// Capstone Java binding // By Nguyen Anh Quynh & Dang Hoang Vu, 2013 import capstone.Capstone; import capstone.X86; import static capstone.X86_const.*; public class TestX86 { static byte[] hexString2Byte(String s) { // from http://stackoverflow.com/questions/140131/convert-a-string-representation-of-a-hex-dump-to-a-byte-array-using-java int len = s.length(); byte[] data = new byte[len / 2]; for (int i = 0; i < len; i += 2) { data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4) + Character.digit(s.charAt(i+1), 16)); } return data; } static final String X86_CODE64 = "55488b05b8130000"; static final String X86_CODE16 = "8d4c320801d881c6341200000523010000368b849123010000418d8439896700008d8789670000b4c6"; static final String X86_CODE32 = "8d4c320801d881c6341200000523010000368b849123010000418d8439896700008d8789670000b4c6"; public static Capstone cs; private static String hex(int i) { return Integer.toString(i, 16); } private static String hex(long i) { return Long.toString(i, 16); } private static String array2hex(byte[] arr) { String ret = ""; for (int i=0 ;i<arr.length; i++) ret += String.format("0x%02x ", arr[i]); return ret; } public static void print_ins_detail(Capstone.CsInsn ins) { System.out.printf("0x%x:\t%s\t%s\n", ins.address, ins.mnemonic, ins.opStr); X86.OpInfo operands = (X86.OpInfo) ins.operands; System.out.printf("\tPrefix: %s\n", array2hex(operands.prefix)); System.out.printf("\tOpcode: %s\n", array2hex(operands.opcode)); // print REX prefix (non-zero value is relevant for x86_64) System.out.printf("\trex: 0x%x\n", operands.rex); // print address size System.out.printf("\taddr_size: %d\n", operands.addrSize); // print modRM byte System.out.printf("\tmodrm: 0x%x\n", operands.modrm); // print displacement value System.out.printf("\tdisp: 0x%x\n", operands.disp); // SIB is not available in 16-bit mode if ( (cs.mode & Capstone.CS_MODE_16) == 0) { // print SIB byte System.out.printf("\tsib: 0x%x\n", operands.sib); if (operands.sib != 0) System.out.printf("\t\tsib_base: %s\n\t\tsib_index: %s\n\t\tsib_scale: %d\n", ins.regName(operands.sibBase), ins.regName(operands.sibIndex), operands.sibScale); } if (operands.sseCC != 0) System.out.printf("\tsse_cc: %u\n", operands.sseCC); if (operands.avxCC != 0) System.out.printf("\tavx_cc: %u\n", operands.avxCC); if (operands.avxSae) System.out.printf("\tavx_sae: TRUE\n"); if (operands.avxRm != 0) System.out.printf("\tavx_rm: %u\n", operands.avxRm); int count = ins.opCount(X86_OP_IMM); if (count > 0) { System.out.printf("\timm_count: %d\n", count); for (int i=0; i<count; i++) { int index = ins.opIndex(X86_OP_IMM, i + 1); System.out.printf("\t\timms[%d]: 0x%x\n", i+1, (operands.op[index].value.imm)); } } if (operands.op.length != 0) { System.out.printf("\top_count: %d\n", operands.op.length); for (int c=0; c<operands.op.length; c++) { X86.Operand i = (X86.Operand) operands.op[c]; String imm = hex(i.value.imm); if (i.type == X86_OP_REG) System.out.printf("\t\toperands[%d].type: REG = %s\n", c, ins.regName(i.value.reg)); if (i.type == X86_OP_IMM) System.out.printf("\t\toperands[%d].type: IMM = 0x%x\n", c, i.value.imm); if (i.type == X86_OP_FP) System.out.printf("\t\toperands[%d].type: FP = %f\n", c, i.value.fp); if (i.type == X86_OP_MEM) { System.out.printf("\t\toperands[%d].type: MEM\n",c); String segment = ins.regName(i.value.mem.segment); String base = ins.regName(i.value.mem.base); String index = ins.regName(i.value.mem.index); if (segment != null) System.out.printf("\t\t\toperands[%d].mem.segment: REG = %s\n", c, segment); if (base != null) System.out.printf("\t\t\toperands[%d].mem.base: REG = %s\n", c, base); if (index != null) System.out.printf("\t\t\toperands[%d].mem.index: REG = %s\n", c, index); if (i.value.mem.scale != 1) System.out.printf("\t\t\toperands[%d].mem.scale: %d\n", c, i.value.mem.scale); if (i.value.mem.disp != 0) System.out.printf("\t\t\toperands[%d].mem.disp: 0x%x\n", c, i.value.mem.disp); } // AVX broadcast type if (i.avx_bcast != X86_AVX_BCAST_INVALID) { System.out.printf("\t\toperands[%d].avx_bcast: %d\n", c, i.avx_bcast); } // AVX zero opmask {z} if (i.avx_zero_opmask) { System.out.printf("\t\toperands[%d].avx_zero_opmask: TRUE\n", c); } System.out.printf("\t\toperands[%d].size: %d\n", c, i.size); } } } public static void main(String argv[]) { final Test.platform[] all_tests = { new Test.platform(Capstone.CS_ARCH_X86, Capstone.CS_MODE_16, hexString2Byte(X86_CODE16), "X86 16bit (Intel syntax)"), new Test.platform(Capstone.CS_ARCH_X86, Capstone.CS_MODE_32, Capstone.CS_OPT_SYNTAX_ATT, hexString2Byte(X86_CODE32), "X86 32 (AT&T syntax)"), new Test.platform(Capstone.CS_ARCH_X86, Capstone.CS_MODE_32, hexString2Byte(X86_CODE32), "X86 32 (Intel syntax)"), new Test.platform(Capstone.CS_ARCH_X86, Capstone.CS_MODE_64, hexString2Byte(X86_CODE64), "X86 64 (Intel syntax)"), }; for (int i=0; i<all_tests.length; i++) { Test.platform test = all_tests[i]; System.out.println(new String(new char[16]).replace("\0", "*")); System.out.println("Platform: " + test.comment); System.out.println("Code: " + Test.stringToHex(test.code)); System.out.println("Disasm:"); cs = new Capstone(test.arch, test.mode); cs.setDetail(Capstone.CS_OPT_ON); if (test.syntax != 0) { cs.setSyntax(test.syntax); } Capstone.CsInsn[] all_ins = cs.disasm(test.code, 0x1000); for (int j = 0; j < all_ins.length; j++) { print_ins_detail(all_ins[j]); System.out.println(); } System.out.printf("0x%x:\n\n", all_ins[all_ins.length-1].address + all_ins[all_ins.length-1].size); // Close when done cs.close(); } } }