// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATHFUNCTIONS_H #define EIGEN_MATHFUNCTIONS_H // source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html // TODO this should better be moved to NumTraits #define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L namespace Eigen { // On WINCE, std::abs is defined for int only, so let's defined our own overloads: // This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too. #if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500 long abs(long x) { return (labs(x)); } double abs(double x) { return (fabs(x)); } float abs(float x) { return (fabsf(x)); } long double abs(long double x) { return (fabsl(x)); } #endif namespace internal { /** \internal \class global_math_functions_filtering_base * * What it does: * Defines a typedef 'type' as follows: * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then * global_math_functions_filtering_base<T>::type is a typedef for it. * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T. * * How it's used: * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions. * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>. * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it. * * How it's implemented: * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace * the typename dummy by an integer template parameter, it doesn't work anymore! */ template<typename T, typename dummy = void> struct global_math_functions_filtering_base { typedef T type; }; template<typename T> struct always_void { typedef void type; }; template<typename T> struct global_math_functions_filtering_base <T, typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type > { typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type; }; #define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type> #define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type /**************************************************************************** * Implementation of real * ****************************************************************************/ template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> struct real_default_impl { typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { return x; } }; template<typename Scalar> struct real_default_impl<Scalar,true> { typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { using std::real; return real(x); } }; template<typename Scalar> struct real_impl : real_default_impl<Scalar> {}; #ifdef __CUDA_ARCH__ template<typename T> struct real_impl<std::complex<T> > { typedef T RealScalar; EIGEN_DEVICE_FUNC static inline T run(const std::complex<T>& x) { return x.real(); } }; #endif template<typename Scalar> struct real_retval { typedef typename NumTraits<Scalar>::Real type; }; /**************************************************************************** * Implementation of imag * ****************************************************************************/ template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> struct imag_default_impl { typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar&) { return RealScalar(0); } }; template<typename Scalar> struct imag_default_impl<Scalar,true> { typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { using std::imag; return imag(x); } }; template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {}; #ifdef __CUDA_ARCH__ template<typename T> struct imag_impl<std::complex<T> > { typedef T RealScalar; EIGEN_DEVICE_FUNC static inline T run(const std::complex<T>& x) { return x.imag(); } }; #endif template<typename Scalar> struct imag_retval { typedef typename NumTraits<Scalar>::Real type; }; /**************************************************************************** * Implementation of real_ref * ****************************************************************************/ template<typename Scalar> struct real_ref_impl { typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC static inline RealScalar& run(Scalar& x) { return reinterpret_cast<RealScalar*>(&x)[0]; } EIGEN_DEVICE_FUNC static inline const RealScalar& run(const Scalar& x) { return reinterpret_cast<const RealScalar*>(&x)[0]; } }; template<typename Scalar> struct real_ref_retval { typedef typename NumTraits<Scalar>::Real & type; }; /**************************************************************************** * Implementation of imag_ref * ****************************************************************************/ template<typename Scalar, bool IsComplex> struct imag_ref_default_impl { typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC static inline RealScalar& run(Scalar& x) { return reinterpret_cast<RealScalar*>(&x)[1]; } EIGEN_DEVICE_FUNC static inline const RealScalar& run(const Scalar& x) { return reinterpret_cast<RealScalar*>(&x)[1]; } }; template<typename Scalar> struct imag_ref_default_impl<Scalar, false> { EIGEN_DEVICE_FUNC static inline Scalar run(Scalar&) { return Scalar(0); } EIGEN_DEVICE_FUNC static inline const Scalar run(const Scalar&) { return Scalar(0); } }; template<typename Scalar> struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; template<typename Scalar> struct imag_ref_retval { typedef typename NumTraits<Scalar>::Real & type; }; /**************************************************************************** * Implementation of conj * ****************************************************************************/ template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> struct conj_impl { EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) { return x; } }; template<typename Scalar> struct conj_impl<Scalar,true> { EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) { using std::conj; return conj(x); } }; template<typename Scalar> struct conj_retval { typedef Scalar type; }; /**************************************************************************** * Implementation of abs2 * ****************************************************************************/ template<typename Scalar,bool IsComplex> struct abs2_impl_default { typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { return x*x; } }; template<typename Scalar> struct abs2_impl_default<Scalar, true> // IsComplex { typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { return real(x)*real(x) + imag(x)*imag(x); } }; template<typename Scalar> struct abs2_impl { typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x); } }; template<typename Scalar> struct abs2_retval { typedef typename NumTraits<Scalar>::Real type; }; /**************************************************************************** * Implementation of norm1 * ****************************************************************************/ template<typename Scalar, bool IsComplex> struct norm1_default_impl { typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { EIGEN_USING_STD_MATH(abs); return abs(real(x)) + abs(imag(x)); } }; template<typename Scalar> struct norm1_default_impl<Scalar, false> { EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) { EIGEN_USING_STD_MATH(abs); return abs(x); } }; template<typename Scalar> struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; template<typename Scalar> struct norm1_retval { typedef typename NumTraits<Scalar>::Real type; }; /**************************************************************************** * Implementation of hypot * ****************************************************************************/ template<typename Scalar> struct hypot_impl { typedef typename NumTraits<Scalar>::Real RealScalar; static inline RealScalar run(const Scalar& x, const Scalar& y) { EIGEN_USING_STD_MATH(abs); EIGEN_USING_STD_MATH(sqrt); RealScalar _x = abs(x); RealScalar _y = abs(y); Scalar p, qp; if(_x>_y) { p = _x; qp = _y / p; } else { p = _y; qp = _x / p; } if(p==RealScalar(0)) return RealScalar(0); return p * sqrt(RealScalar(1) + qp*qp); } }; template<typename Scalar> struct hypot_retval { typedef typename NumTraits<Scalar>::Real type; }; /**************************************************************************** * Implementation of cast * ****************************************************************************/ template<typename OldType, typename NewType> struct cast_impl { EIGEN_DEVICE_FUNC static inline NewType run(const OldType& x) { return static_cast<NewType>(x); } }; // here, for once, we're plainly returning NewType: we don't want cast to do weird things. template<typename OldType, typename NewType> EIGEN_DEVICE_FUNC inline NewType cast(const OldType& x) { return cast_impl<OldType, NewType>::run(x); } /**************************************************************************** * Implementation of round * ****************************************************************************/ #if EIGEN_HAS_CXX11_MATH template<typename Scalar> struct round_impl { static inline Scalar run(const Scalar& x) { EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) using std::round; return round(x); } }; #else template<typename Scalar> struct round_impl { static inline Scalar run(const Scalar& x) { EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) EIGEN_USING_STD_MATH(floor); EIGEN_USING_STD_MATH(ceil); return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5)); } }; #endif template<typename Scalar> struct round_retval { typedef Scalar type; }; /**************************************************************************** * Implementation of arg * ****************************************************************************/ #if EIGEN_HAS_CXX11_MATH template<typename Scalar> struct arg_impl { static inline Scalar run(const Scalar& x) { EIGEN_USING_STD_MATH(arg); return arg(x); } }; #else template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> struct arg_default_impl { typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); } }; template<typename Scalar> struct arg_default_impl<Scalar,true> { typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { EIGEN_USING_STD_MATH(arg); return arg(x); } }; template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {}; #endif template<typename Scalar> struct arg_retval { typedef typename NumTraits<Scalar>::Real type; }; /**************************************************************************** * Implementation of log1p * ****************************************************************************/ namespace std_fallback { // fallback log1p implementation in case there is no log1p(Scalar) function in namespace of Scalar, // or that there is no suitable std::log1p function available template<typename Scalar> EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_USING_STD_MATH(log); Scalar x1p = RealScalar(1) + x; return ( x1p == Scalar(1) ) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) ); } } template<typename Scalar> struct log1p_impl { static inline Scalar run(const Scalar& x) { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) #if EIGEN_HAS_CXX11_MATH using std::log1p; #endif using std_fallback::log1p; return log1p(x); } }; template<typename Scalar> struct log1p_retval { typedef Scalar type; }; /**************************************************************************** * Implementation of pow * ****************************************************************************/ template<typename ScalarX,typename ScalarY, bool IsInteger = NumTraits<ScalarX>::IsInteger&&NumTraits<ScalarY>::IsInteger> struct pow_impl { //typedef Scalar retval; typedef typename ScalarBinaryOpTraits<ScalarX,ScalarY,internal::scalar_pow_op<ScalarX,ScalarY> >::ReturnType result_type; static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y) { EIGEN_USING_STD_MATH(pow); return pow(x, y); } }; template<typename ScalarX,typename ScalarY> struct pow_impl<ScalarX,ScalarY, true> { typedef ScalarX result_type; static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y) { ScalarX res(1); eigen_assert(!NumTraits<ScalarY>::IsSigned || y >= 0); if(y & 1) res *= x; y >>= 1; while(y) { x *= x; if(y&1) res *= x; y >>= 1; } return res; } }; /**************************************************************************** * Implementation of random * ****************************************************************************/ template<typename Scalar, bool IsComplex, bool IsInteger> struct random_default_impl {}; template<typename Scalar> struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; template<typename Scalar> struct random_retval { typedef Scalar type; }; template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y); template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(); template<typename Scalar> struct random_default_impl<Scalar, false, false> { static inline Scalar run(const Scalar& x, const Scalar& y) { return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX); } static inline Scalar run() { return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1)); } }; enum { meta_floor_log2_terminate, meta_floor_log2_move_up, meta_floor_log2_move_down, meta_floor_log2_bogus }; template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector { enum { middle = (lower + upper) / 2, value = (upper <= lower + 1) ? int(meta_floor_log2_terminate) : (n < (1 << middle)) ? int(meta_floor_log2_move_down) : (n==0) ? int(meta_floor_log2_bogus) : int(meta_floor_log2_move_up) }; }; template<unsigned int n, int lower = 0, int upper = sizeof(unsigned int) * CHAR_BIT - 1, int selector = meta_floor_log2_selector<n, lower, upper>::value> struct meta_floor_log2 {}; template<unsigned int n, int lower, int upper> struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down> { enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value }; }; template<unsigned int n, int lower, int upper> struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up> { enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value }; }; template<unsigned int n, int lower, int upper> struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate> { enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower }; }; template<unsigned int n, int lower, int upper> struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus> { // no value, error at compile time }; template<typename Scalar> struct random_default_impl<Scalar, false, true> { static inline Scalar run(const Scalar& x, const Scalar& y) { typedef typename conditional<NumTraits<Scalar>::IsSigned,std::ptrdiff_t,std::size_t>::type ScalarX; if(y<x) return x; // the following difference might overflow on a 32 bits system, // but since y>=x the result converted to an unsigned long is still correct. std::size_t range = ScalarX(y)-ScalarX(x); std::size_t offset = 0; // rejection sampling std::size_t divisor = 1; std::size_t multiplier = 1; if(range<RAND_MAX) divisor = (std::size_t(RAND_MAX)+1)/(range+1); else multiplier = 1 + range/(std::size_t(RAND_MAX)+1); do { offset = (std::size_t(std::rand()) * multiplier) / divisor; } while (offset > range); return Scalar(ScalarX(x) + offset); } static inline Scalar run() { #ifdef EIGEN_MAKING_DOCS return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10)); #else enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value, scalar_bits = sizeof(Scalar) * CHAR_BIT, shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)), offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0 }; return Scalar((std::rand() >> shift) - offset); #endif } }; template<typename Scalar> struct random_default_impl<Scalar, true, false> { static inline Scalar run(const Scalar& x, const Scalar& y) { return Scalar(random(real(x), real(y)), random(imag(x), imag(y))); } static inline Scalar run() { typedef typename NumTraits<Scalar>::Real RealScalar; return Scalar(random<RealScalar>(), random<RealScalar>()); } }; template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y) { return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y); } template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random() { return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(); } // Implementatin of is* functions // std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang. #if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG) #define EIGEN_USE_STD_FPCLASSIFY 1 #else #define EIGEN_USE_STD_FPCLASSIFY 0 #endif template<typename T> EIGEN_DEVICE_FUNC typename internal::enable_if<internal::is_integral<T>::value,bool>::type isnan_impl(const T&) { return false; } template<typename T> EIGEN_DEVICE_FUNC typename internal::enable_if<internal::is_integral<T>::value,bool>::type isinf_impl(const T&) { return false; } template<typename T> EIGEN_DEVICE_FUNC typename internal::enable_if<internal::is_integral<T>::value,bool>::type isfinite_impl(const T&) { return true; } template<typename T> EIGEN_DEVICE_FUNC typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type isfinite_impl(const T& x) { #ifdef __CUDA_ARCH__ return (::isfinite)(x); #elif EIGEN_USE_STD_FPCLASSIFY using std::isfinite; return isfinite EIGEN_NOT_A_MACRO (x); #else return x<=NumTraits<T>::highest() && x>=NumTraits<T>::lowest(); #endif } template<typename T> EIGEN_DEVICE_FUNC typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type isinf_impl(const T& x) { #ifdef __CUDA_ARCH__ return (::isinf)(x); #elif EIGEN_USE_STD_FPCLASSIFY using std::isinf; return isinf EIGEN_NOT_A_MACRO (x); #else return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest(); #endif } template<typename T> EIGEN_DEVICE_FUNC typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type isnan_impl(const T& x) { #ifdef __CUDA_ARCH__ return (::isnan)(x); #elif EIGEN_USE_STD_FPCLASSIFY using std::isnan; return isnan EIGEN_NOT_A_MACRO (x); #else return x != x; #endif } #if (!EIGEN_USE_STD_FPCLASSIFY) #if EIGEN_COMP_MSVC template<typename T> EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x) { return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF; } //MSVC defines a _isnan builtin function, but for double only EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; } EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) { return _isnan(x)!=0; } EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) { return _isnan(x)!=0; } EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); } EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) { return isinf_msvc_helper(x); } EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_msvc_helper(x); } #elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC) #if EIGEN_GNUC_AT_LEAST(5,0) #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only"))) #else // NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol), // while the second prevent too aggressive optimizations in fast-math mode: #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only"))) #endif template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); } template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) { return __builtin_isnan(x); } template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) { return __builtin_isnan(x); } template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) { return __builtin_isinf(x); } template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) { return __builtin_isinf(x); } template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); } #undef EIGEN_TMP_NOOPT_ATTRIB #endif #endif // The following overload are defined at the end of this file template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x); template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x); template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x); template<typename T> T generic_fast_tanh_float(const T& a_x); } // end namespace internal /**************************************************************************** * Generic math functions * ****************************************************************************/ namespace numext { #ifndef __CUDA_ARCH__ template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) { EIGEN_USING_STD_MATH(min); return min EIGEN_NOT_A_MACRO (x,y); } template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) { EIGEN_USING_STD_MATH(max); return max EIGEN_NOT_A_MACRO (x,y); } #else template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) { return y < x ? y : x; } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y) { return fminf(x, y); } template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) { return x < y ? y : x; } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y) { return fmaxf(x, y); } #endif template<typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x); } template<typename Scalar> EIGEN_DEVICE_FUNC inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x) { return internal::real_ref_impl<Scalar>::run(x); } template<typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x) { return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x); } template<typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x); } template<typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x); } template<typename Scalar> EIGEN_DEVICE_FUNC inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x) { return internal::imag_ref_impl<Scalar>::run(x); } template<typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x) { return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x); } template<typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x); } template<typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x); } template<typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x); } template<typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y) { return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y); } template<typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x); } #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float log1p(const float &x) { return ::log1pf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double log1p(const double &x) { return ::log1p(x); } #endif template<typename ScalarX,typename ScalarY> EIGEN_DEVICE_FUNC inline typename internal::pow_impl<ScalarX,ScalarY>::result_type pow(const ScalarX& x, const ScalarY& y) { return internal::pow_impl<ScalarX,ScalarY>::run(x, y); } template<typename T> EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); } template<typename T> EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); } template<typename T> EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); } template<typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x); } template<typename T> EIGEN_DEVICE_FUNC T (floor)(const T& x) { EIGEN_USING_STD_MATH(floor); return floor(x); } #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float floor(const float &x) { return ::floorf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double floor(const double &x) { return ::floor(x); } #endif template<typename T> EIGEN_DEVICE_FUNC T (ceil)(const T& x) { EIGEN_USING_STD_MATH(ceil); return ceil(x); } #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float ceil(const float &x) { return ::ceilf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double ceil(const double &x) { return ::ceil(x); } #endif /** Log base 2 for 32 bits positive integers. * Conveniently returns 0 for x==0. */ inline int log2(int x) { eigen_assert(x>=0); unsigned int v(x); static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; return table[(v * 0x07C4ACDDU) >> 27]; } /** \returns the square root of \a x. * * It is essentially equivalent to \code using std::sqrt; return sqrt(x); \endcode, * but slightly faster for float/double and some compilers (e.g., gcc), thanks to * specializations when SSE is enabled. * * It's usage is justified in performance critical functions, like norm/normalize. */ template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T sqrt(const T &x) { EIGEN_USING_STD_MATH(sqrt); return sqrt(x); } template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T log(const T &x) { EIGEN_USING_STD_MATH(log); return log(x); } #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float log(const float &x) { return ::logf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double log(const double &x) { return ::log(x); } #endif template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename internal::enable_if<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>::type abs(const T &x) { EIGEN_USING_STD_MATH(abs); return abs(x); } template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename internal::enable_if<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex),typename NumTraits<T>::Real>::type abs(const T &x) { return x; } #if defined(__SYCL_DEVICE_ONLY__) EIGEN_ALWAYS_INLINE float abs(float x) { return cl::sycl::fabs(x); } EIGEN_ALWAYS_INLINE double abs(double x) { return cl::sycl::fabs(x); } #endif // defined(__SYCL_DEVICE_ONLY__) #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float abs(const float &x) { return ::fabsf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double abs(const double &x) { return ::fabs(x); } template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float abs(const std::complex<float>& x) { return ::hypotf(x.real(), x.imag()); } template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double abs(const std::complex<double>& x) { return ::hypot(x.real(), x.imag()); } #endif template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T exp(const T &x) { EIGEN_USING_STD_MATH(exp); return exp(x); } #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float exp(const float &x) { return ::expf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double exp(const double &x) { return ::exp(x); } #endif template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cos(const T &x) { EIGEN_USING_STD_MATH(cos); return cos(x); } #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float cos(const float &x) { return ::cosf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double cos(const double &x) { return ::cos(x); } #endif template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T sin(const T &x) { EIGEN_USING_STD_MATH(sin); return sin(x); } #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float sin(const float &x) { return ::sinf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double sin(const double &x) { return ::sin(x); } #endif template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T tan(const T &x) { EIGEN_USING_STD_MATH(tan); return tan(x); } #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float tan(const float &x) { return ::tanf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double tan(const double &x) { return ::tan(x); } #endif template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T acos(const T &x) { EIGEN_USING_STD_MATH(acos); return acos(x); } #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float acos(const float &x) { return ::acosf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double acos(const double &x) { return ::acos(x); } #endif template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T asin(const T &x) { EIGEN_USING_STD_MATH(asin); return asin(x); } #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float asin(const float &x) { return ::asinf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double asin(const double &x) { return ::asin(x); } #endif template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T atan(const T &x) { EIGEN_USING_STD_MATH(atan); return atan(x); } #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float atan(const float &x) { return ::atanf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double atan(const double &x) { return ::atan(x); } #endif template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cosh(const T &x) { EIGEN_USING_STD_MATH(cosh); return cosh(x); } #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float cosh(const float &x) { return ::coshf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double cosh(const double &x) { return ::cosh(x); } #endif template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T sinh(const T &x) { EIGEN_USING_STD_MATH(sinh); return sinh(x); } #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float sinh(const float &x) { return ::sinhf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double sinh(const double &x) { return ::sinh(x); } #endif template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T tanh(const T &x) { EIGEN_USING_STD_MATH(tanh); return tanh(x); } #if (!defined(__CUDACC__)) && EIGEN_FAST_MATH EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float tanh(float x) { return internal::generic_fast_tanh_float(x); } #endif #ifdef __CUDACC__ template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float tanh(const float &x) { return ::tanhf(x); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double tanh(const double &x) { return ::tanh(x); } #endif template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T fmod(const T& a, const T& b) { EIGEN_USING_STD_MATH(fmod); return fmod(a, b); } #ifdef __CUDACC__ template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float fmod(const float& a, const float& b) { return ::fmodf(a, b); } template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double fmod(const double& a, const double& b) { return ::fmod(a, b); } #endif } // end namespace numext namespace internal { template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x) { return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x)); } template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x) { return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x)); } template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x) { return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x)); } /**************************************************************************** * Implementation of fuzzy comparisons * ****************************************************************************/ template<typename Scalar, bool IsComplex, bool IsInteger> struct scalar_fuzzy_default_impl {}; template<typename Scalar> struct scalar_fuzzy_default_impl<Scalar, false, false> { typedef typename NumTraits<Scalar>::Real RealScalar; template<typename OtherScalar> EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) { return numext::abs(x) <= numext::abs(y) * prec; } EIGEN_DEVICE_FUNC static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) { return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec; } EIGEN_DEVICE_FUNC static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec) { return x <= y || isApprox(x, y, prec); } }; template<typename Scalar> struct scalar_fuzzy_default_impl<Scalar, false, true> { typedef typename NumTraits<Scalar>::Real RealScalar; template<typename OtherScalar> EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&) { return x == Scalar(0); } EIGEN_DEVICE_FUNC static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&) { return x == y; } EIGEN_DEVICE_FUNC static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&) { return x <= y; } }; template<typename Scalar> struct scalar_fuzzy_default_impl<Scalar, true, false> { typedef typename NumTraits<Scalar>::Real RealScalar; template<typename OtherScalar> EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) { return numext::abs2(x) <= numext::abs2(y) * prec * prec; } EIGEN_DEVICE_FUNC static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) { return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec; } }; template<typename Scalar> struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) { return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision); } template<typename Scalar> EIGEN_DEVICE_FUNC inline bool isApprox(const Scalar& x, const Scalar& y, const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) { return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision); } template<typename Scalar> EIGEN_DEVICE_FUNC inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) { return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision); } /****************************************** *** The special case of the bool type *** ******************************************/ template<> struct random_impl<bool> { static inline bool run() { return random<int>(0,1)==0 ? false : true; } }; template<> struct scalar_fuzzy_impl<bool> { typedef bool RealScalar; template<typename OtherScalar> EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&) { return !x; } EIGEN_DEVICE_FUNC static inline bool isApprox(bool x, bool y, bool) { return x == y; } EIGEN_DEVICE_FUNC static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&) { return (!x) || y; } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_MATHFUNCTIONS_H