// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATHFUNCTIONSIMPL_H #define EIGEN_MATHFUNCTIONSIMPL_H namespace Eigen { namespace internal { /** \internal \returns the hyperbolic tan of \a a (coeff-wise) Doesn't do anything fancy, just a 13/6-degree rational interpolant which is accurate up to a couple of ulp in the range [-9, 9], outside of which the tanh(x) = +/-1. This implementation works on both scalars and packets. */ template<typename T> T generic_fast_tanh_float(const T& a_x) { // Clamp the inputs to the range [-9, 9] since anything outside // this range is +/-1.0f in single-precision. const T plus_9 = pset1<T>(9.f); const T minus_9 = pset1<T>(-9.f); // NOTE GCC prior to 6.3 might improperly optimize this max/min // step such that if a_x is nan, x will be either 9 or -9, // and tanh will return 1 or -1 instead of nan. // This is supposed to be fixed in gcc6.3, // see: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867 const T x = pmax(minus_9,pmin(plus_9,a_x)); // The monomial coefficients of the numerator polynomial (odd). const T alpha_1 = pset1<T>(4.89352455891786e-03f); const T alpha_3 = pset1<T>(6.37261928875436e-04f); const T alpha_5 = pset1<T>(1.48572235717979e-05f); const T alpha_7 = pset1<T>(5.12229709037114e-08f); const T alpha_9 = pset1<T>(-8.60467152213735e-11f); const T alpha_11 = pset1<T>(2.00018790482477e-13f); const T alpha_13 = pset1<T>(-2.76076847742355e-16f); // The monomial coefficients of the denominator polynomial (even). const T beta_0 = pset1<T>(4.89352518554385e-03f); const T beta_2 = pset1<T>(2.26843463243900e-03f); const T beta_4 = pset1<T>(1.18534705686654e-04f); const T beta_6 = pset1<T>(1.19825839466702e-06f); // Since the polynomials are odd/even, we need x^2. const T x2 = pmul(x, x); // Evaluate the numerator polynomial p. T p = pmadd(x2, alpha_13, alpha_11); p = pmadd(x2, p, alpha_9); p = pmadd(x2, p, alpha_7); p = pmadd(x2, p, alpha_5); p = pmadd(x2, p, alpha_3); p = pmadd(x2, p, alpha_1); p = pmul(x, p); // Evaluate the denominator polynomial p. T q = pmadd(x2, beta_6, beta_4); q = pmadd(x2, q, beta_2); q = pmadd(x2, q, beta_0); // Divide the numerator by the denominator. return pdiv(p, q); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_MATHFUNCTIONSIMPL_H