// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_NUMTRAITS_H #define EIGEN_NUMTRAITS_H namespace Eigen { namespace internal { // default implementation of digits10(), based on numeric_limits if specialized, // 0 for integer types, and log10(epsilon()) otherwise. template< typename T, bool use_numeric_limits = std::numeric_limits<T>::is_specialized, bool is_integer = NumTraits<T>::IsInteger> struct default_digits10_impl { static int run() { return std::numeric_limits<T>::digits10; } }; template<typename T> struct default_digits10_impl<T,false,false> // Floating point { static int run() { using std::log10; using std::ceil; typedef typename NumTraits<T>::Real Real; return int(ceil(-log10(NumTraits<Real>::epsilon()))); } }; template<typename T> struct default_digits10_impl<T,false,true> // Integer { static int run() { return 0; } }; } // end namespace internal /** \class NumTraits * \ingroup Core_Module * * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen. * * \tparam T the numeric type at hand * * This class stores enums, typedefs and static methods giving information about a numeric type. * * The provided data consists of: * \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real, * then \c Real is just a typedef to \a T. If \a T is \c std::complex<U> then \c Real * is a typedef to \a U. * \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values, * such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives * \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to * take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is * only intended as a helper for code that needs to explicitly promote types. * \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for \c std::complex<U>, Literal is defined as \c U. * Of course, this type must be fully compatible with \a T. In doubt, just use \a T here. * \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what * this means, just use \a T here. * \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex * type, and to 0 otherwise. * \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int, * and to \c 0 otherwise. * \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed * to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers. * Stay vague here. No need to do architecture-specific stuff. * \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned. * \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must * be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise. * \li An epsilon() function which, unlike <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/epsilon">std::numeric_limits::epsilon()</a>, * it returns a \a Real instead of a \a T. * \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default * value by the fuzzy comparison operators. * \li highest() and lowest() functions returning the highest and lowest possible values respectively. * \li digits10() function returning the number of decimal digits that can be represented without change. This is * the analogue of <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits10">std::numeric_limits<T>::digits10</a> * which is used as the default implementation if specialized. */ template<typename T> struct GenericNumTraits { enum { IsInteger = std::numeric_limits<T>::is_integer, IsSigned = std::numeric_limits<T>::is_signed, IsComplex = 0, RequireInitialization = internal::is_arithmetic<T>::value ? 0 : 1, ReadCost = 1, AddCost = 1, MulCost = 1 }; typedef T Real; typedef typename internal::conditional< IsInteger, typename internal::conditional<sizeof(T)<=2, float, double>::type, T >::type NonInteger; typedef T Nested; typedef T Literal; EIGEN_DEVICE_FUNC static inline Real epsilon() { return numext::numeric_limits<T>::epsilon(); } EIGEN_DEVICE_FUNC static inline int digits10() { return internal::default_digits10_impl<T>::run(); } EIGEN_DEVICE_FUNC static inline Real dummy_precision() { // make sure to override this for floating-point types return Real(0); } EIGEN_DEVICE_FUNC static inline T highest() { return (numext::numeric_limits<T>::max)(); } EIGEN_DEVICE_FUNC static inline T lowest() { return IsInteger ? (numext::numeric_limits<T>::min)() : (-(numext::numeric_limits<T>::max)()); } EIGEN_DEVICE_FUNC static inline T infinity() { return numext::numeric_limits<T>::infinity(); } EIGEN_DEVICE_FUNC static inline T quiet_NaN() { return numext::numeric_limits<T>::quiet_NaN(); } }; template<typename T> struct NumTraits : GenericNumTraits<T> {}; template<> struct NumTraits<float> : GenericNumTraits<float> { EIGEN_DEVICE_FUNC static inline float dummy_precision() { return 1e-5f; } }; template<> struct NumTraits<double> : GenericNumTraits<double> { EIGEN_DEVICE_FUNC static inline double dummy_precision() { return 1e-12; } }; template<> struct NumTraits<long double> : GenericNumTraits<long double> { static inline long double dummy_precision() { return 1e-15l; } }; template<typename _Real> struct NumTraits<std::complex<_Real> > : GenericNumTraits<std::complex<_Real> > { typedef _Real Real; typedef typename NumTraits<_Real>::Literal Literal; enum { IsComplex = 1, RequireInitialization = NumTraits<_Real>::RequireInitialization, ReadCost = 2 * NumTraits<_Real>::ReadCost, AddCost = 2 * NumTraits<Real>::AddCost, MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost }; EIGEN_DEVICE_FUNC static inline Real epsilon() { return NumTraits<Real>::epsilon(); } EIGEN_DEVICE_FUNC static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); } EIGEN_DEVICE_FUNC static inline int digits10() { return NumTraits<Real>::digits10(); } }; template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols> struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > { typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Array<RealScalar, Rows, Cols, Options, MaxRows, MaxCols> Real; typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar; typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger; typedef ArrayType & Nested; typedef typename NumTraits<Scalar>::Literal Literal; enum { IsComplex = NumTraits<Scalar>::IsComplex, IsInteger = NumTraits<Scalar>::IsInteger, IsSigned = NumTraits<Scalar>::IsSigned, RequireInitialization = 1, ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::ReadCost, AddCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::AddCost, MulCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::MulCost }; EIGEN_DEVICE_FUNC static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); } EIGEN_DEVICE_FUNC static inline RealScalar dummy_precision() { return NumTraits<RealScalar>::dummy_precision(); } static inline int digits10() { return NumTraits<Scalar>::digits10(); } }; template<> struct NumTraits<std::string> : GenericNumTraits<std::string> { enum { RequireInitialization = 1, ReadCost = HugeCost, AddCost = HugeCost, MulCost = HugeCost }; static inline int digits10() { return 0; } private: static inline std::string epsilon(); static inline std::string dummy_precision(); static inline std::string lowest(); static inline std::string highest(); static inline std::string infinity(); static inline std::string quiet_NaN(); }; // Empty specialization for void to allow template specialization based on NumTraits<T>::Real with T==void and SFINAE. template<> struct NumTraits<void> {}; } // end namespace Eigen #endif // EIGEN_NUMTRAITS_H