar> struct traits<AngleAxis<_Scalar> > { typedef _Scalar Scalar; }; } template<typename _Scalar> class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3> { typedef RotationBase<AngleAxis<_Scalar>,3> Base; public: using Base::operator*; enum { Dim = 3 }; /** the scalar type of the coefficients */ typedef _Scalar Scalar; typedef Matrix<Scalar,3,3> Matrix3; typedef Matrix<Scalar,3,1> Vector3; typedef Quaternion<Scalar> QuaternionType; protected: Vector3 m_axis; Scalar m_angle; public: /** Default constructor without initialization. */ EIGEN_DEVICE_FUNC AngleAxis() {} /** Constructs and initialize the angle-axis rotation from an \a angle in radian * and an \a axis which \b must \b be \b normalized. * * \warning If the \a axis vector is not normalized, then the angle-axis object * represents an invalid rotation. */ template<typename Derived> EIGEN_DEVICE_FUNC inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {} /** Constructs and initialize the angle-axis rotation from a quaternion \a q. * This function implicitly normalizes the quaternion \a q. */ template<typename QuatDerived> EIGEN_DEVICE_FUNC inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; } /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ template<typename Derived> EIGEN_DEVICE_FUNC inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; } /** \returns the value of the rotation angle in radian */ EIGEN_DEVICE_FUNC Scalar angle() const { return m_angle; } /** \returns a read-write reference to the stored angle in radian */ EIGEN_DEVICE_FUNC Scalar& angle() { return m_angle; } /** \returns the rotation axis */ EIGEN_DEVICE_FUNC const Vector3& axis() const { return m_axis; } /** \returns a read-write reference to the stored rotation axis. * * \warning The rotation axis must remain a \b unit vector. */ EIGEN_DEVICE_FUNC Vector3& axis() { return m_axis; } /** Concatenates two rotations */ EIGEN_DEVICE_FUNC inline QuaternionType operator* (const AngleAxis& other) const { return QuaternionType(*this) * QuaternionType(other); } /** Concatenates two rotations */ EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& other) const { return QuaternionType(*this) * other; } /** Concatenates two rotations */ friend EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) { return a * QuaternionType(b); } /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ EIGEN_DEVICE_FUNC AngleAxis inverse() const { return AngleAxis(-m_angle, m_axis); } template<class QuatDerived> EIGEN_DEVICE_FUNC AngleAxis& operator=(const QuaternionBase<QuatDerived>& q); template<typename Derived> EIGEN_DEVICE_FUNC AngleAxis& operator=(const MatrixBase<Derived>& m); template<typename Derived> EIGEN_DEVICE_FUNC AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m); EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const; /** \returns \c *this with scalar type casted to \a NewScalarType * * Note that if \a NewScalarType is equal to the current scalar type of \c *this * then this function smartly returns a const reference to \c *this. */ template<typename NewScalarType> EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); } /** Copy constructor with scalar type conversion */ template<typename OtherScalarType> EIGEN_DEVICE_FUNC inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other) { m_axis = other.axis().template cast<Scalar>(); m_angle = Scalar(other.angle()); } EIGEN_DEVICE_FUNC static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); } /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \sa MatrixBase::isApprox() */ EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); } }; /** \ingroup Geometry_Module * single precision angle-axis type */ typedef AngleAxis<float> AngleAxisf; /** \ingroup Geometry_Module * double precision angle-axis type */ typedef AngleAxis<double> AngleAxisd; /** Set \c *this from a \b unit quaternion. * * The resulting axis is normalized, and the computed angle is in the [0,pi] range. * * This function implicitly normalizes the quaternion \a q. */ template<typename Scalar> template<typename QuatDerived> EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q) { EIGEN_USING_STD_MATH(atan2) EIGEN_USING_STD_MATH(abs) Scalar n = q.vec().norm(); if(n<NumTraits<Scalar>::epsilon()) n = q.vec().stableNorm(); if (n != Scalar(0)) { m_angle = Scalar(2)*atan2(n, abs(q.w())); if(q.w() < 0) n = -n; m_axis = q.vec() / n; } else { m_angle = Scalar(0); m_axis << Scalar(1), Scalar(0), Scalar(0); } return *this; } /** Set \c *this from a 3x3 rotation matrix \a mat. */ template<typename Scalar> template<typename Derived> EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) { // Since a direct conversion would not be really faster, // let's use the robust Quaternion implementation: return *this = QuaternionType(mat); } /** * \brief Sets \c *this from a 3x3 rotation matrix. **/ template<typename Scalar> template<typename Derived> EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) { return *this = QuaternionType(mat); } /** Constructs and \returns an equivalent 3x3 rotation matrix. */ template<typename Scalar> typename AngleAxis<Scalar>::Matrix3 EIGEN_DEVICE_FUNC AngleAxis<Scalar>::toRotationMatrix(void) const { EIGEN_USING_STD_MATH(sin) EIGEN_USING_STD_MATH(cos) Matrix3 res; Vector3 sin_axis = sin(m_angle) * m_axis; Scalar c = cos(m_angle); Vector3 cos1_axis = (Scalar(1)-c) * m_axis; Scalar tmp; tmp = cos1_axis.x() * m_axis.y(); res.coeffRef(0,1) = tmp - sin_axis.z(); res.coeffRef(1,0) = tmp + sin_axis.z(); tmp = cos1_axis.x() * m_axis.z(); res.coeffRef(0,2) = tmp + sin_axis.y(); res.coeffRef(2,0) = tmp - sin_axis.y(); tmp = cos1_axis.y() * m_axis.z(); res.coeffRef(1,2) = tmp - sin_axis.x(); res.coeffRef(2,1) = tmp + sin_axis.x(); res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; return res; } } // end namespace Eigen #endif // EIGEN_ANGLEAXIS_H