// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Claire Maurice // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H #define EIGEN_COMPLEX_EIGEN_SOLVER_H #include "./ComplexSchur.h" namespace Eigen { /** \eigenvalues_module \ingroup Eigenvalues_Module * * * \class ComplexEigenSolver * * \brief Computes eigenvalues and eigenvectors of general complex matrices * * \tparam _MatrixType the type of the matrix of which we are * computing the eigendecomposition; this is expected to be an * instantiation of the Matrix class template. * * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is * almost always invertible, in which case we have \f$ A = V D V^{-1} * \f$. This is called the eigendecomposition. * * The main function in this class is compute(), which computes the * eigenvalues and eigenvectors of a given function. The * documentation for that function contains an example showing the * main features of the class. * * \sa class EigenSolver, class SelfAdjointEigenSolver */ template<typename _MatrixType> class ComplexEigenSolver { public: /** \brief Synonym for the template parameter \p _MatrixType. */ typedef _MatrixType MatrixType; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; /** \brief Scalar type for matrices of type #MatrixType. */ typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 /** \brief Complex scalar type for #MatrixType. * * This is \c std::complex<Scalar> if #Scalar is real (e.g., * \c float or \c double) and just \c Scalar if #Scalar is * complex. */ typedef std::complex<RealScalar> ComplexScalar; /** \brief Type for vector of eigenvalues as returned by eigenvalues(). * * This is a column vector with entries of type #ComplexScalar. * The length of the vector is the size of #MatrixType. */ typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType; /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). * * This is a square matrix with entries of type #ComplexScalar. * The size is the same as the size of #MatrixType. */ typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType; /** \brief Default constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via compute(). */ ComplexEigenSolver() : m_eivec(), m_eivalues(), m_schur(), m_isInitialized(false), m_eigenvectorsOk(false), m_matX() {} /** \brief Default Constructor with memory preallocation * * Like the default constructor but with preallocation of the internal data * according to the specified problem \a size. * \sa ComplexEigenSolver() */ explicit ComplexEigenSolver(Index size) : m_eivec(size, size), m_eivalues(size), m_schur(size), m_isInitialized(false), m_eigenvectorsOk(false), m_matX(size, size) {} /** \brief Constructor; computes eigendecomposition of given matrix. * * \param[in] matrix Square matrix whose eigendecomposition is to be computed. * \param[in] computeEigenvectors If true, both the eigenvectors and the * eigenvalues are computed; if false, only the eigenvalues are * computed. * * This constructor calls compute() to compute the eigendecomposition. */ template<typename InputType> explicit ComplexEigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true) : m_eivec(matrix.rows(),matrix.cols()), m_eivalues(matrix.cols()), m_schur(matrix.rows()), m_isInitialized(false), m_eigenvectorsOk(false), m_matX(matrix.rows(),matrix.cols()) { compute(matrix.derived(), computeEigenvectors); } /** \brief Returns the eigenvectors of given matrix. * * \returns A const reference to the matrix whose columns are the eigenvectors. * * \pre Either the constructor * ComplexEigenSolver(const MatrixType& matrix, bool) or the member * function compute(const MatrixType& matrix, bool) has been called before * to compute the eigendecomposition of a matrix, and * \p computeEigenvectors was set to true (the default). * * This function returns a matrix whose columns are the eigenvectors. Column * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k * \f$ as returned by eigenvalues(). The eigenvectors are normalized to * have (Euclidean) norm equal to one. The matrix returned by this * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D * V^{-1} \f$, if it exists. * * Example: \include ComplexEigenSolver_eigenvectors.cpp * Output: \verbinclude ComplexEigenSolver_eigenvectors.out */ const EigenvectorType& eigenvectors() const { eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); return m_eivec; } /** \brief Returns the eigenvalues of given matrix. * * \returns A const reference to the column vector containing the eigenvalues. * * \pre Either the constructor * ComplexEigenSolver(const MatrixType& matrix, bool) or the member * function compute(const MatrixType& matrix, bool) has been called before * to compute the eigendecomposition of a matrix. * * This function returns a column vector containing the * eigenvalues. Eigenvalues are repeated according to their * algebraic multiplicity, so there are as many eigenvalues as * rows in the matrix. The eigenvalues are not sorted in any particular * order. * * Example: \include ComplexEigenSolver_eigenvalues.cpp * Output: \verbinclude ComplexEigenSolver_eigenvalues.out */ const EigenvalueType& eigenvalues() const { eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); return m_eivalues; } /** \brief Computes eigendecomposition of given matrix. * * \param[in] matrix Square matrix whose eigendecomposition is to be computed. * \param[in] computeEigenvectors If true, both the eigenvectors and the * eigenvalues are computed; if false, only the eigenvalues are * computed. * \returns Reference to \c *this * * This function computes the eigenvalues of the complex matrix \p matrix. * The eigenvalues() function can be used to retrieve them. If * \p computeEigenvectors is true, then the eigenvectors are also computed * and can be retrieved by calling eigenvectors(). * * The matrix is first reduced to Schur form using the * ComplexSchur class. The Schur decomposition is then used to * compute the eigenvalues and eigenvectors. * * The cost of the computation is dominated by the cost of the * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$ * is the size of the matrix. * * Example: \include ComplexEigenSolver_compute.cpp * Output: \verbinclude ComplexEigenSolver_compute.out */ template<typename InputType> ComplexEigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true); /** \brief Reports whether previous computation was successful. * * \returns \c Success if computation was succesful, \c NoConvergence otherwise. */ ComputationInfo info() const { eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); return m_schur.info(); } /** \brief Sets the maximum number of iterations allowed. */ ComplexEigenSolver& setMaxIterations(Index maxIters) { m_schur.setMaxIterations(maxIters); return *this; } /** \brief Returns the maximum number of iterations. */ Index getMaxIterations() { return m_schur.getMaxIterations(); } protected: static void check_template_parameters() { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); } EigenvectorType m_eivec; EigenvalueType m_eivalues; ComplexSchur<MatrixType> m_schur; bool m_isInitialized; bool m_eigenvectorsOk; EigenvectorType m_matX; private: void doComputeEigenvectors(RealScalar matrixnorm); void sortEigenvalues(bool computeEigenvectors); }; template<typename MatrixType> template<typename InputType> ComplexEigenSolver<MatrixType>& ComplexEigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors) { check_template_parameters(); // this code is inspired from Jampack eigen_assert(matrix.cols() == matrix.rows()); // Do a complex Schur decomposition, A = U T U^* // The eigenvalues are on the diagonal of T. m_schur.compute(matrix.derived(), computeEigenvectors); if(m_schur.info() == Success) { m_eivalues = m_schur.matrixT().diagonal(); if(computeEigenvectors) doComputeEigenvectors(m_schur.matrixT().norm()); sortEigenvalues(computeEigenvectors); } m_isInitialized = true; m_eigenvectorsOk = computeEigenvectors; return *this; } template<typename MatrixType> void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(RealScalar matrixnorm) { const Index n = m_eivalues.size(); matrixnorm = numext::maxi(matrixnorm,(std::numeric_limits<RealScalar>::min)()); // Compute X such that T = X D X^(-1), where D is the diagonal of T. // The matrix X is unit triangular. m_matX = EigenvectorType::Zero(n, n); for(Index k=n-1 ; k>=0 ; k--) { m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0); // Compute X(i,k) using the (i,k) entry of the equation X T = D X for(Index i=k-1 ; i>=0 ; i--) { m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k); if(k-i-1>0) m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value(); ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k); if(z==ComplexScalar(0)) { // If the i-th and k-th eigenvalue are equal, then z equals 0. // Use a small value instead, to prevent division by zero. numext::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm; } m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z; } } // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1) m_eivec.noalias() = m_schur.matrixU() * m_matX; // .. and normalize the eigenvectors for(Index k=0 ; k<n ; k++) { m_eivec.col(k).normalize(); } } template<typename MatrixType> void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors) { const Index n = m_eivalues.size(); for (Index i=0; i<n; i++) { Index k; m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k); if (k != 0) { k += i; std::swap(m_eivalues[k],m_eivalues[i]); if(computeEigenvectors) m_eivec.col(i).swap(m_eivec.col(k)); } } } } // end namespace Eigen #endif // EIGEN_COMPLEX_EIGEN_SOLVER_H