/*===-- X86DisassemblerDecoderInternal.h - Disassembler decoder ---*- C -*-===* * * The LLVM Compiler Infrastructure * * This file is distributed under the University of Illinois Open Source * License. See LICENSE.TXT for details. * *===----------------------------------------------------------------------===* * * This file is part of the X86 Disassembler. * It contains the public interface of the instruction decoder. * Documentation for the disassembler can be found in X86Disassembler.h. * *===----------------------------------------------------------------------===*/ /* Capstone Disassembly Engine */ /* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2014 */ #ifndef CS_X86_DISASSEMBLERDECODER_H #define CS_X86_DISASSEMBLERDECODER_H #if defined(CAPSTONE_HAS_OSXKERNEL) #include <libkern/libkern.h> #else #include <stdio.h> #endif #if !defined(_MSC_VER) || !defined(_KERNEL_MODE) #include <stdint.h> #endif #include "X86DisassemblerDecoderCommon.h" /* * Accessor functions for various fields of an Intel instruction */ #define modFromModRM(modRM) (((modRM) & 0xc0) >> 6) #define regFromModRM(modRM) (((modRM) & 0x38) >> 3) #define rmFromModRM(modRM) ((modRM) & 0x7) #define scaleFromSIB(sib) (((sib) & 0xc0) >> 6) #define indexFromSIB(sib) (((sib) & 0x38) >> 3) #define baseFromSIB(sib) ((sib) & 0x7) #define wFromREX(rex) (((rex) & 0x8) >> 3) #define rFromREX(rex) (((rex) & 0x4) >> 2) #define xFromREX(rex) (((rex) & 0x2) >> 1) #define bFromREX(rex) ((rex) & 0x1) #define rFromEVEX2of4(evex) (((~(evex)) & 0x80) >> 7) #define xFromEVEX2of4(evex) (((~(evex)) & 0x40) >> 6) #define bFromEVEX2of4(evex) (((~(evex)) & 0x20) >> 5) #define r2FromEVEX2of4(evex) (((~(evex)) & 0x10) >> 4) #define mmFromEVEX2of4(evex) ((evex) & 0x3) #define wFromEVEX3of4(evex) (((evex) & 0x80) >> 7) #define vvvvFromEVEX3of4(evex) (((~(evex)) & 0x78) >> 3) #define ppFromEVEX3of4(evex) ((evex) & 0x3) #define zFromEVEX4of4(evex) (((evex) & 0x80) >> 7) #define l2FromEVEX4of4(evex) (((evex) & 0x40) >> 6) #define lFromEVEX4of4(evex) (((evex) & 0x20) >> 5) #define bFromEVEX4of4(evex) (((evex) & 0x10) >> 4) #define v2FromEVEX4of4(evex) (((~evex) & 0x8) >> 3) #define aaaFromEVEX4of4(evex) ((evex) & 0x7) #define rFromVEX2of3(vex) (((~(vex)) & 0x80) >> 7) #define xFromVEX2of3(vex) (((~(vex)) & 0x40) >> 6) #define bFromVEX2of3(vex) (((~(vex)) & 0x20) >> 5) #define mmmmmFromVEX2of3(vex) ((vex) & 0x1f) #define wFromVEX3of3(vex) (((vex) & 0x80) >> 7) #define vvvvFromVEX3of3(vex) (((~(vex)) & 0x78) >> 3) #define lFromVEX3of3(vex) (((vex) & 0x4) >> 2) #define ppFromVEX3of3(vex) ((vex) & 0x3) #define rFromVEX2of2(vex) (((~(vex)) & 0x80) >> 7) #define vvvvFromVEX2of2(vex) (((~(vex)) & 0x78) >> 3) #define lFromVEX2of2(vex) (((vex) & 0x4) >> 2) #define ppFromVEX2of2(vex) ((vex) & 0x3) #define rFromXOP2of3(xop) (((~(xop)) & 0x80) >> 7) #define xFromXOP2of3(xop) (((~(xop)) & 0x40) >> 6) #define bFromXOP2of3(xop) (((~(xop)) & 0x20) >> 5) #define mmmmmFromXOP2of3(xop) ((xop) & 0x1f) #define wFromXOP3of3(xop) (((xop) & 0x80) >> 7) #define vvvvFromXOP3of3(vex) (((~(vex)) & 0x78) >> 3) #define lFromXOP3of3(xop) (((xop) & 0x4) >> 2) #define ppFromXOP3of3(xop) ((xop) & 0x3) /* * These enums represent Intel registers for use by the decoder. */ #define REGS_8BIT \ ENTRY(AL) \ ENTRY(CL) \ ENTRY(DL) \ ENTRY(BL) \ ENTRY(AH) \ ENTRY(CH) \ ENTRY(DH) \ ENTRY(BH) \ ENTRY(R8B) \ ENTRY(R9B) \ ENTRY(R10B) \ ENTRY(R11B) \ ENTRY(R12B) \ ENTRY(R13B) \ ENTRY(R14B) \ ENTRY(R15B) \ ENTRY(SPL) \ ENTRY(BPL) \ ENTRY(SIL) \ ENTRY(DIL) #define EA_BASES_16BIT \ ENTRY(BX_SI) \ ENTRY(BX_DI) \ ENTRY(BP_SI) \ ENTRY(BP_DI) \ ENTRY(SI) \ ENTRY(DI) \ ENTRY(BP) \ ENTRY(BX) \ ENTRY(R8W) \ ENTRY(R9W) \ ENTRY(R10W) \ ENTRY(R11W) \ ENTRY(R12W) \ ENTRY(R13W) \ ENTRY(R14W) \ ENTRY(R15W) #define REGS_16BIT \ ENTRY(AX) \ ENTRY(CX) \ ENTRY(DX) \ ENTRY(BX) \ ENTRY(SP) \ ENTRY(BP) \ ENTRY(SI) \ ENTRY(DI) \ ENTRY(R8W) \ ENTRY(R9W) \ ENTRY(R10W) \ ENTRY(R11W) \ ENTRY(R12W) \ ENTRY(R13W) \ ENTRY(R14W) \ ENTRY(R15W) #define EA_BASES_32BIT \ ENTRY(EAX) \ ENTRY(ECX) \ ENTRY(EDX) \ ENTRY(EBX) \ ENTRY(sib) \ ENTRY(EBP) \ ENTRY(ESI) \ ENTRY(EDI) \ ENTRY(R8D) \ ENTRY(R9D) \ ENTRY(R10D) \ ENTRY(R11D) \ ENTRY(R12D) \ ENTRY(R13D) \ ENTRY(R14D) \ ENTRY(R15D) #define REGS_32BIT \ ENTRY(EAX) \ ENTRY(ECX) \ ENTRY(EDX) \ ENTRY(EBX) \ ENTRY(ESP) \ ENTRY(EBP) \ ENTRY(ESI) \ ENTRY(EDI) \ ENTRY(R8D) \ ENTRY(R9D) \ ENTRY(R10D) \ ENTRY(R11D) \ ENTRY(R12D) \ ENTRY(R13D) \ ENTRY(R14D) \ ENTRY(R15D) #define EA_BASES_64BIT \ ENTRY(RAX) \ ENTRY(RCX) \ ENTRY(RDX) \ ENTRY(RBX) \ ENTRY(sib64) \ ENTRY(RBP) \ ENTRY(RSI) \ ENTRY(RDI) \ ENTRY(R8) \ ENTRY(R9) \ ENTRY(R10) \ ENTRY(R11) \ ENTRY(R12) \ ENTRY(R13) \ ENTRY(R14) \ ENTRY(R15) #define REGS_64BIT \ ENTRY(RAX) \ ENTRY(RCX) \ ENTRY(RDX) \ ENTRY(RBX) \ ENTRY(RSP) \ ENTRY(RBP) \ ENTRY(RSI) \ ENTRY(RDI) \ ENTRY(R8) \ ENTRY(R9) \ ENTRY(R10) \ ENTRY(R11) \ ENTRY(R12) \ ENTRY(R13) \ ENTRY(R14) \ ENTRY(R15) #define REGS_MMX \ ENTRY(MM0) \ ENTRY(MM1) \ ENTRY(MM2) \ ENTRY(MM3) \ ENTRY(MM4) \ ENTRY(MM5) \ ENTRY(MM6) \ ENTRY(MM7) #define REGS_XMM \ ENTRY(XMM0) \ ENTRY(XMM1) \ ENTRY(XMM2) \ ENTRY(XMM3) \ ENTRY(XMM4) \ ENTRY(XMM5) \ ENTRY(XMM6) \ ENTRY(XMM7) \ ENTRY(XMM8) \ ENTRY(XMM9) \ ENTRY(XMM10) \ ENTRY(XMM11) \ ENTRY(XMM12) \ ENTRY(XMM13) \ ENTRY(XMM14) \ ENTRY(XMM15) \ ENTRY(XMM16) \ ENTRY(XMM17) \ ENTRY(XMM18) \ ENTRY(XMM19) \ ENTRY(XMM20) \ ENTRY(XMM21) \ ENTRY(XMM22) \ ENTRY(XMM23) \ ENTRY(XMM24) \ ENTRY(XMM25) \ ENTRY(XMM26) \ ENTRY(XMM27) \ ENTRY(XMM28) \ ENTRY(XMM29) \ ENTRY(XMM30) \ ENTRY(XMM31) #define REGS_YMM \ ENTRY(YMM0) \ ENTRY(YMM1) \ ENTRY(YMM2) \ ENTRY(YMM3) \ ENTRY(YMM4) \ ENTRY(YMM5) \ ENTRY(YMM6) \ ENTRY(YMM7) \ ENTRY(YMM8) \ ENTRY(YMM9) \ ENTRY(YMM10) \ ENTRY(YMM11) \ ENTRY(YMM12) \ ENTRY(YMM13) \ ENTRY(YMM14) \ ENTRY(YMM15) \ ENTRY(YMM16) \ ENTRY(YMM17) \ ENTRY(YMM18) \ ENTRY(YMM19) \ ENTRY(YMM20) \ ENTRY(YMM21) \ ENTRY(YMM22) \ ENTRY(YMM23) \ ENTRY(YMM24) \ ENTRY(YMM25) \ ENTRY(YMM26) \ ENTRY(YMM27) \ ENTRY(YMM28) \ ENTRY(YMM29) \ ENTRY(YMM30) \ ENTRY(YMM31) #define REGS_ZMM \ ENTRY(ZMM0) \ ENTRY(ZMM1) \ ENTRY(ZMM2) \ ENTRY(ZMM3) \ ENTRY(ZMM4) \ ENTRY(ZMM5) \ ENTRY(ZMM6) \ ENTRY(ZMM7) \ ENTRY(ZMM8) \ ENTRY(ZMM9) \ ENTRY(ZMM10) \ ENTRY(ZMM11) \ ENTRY(ZMM12) \ ENTRY(ZMM13) \ ENTRY(ZMM14) \ ENTRY(ZMM15) \ ENTRY(ZMM16) \ ENTRY(ZMM17) \ ENTRY(ZMM18) \ ENTRY(ZMM19) \ ENTRY(ZMM20) \ ENTRY(ZMM21) \ ENTRY(ZMM22) \ ENTRY(ZMM23) \ ENTRY(ZMM24) \ ENTRY(ZMM25) \ ENTRY(ZMM26) \ ENTRY(ZMM27) \ ENTRY(ZMM28) \ ENTRY(ZMM29) \ ENTRY(ZMM30) \ ENTRY(ZMM31) #define REGS_MASKS \ ENTRY(K0) \ ENTRY(K1) \ ENTRY(K2) \ ENTRY(K3) \ ENTRY(K4) \ ENTRY(K5) \ ENTRY(K6) \ ENTRY(K7) #define REGS_SEGMENT \ ENTRY(ES) \ ENTRY(CS) \ ENTRY(SS) \ ENTRY(DS) \ ENTRY(FS) \ ENTRY(GS) #define REGS_DEBUG \ ENTRY(DR0) \ ENTRY(DR1) \ ENTRY(DR2) \ ENTRY(DR3) \ ENTRY(DR4) \ ENTRY(DR5) \ ENTRY(DR6) \ ENTRY(DR7) #define REGS_CONTROL \ ENTRY(CR0) \ ENTRY(CR1) \ ENTRY(CR2) \ ENTRY(CR3) \ ENTRY(CR4) \ ENTRY(CR5) \ ENTRY(CR6) \ ENTRY(CR7) \ ENTRY(CR8) \ ENTRY(CR9) \ ENTRY(CR10) \ ENTRY(CR11) \ ENTRY(CR12) \ ENTRY(CR13) \ ENTRY(CR14) \ ENTRY(CR15) #define ALL_EA_BASES \ EA_BASES_16BIT \ EA_BASES_32BIT \ EA_BASES_64BIT #define ALL_SIB_BASES \ REGS_32BIT \ REGS_64BIT #define ALL_REGS \ REGS_8BIT \ REGS_16BIT \ REGS_32BIT \ REGS_64BIT \ REGS_MMX \ REGS_XMM \ REGS_YMM \ REGS_ZMM \ REGS_MASKS \ REGS_SEGMENT \ REGS_DEBUG \ REGS_CONTROL \ ENTRY(RIP) /* * EABase - All possible values of the base field for effective-address * computations, a.k.a. the Mod and R/M fields of the ModR/M byte. We * distinguish between bases (EA_BASE_*) and registers that just happen to be * referred to when Mod == 0b11 (EA_REG_*). */ typedef enum { EA_BASE_NONE, #define ENTRY(x) EA_BASE_##x, ALL_EA_BASES #undef ENTRY #define ENTRY(x) EA_REG_##x, ALL_REGS #undef ENTRY EA_max } EABase; /* * SIBIndex - All possible values of the SIB index field. * Borrows entries from ALL_EA_BASES with the special case that * sib is synonymous with NONE. * Vector SIB: index can be XMM or YMM. */ typedef enum { SIB_INDEX_NONE, #define ENTRY(x) SIB_INDEX_##x, ALL_EA_BASES REGS_XMM REGS_YMM REGS_ZMM #undef ENTRY SIB_INDEX_max } SIBIndex; /* * SIBBase - All possible values of the SIB base field. */ typedef enum { SIB_BASE_NONE, #define ENTRY(x) SIB_BASE_##x, ALL_SIB_BASES #undef ENTRY SIB_BASE_max } SIBBase; /* * EADisplacement - Possible displacement types for effective-address * computations. */ typedef enum { EA_DISP_NONE, EA_DISP_8, EA_DISP_16, EA_DISP_32 } EADisplacement; /* * Reg - All possible values of the reg field in the ModR/M byte. */ typedef enum { #define ENTRY(x) MODRM_REG_##x, ALL_REGS #undef ENTRY MODRM_REG_max } Reg; /* * SegmentOverride - All possible segment overrides. */ typedef enum { SEG_OVERRIDE_NONE, SEG_OVERRIDE_CS, SEG_OVERRIDE_SS, SEG_OVERRIDE_DS, SEG_OVERRIDE_ES, SEG_OVERRIDE_FS, SEG_OVERRIDE_GS, SEG_OVERRIDE_max } SegmentOverride; /* * VEXLeadingOpcodeByte - Possible values for the VEX.m-mmmm field */ typedef enum { VEX_LOB_0F = 0x1, VEX_LOB_0F38 = 0x2, VEX_LOB_0F3A = 0x3 } VEXLeadingOpcodeByte; typedef enum { XOP_MAP_SELECT_8 = 0x8, XOP_MAP_SELECT_9 = 0x9, XOP_MAP_SELECT_A = 0xA } XOPMapSelect; /* * VEXPrefixCode - Possible values for the VEX.pp/EVEX.pp field */ typedef enum { VEX_PREFIX_NONE = 0x0, VEX_PREFIX_66 = 0x1, VEX_PREFIX_F3 = 0x2, VEX_PREFIX_F2 = 0x3 } VEXPrefixCode; typedef enum { TYPE_NO_VEX_XOP = 0x0, TYPE_VEX_2B = 0x1, TYPE_VEX_3B = 0x2, TYPE_EVEX = 0x3, TYPE_XOP = 0x4 } VectorExtensionType; struct reader_info { const uint8_t *code; uint64_t size; uint64_t offset; }; /* * byteReader_t - Type for the byte reader that the consumer must provide to * the decoder. Reads a single byte from the instruction's address space. * @param arg - A baton that the consumer can associate with any internal * state that it needs. * @param byte - A pointer to a single byte in memory that should be set to * contain the value at address. * @param address - The address in the instruction's address space that should * be read from. * @return - -1 if the byte cannot be read for any reason; 0 otherwise. */ typedef int (*byteReader_t)(const struct reader_info *arg, uint8_t* byte, uint64_t address); /* * dlog_t - Type for the logging function that the consumer can provide to * get debugging output from the decoder. * @param arg - A baton that the consumer can associate with any internal * state that it needs. * @param log - A string that contains the message. Will be reused after * the logger returns. */ typedef void (*dlog_t)(void* arg, const char *log); /// The specification for how to extract and interpret a full instruction and /// its operands. struct InstructionSpecifier { uint16_t operands; }; /* * The x86 internal instruction, which is produced by the decoder. */ typedef struct InternalInstruction { // from here, all members must be initialized to ZERO to work properly uint8_t operandSize; uint8_t prefix0, prefix1, prefix2, prefix3; /* true if the prefix byte corresponding to the entry is present; false if not */ bool isPrefix26; bool isPrefix2e; bool isPrefix36; bool isPrefix3e; bool isPrefix64; bool isPrefix65; bool isPrefix66; bool isPrefix67; bool isPrefixf0; bool isPrefixf2; bool isPrefixf3; /* contains the location (for use with the reader) of the prefix byte */ uint64_t prefix26; uint64_t prefix2e; uint64_t prefix36; uint64_t prefix3e; uint64_t prefix64; uint64_t prefix65; uint64_t prefix66; uint64_t prefix67; uint64_t prefixf0; uint64_t prefixf2; uint64_t prefixf3; /* The value of the REX prefix, if present */ uint8_t rexPrefix; /* The segment override type */ SegmentOverride segmentOverride; bool consumedModRM; uint8_t orgModRM; // save original modRM because we will modify modRM /* The SIB byte, used for more complex 32- or 64-bit memory operands */ bool consumedSIB; uint8_t sib; /* The displacement, used for memory operands */ bool consumedDisplacement; int32_t displacement; /* The value of the two-byte escape prefix (usually 0x0f) */ uint8_t twoByteEscape; /* The value of the three-byte escape prefix (usually 0x38 or 0x3a) */ uint8_t threeByteEscape; /* SIB state */ SIBIndex sibIndex; uint8_t sibScale; SIBBase sibBase; uint8_t numImmediatesConsumed; /* true if the prefix byte, 0xf2 or 0xf3 is xacquire or xrelease */ bool xAcquireRelease; /* The value of the vector extension prefix(EVEX/VEX/XOP), if present */ uint8_t vectorExtensionPrefix[4]; // end-of-zero-members /* Reader interface (C) */ byteReader_t reader; /* Opaque value passed to the reader */ const void* readerArg; /* The address of the next byte to read via the reader */ uint64_t readerCursor; /* Logger interface (C) */ dlog_t dlog; /* Opaque value passed to the logger */ void* dlogArg; /* General instruction information */ /* The mode to disassemble for (64-bit, protected, real) */ DisassemblerMode mode; /* The start of the instruction, usable with the reader */ uint64_t startLocation; /* The length of the instruction, in bytes */ size_t length; /* Prefix state */ /* The type of the vector extension prefix */ VectorExtensionType vectorExtensionType; /* The location where a mandatory prefix would have to be (i.e., right before the opcode, or right before the REX prefix if one is present) */ uint64_t necessaryPrefixLocation; /* Sizes of various critical pieces of data, in bytes */ uint8_t registerSize; uint8_t addressSize; uint8_t displacementSize; uint8_t immediateSize; uint8_t immSize; // immediate size for X86_OP_IMM operand /* Offsets from the start of the instruction to the pieces of data, which is needed to find relocation entries for adding symbolic operands */ uint8_t displacementOffset; uint8_t immediateOffset; /* opcode state */ /* The last byte of the opcode, not counting any ModR/M extension */ uint8_t opcode; /* decode state */ /* The type of opcode, used for indexing into the array of decode tables */ OpcodeType opcodeType; /* The instruction ID, extracted from the decode table */ uint16_t instructionID; /* The specifier for the instruction, from the instruction info table */ const struct InstructionSpecifier *spec; /* state for additional bytes, consumed during operand decode. Pattern: consumed___ indicates that the byte was already consumed and does not need to be consumed again */ /* The VEX.vvvv field, which contains a third register operand for some AVX instructions */ Reg vvvv; /* The writemask for AVX-512 instructions which is contained in EVEX.aaa */ Reg writemask; /* The ModR/M byte, which contains most register operands and some portion of all memory operands */ uint8_t modRM; // special data to handle MOVcr, MOVdr, MOVrc, MOVrd uint8_t firstByte; // save the first byte in stream /* Immediates. There can be two in some cases */ uint8_t numImmediatesTranslated; uint64_t immediates[2]; /* A register or immediate operand encoded into the opcode */ Reg opcodeRegister; /* Portions of the ModR/M byte */ /* These fields determine the allowable values for the ModR/M fields, which depend on operand and address widths */ EABase eaBaseBase; EABase eaRegBase; Reg regBase; /* The Mod and R/M fields can encode a base for an effective address, or a register. These are separated into two fields here */ EABase eaBase; EADisplacement eaDisplacement; /* The reg field always encodes a register */ Reg reg; const struct OperandSpecifier *operands; } InternalInstruction; /* decodeInstruction - Decode one instruction and store the decoding results in * a buffer provided by the consumer. * @param insn - The buffer to store the instruction in. Allocated by the * consumer. * @param reader - The byteReader_t for the bytes to be read. * @param readerArg - An argument to pass to the reader for storing context * specific to the consumer. May be NULL. * @param logger - The dlog_t to be used in printing status messages from the * disassembler. May be NULL. * @param loggerArg - An argument to pass to the logger for storing context * specific to the logger. May be NULL. * @param startLoc - The address (in the reader's address space) of the first * byte in the instruction. * @param mode - The mode (16-bit, 32-bit, 64-bit) to decode in. * @return - Nonzero if there was an error during decode, 0 otherwise. */ int decodeInstruction(struct InternalInstruction* insn, byteReader_t reader, const void* readerArg, uint64_t startLoc, DisassemblerMode mode); //const char *x86DisassemblerGetInstrName(unsigned Opcode, const void *mii); #endif