/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include <openssl/ssl.h> #include <assert.h> #include <openssl/asn1.h> #include <openssl/bytestring.h> #include <openssl/err.h> #include <openssl/pem.h> #include <openssl/stack.h> #include <openssl/x509.h> #include <openssl/x509v3.h> #include <openssl/x509_vfy.h> #include "internal.h" #include "../crypto/internal.h" namespace bssl { // check_ssl_x509_method asserts that |ssl| has the X509-based method // installed. Calling an X509-based method on an |ssl| with a different method // will likely misbehave and possibly crash or leak memory. static void check_ssl_x509_method(const SSL *ssl) { assert(ssl == NULL || ssl->ctx->x509_method == &ssl_crypto_x509_method); } // check_ssl_ctx_x509_method acts like |check_ssl_x509_method|, but for an // |SSL_CTX|. static void check_ssl_ctx_x509_method(const SSL_CTX *ctx) { assert(ctx == NULL || ctx->x509_method == &ssl_crypto_x509_method); } // x509_to_buffer returns a |CRYPTO_BUFFER| that contains the serialised // contents of |x509|. static UniquePtr<CRYPTO_BUFFER> x509_to_buffer(X509 *x509) { uint8_t *buf = NULL; int cert_len = i2d_X509(x509, &buf); if (cert_len <= 0) { return 0; } UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(buf, cert_len, NULL)); OPENSSL_free(buf); return buffer; } // new_leafless_chain returns a fresh stack of buffers set to {NULL}. static STACK_OF(CRYPTO_BUFFER) *new_leafless_chain(void) { STACK_OF(CRYPTO_BUFFER) *chain = sk_CRYPTO_BUFFER_new_null(); if (chain == NULL) { return NULL; } if (!sk_CRYPTO_BUFFER_push(chain, NULL)) { sk_CRYPTO_BUFFER_free(chain); return NULL; } return chain; } // ssl_cert_set_chain sets elements 1.. of |cert->chain| to the serialised // forms of elements of |chain|. It returns one on success or zero on error, in // which case no change to |cert->chain| is made. It preverses the existing // leaf from |cert->chain|, if any. static int ssl_cert_set_chain(CERT *cert, STACK_OF(X509) *chain) { UniquePtr<STACK_OF(CRYPTO_BUFFER)> new_chain; if (cert->chain != NULL) { new_chain.reset(sk_CRYPTO_BUFFER_new_null()); if (!new_chain) { return 0; } CRYPTO_BUFFER *leaf = sk_CRYPTO_BUFFER_value(cert->chain, 0); if (!sk_CRYPTO_BUFFER_push(new_chain.get(), leaf)) { return 0; } // |leaf| might be NULL if it's a “leafless” chain. if (leaf != NULL) { CRYPTO_BUFFER_up_ref(leaf); } } for (X509 *x509 : chain) { if (!new_chain) { new_chain.reset(new_leafless_chain()); if (!new_chain) { return 0; } } UniquePtr<CRYPTO_BUFFER> buffer = x509_to_buffer(x509); if (!buffer || !PushToStack(new_chain.get(), std::move(buffer))) { return 0; } } sk_CRYPTO_BUFFER_pop_free(cert->chain, CRYPTO_BUFFER_free); cert->chain = new_chain.release(); return 1; } static void ssl_crypto_x509_cert_flush_cached_leaf(CERT *cert) { X509_free(cert->x509_leaf); cert->x509_leaf = NULL; } static void ssl_crypto_x509_cert_flush_cached_chain(CERT *cert) { sk_X509_pop_free(cert->x509_chain, X509_free); cert->x509_chain = NULL; } static int ssl_crypto_x509_check_client_CA_list( STACK_OF(CRYPTO_BUFFER) *names) { for (const CRYPTO_BUFFER *buffer : names) { const uint8_t *inp = CRYPTO_BUFFER_data(buffer); X509_NAME *name = d2i_X509_NAME(NULL, &inp, CRYPTO_BUFFER_len(buffer)); const int ok = name != NULL && inp == CRYPTO_BUFFER_data(buffer) + CRYPTO_BUFFER_len(buffer); X509_NAME_free(name); if (!ok) { return 0; } } return 1; } static void ssl_crypto_x509_cert_clear(CERT *cert) { ssl_crypto_x509_cert_flush_cached_leaf(cert); ssl_crypto_x509_cert_flush_cached_chain(cert); X509_free(cert->x509_stash); cert->x509_stash = NULL; } static void ssl_crypto_x509_cert_free(CERT *cert) { ssl_crypto_x509_cert_clear(cert); X509_STORE_free(cert->verify_store); } static void ssl_crypto_x509_cert_dup(CERT *new_cert, const CERT *cert) { if (cert->verify_store != NULL) { X509_STORE_up_ref(cert->verify_store); new_cert->verify_store = cert->verify_store; } } static int ssl_crypto_x509_session_cache_objects(SSL_SESSION *sess) { bssl::UniquePtr<STACK_OF(X509)> chain; if (sk_CRYPTO_BUFFER_num(sess->certs) > 0) { chain.reset(sk_X509_new_null()); if (!chain) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return 0; } } X509 *leaf = nullptr; for (CRYPTO_BUFFER *cert : sess->certs) { UniquePtr<X509> x509(X509_parse_from_buffer(cert)); if (!x509) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); return 0; } if (leaf == nullptr) { leaf = x509.get(); } if (!PushToStack(chain.get(), std::move(x509))) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return 0; } } sk_X509_pop_free(sess->x509_chain, X509_free); sess->x509_chain = chain.release(); sk_X509_pop_free(sess->x509_chain_without_leaf, X509_free); sess->x509_chain_without_leaf = NULL; X509_free(sess->x509_peer); if (leaf != NULL) { X509_up_ref(leaf); } sess->x509_peer = leaf; return 1; } static int ssl_crypto_x509_session_dup(SSL_SESSION *new_session, const SSL_SESSION *session) { if (session->x509_peer != NULL) { X509_up_ref(session->x509_peer); new_session->x509_peer = session->x509_peer; } if (session->x509_chain != NULL) { new_session->x509_chain = X509_chain_up_ref(session->x509_chain); if (new_session->x509_chain == NULL) { return 0; } } return 1; } static void ssl_crypto_x509_session_clear(SSL_SESSION *session) { X509_free(session->x509_peer); session->x509_peer = NULL; sk_X509_pop_free(session->x509_chain, X509_free); session->x509_chain = NULL; sk_X509_pop_free(session->x509_chain_without_leaf, X509_free); session->x509_chain_without_leaf = NULL; } static int ssl_crypto_x509_session_verify_cert_chain(SSL_SESSION *session, SSL *ssl, uint8_t *out_alert) { *out_alert = SSL_AD_INTERNAL_ERROR; STACK_OF(X509) *const cert_chain = session->x509_chain; if (cert_chain == NULL || sk_X509_num(cert_chain) == 0) { return 0; } X509_STORE *verify_store = ssl->ctx->cert_store; if (ssl->cert->verify_store != NULL) { verify_store = ssl->cert->verify_store; } X509 *leaf = sk_X509_value(cert_chain, 0); ScopedX509_STORE_CTX ctx; if (!X509_STORE_CTX_init(ctx.get(), verify_store, leaf, cert_chain)) { OPENSSL_PUT_ERROR(SSL, ERR_R_X509_LIB); return 0; } if (!X509_STORE_CTX_set_ex_data(ctx.get(), SSL_get_ex_data_X509_STORE_CTX_idx(), ssl)) { return 0; } // We need to inherit the verify parameters. These can be determined by the // context: if its a server it will verify SSL client certificates or vice // versa. X509_STORE_CTX_set_default(ctx.get(), ssl->server ? "ssl_client" : "ssl_server"); // Anything non-default in "param" should overwrite anything in the ctx. X509_VERIFY_PARAM_set1(X509_STORE_CTX_get0_param(ctx.get()), ssl->param); if (ssl->verify_callback) { X509_STORE_CTX_set_verify_cb(ctx.get(), ssl->verify_callback); } int verify_ret; if (ssl->ctx->app_verify_callback != NULL) { verify_ret = ssl->ctx->app_verify_callback(ctx.get(), ssl->ctx->app_verify_arg); } else { verify_ret = X509_verify_cert(ctx.get()); } session->verify_result = ctx->error; // If |SSL_VERIFY_NONE|, the error is non-fatal, but we keep the result. if (verify_ret <= 0 && ssl->verify_mode != SSL_VERIFY_NONE) { *out_alert = SSL_alert_from_verify_result(ctx->error); return 0; } ERR_clear_error(); return 1; } static void ssl_crypto_x509_hs_flush_cached_ca_names(SSL_HANDSHAKE *hs) { sk_X509_NAME_pop_free(hs->cached_x509_ca_names, X509_NAME_free); hs->cached_x509_ca_names = NULL; } static int ssl_crypto_x509_ssl_new(SSL *ssl) { ssl->param = X509_VERIFY_PARAM_new(); if (ssl->param == NULL) { return 0; } X509_VERIFY_PARAM_inherit(ssl->param, ssl->ctx->param); return 1; } static void ssl_crypto_x509_ssl_flush_cached_client_CA(SSL *ssl) { sk_X509_NAME_pop_free(ssl->cached_x509_client_CA, X509_NAME_free); ssl->cached_x509_client_CA = NULL; } static void ssl_crypto_x509_ssl_free(SSL *ssl) { ssl_crypto_x509_ssl_flush_cached_client_CA(ssl); X509_VERIFY_PARAM_free(ssl->param); } static int ssl_crypto_x509_ssl_auto_chain_if_needed(SSL *ssl) { // Only build a chain if there are no intermediates configured and the feature // isn't disabled. if ((ssl->mode & SSL_MODE_NO_AUTO_CHAIN) || !ssl_has_certificate(ssl) || ssl->cert->chain == NULL || sk_CRYPTO_BUFFER_num(ssl->cert->chain) > 1) { return 1; } UniquePtr<X509> leaf( X509_parse_from_buffer(sk_CRYPTO_BUFFER_value(ssl->cert->chain, 0))); if (!leaf) { OPENSSL_PUT_ERROR(SSL, ERR_R_X509_LIB); return 0; } ScopedX509_STORE_CTX ctx; if (!X509_STORE_CTX_init(ctx.get(), ssl->ctx->cert_store, leaf.get(), NULL)) { OPENSSL_PUT_ERROR(SSL, ERR_R_X509_LIB); return 0; } // Attempt to build a chain, ignoring the result. X509_verify_cert(ctx.get()); ERR_clear_error(); // Remove the leaf from the generated chain. X509_free(sk_X509_shift(ctx->chain)); if (!ssl_cert_set_chain(ssl->cert, ctx->chain)) { return 0; } ssl_crypto_x509_cert_flush_cached_chain(ssl->cert); return 1; } static void ssl_crypto_x509_ssl_ctx_flush_cached_client_CA(SSL_CTX *ctx) { sk_X509_NAME_pop_free(ctx->cached_x509_client_CA, X509_NAME_free); ctx->cached_x509_client_CA = NULL; } static int ssl_crypto_x509_ssl_ctx_new(SSL_CTX *ctx) { ctx->cert_store = X509_STORE_new(); ctx->param = X509_VERIFY_PARAM_new(); return (ctx->cert_store != NULL && ctx->param != NULL); } static void ssl_crypto_x509_ssl_ctx_free(SSL_CTX *ctx) { ssl_crypto_x509_ssl_ctx_flush_cached_client_CA(ctx); X509_VERIFY_PARAM_free(ctx->param); X509_STORE_free(ctx->cert_store); } const SSL_X509_METHOD ssl_crypto_x509_method = { ssl_crypto_x509_check_client_CA_list, ssl_crypto_x509_cert_clear, ssl_crypto_x509_cert_free, ssl_crypto_x509_cert_dup, ssl_crypto_x509_cert_flush_cached_chain, ssl_crypto_x509_cert_flush_cached_leaf, ssl_crypto_x509_session_cache_objects, ssl_crypto_x509_session_dup, ssl_crypto_x509_session_clear, ssl_crypto_x509_session_verify_cert_chain, ssl_crypto_x509_hs_flush_cached_ca_names, ssl_crypto_x509_ssl_new, ssl_crypto_x509_ssl_free, ssl_crypto_x509_ssl_flush_cached_client_CA, ssl_crypto_x509_ssl_auto_chain_if_needed, ssl_crypto_x509_ssl_ctx_new, ssl_crypto_x509_ssl_ctx_free, ssl_crypto_x509_ssl_ctx_flush_cached_client_CA, }; } // namespace bssl using namespace bssl; X509 *SSL_get_peer_certificate(const SSL *ssl) { check_ssl_x509_method(ssl); if (ssl == NULL) { return NULL; } SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL || session->x509_peer == NULL) { return NULL; } X509_up_ref(session->x509_peer); return session->x509_peer; } STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *ssl) { check_ssl_x509_method(ssl); if (ssl == NULL) { return NULL; } SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL || session->x509_chain == NULL) { return NULL; } if (!ssl->server) { return session->x509_chain; } // OpenSSL historically didn't include the leaf certificate in the returned // certificate chain, but only for servers. if (session->x509_chain_without_leaf == NULL) { session->x509_chain_without_leaf = sk_X509_new_null(); if (session->x509_chain_without_leaf == NULL) { return NULL; } for (size_t i = 1; i < sk_X509_num(session->x509_chain); i++) { X509 *cert = sk_X509_value(session->x509_chain, i); if (!sk_X509_push(session->x509_chain_without_leaf, cert)) { sk_X509_pop_free(session->x509_chain_without_leaf, X509_free); session->x509_chain_without_leaf = NULL; return NULL; } X509_up_ref(cert); } } return session->x509_chain_without_leaf; } STACK_OF(X509) *SSL_get_peer_full_cert_chain(const SSL *ssl) { check_ssl_x509_method(ssl); SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL) { return NULL; } return session->x509_chain; } int SSL_CTX_set_purpose(SSL_CTX *ctx, int purpose) { check_ssl_ctx_x509_method(ctx); return X509_VERIFY_PARAM_set_purpose(ctx->param, purpose); } int SSL_set_purpose(SSL *ssl, int purpose) { check_ssl_x509_method(ssl); return X509_VERIFY_PARAM_set_purpose(ssl->param, purpose); } int SSL_CTX_set_trust(SSL_CTX *ctx, int trust) { check_ssl_ctx_x509_method(ctx); return X509_VERIFY_PARAM_set_trust(ctx->param, trust); } int SSL_set_trust(SSL *ssl, int trust) { check_ssl_x509_method(ssl); return X509_VERIFY_PARAM_set_trust(ssl->param, trust); } int SSL_CTX_set1_param(SSL_CTX *ctx, const X509_VERIFY_PARAM *param) { check_ssl_ctx_x509_method(ctx); return X509_VERIFY_PARAM_set1(ctx->param, param); } int SSL_set1_param(SSL *ssl, const X509_VERIFY_PARAM *param) { check_ssl_x509_method(ssl); return X509_VERIFY_PARAM_set1(ssl->param, param); } X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) { check_ssl_ctx_x509_method(ctx); return ctx->param; } X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) { check_ssl_x509_method(ssl); return ssl->param; } int SSL_get_verify_depth(const SSL *ssl) { check_ssl_x509_method(ssl); return X509_VERIFY_PARAM_get_depth(ssl->param); } int (*SSL_get_verify_callback(const SSL *ssl))(int, X509_STORE_CTX *) { check_ssl_x509_method(ssl); return ssl->verify_callback; } int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) { check_ssl_ctx_x509_method(ctx); return ctx->verify_mode; } int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) { check_ssl_ctx_x509_method(ctx); return X509_VERIFY_PARAM_get_depth(ctx->param); } int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx))( int ok, X509_STORE_CTX *store_ctx) { check_ssl_ctx_x509_method(ctx); return ctx->default_verify_callback; } void SSL_set_verify(SSL *ssl, int mode, int (*callback)(int ok, X509_STORE_CTX *store_ctx)) { check_ssl_x509_method(ssl); ssl->verify_mode = mode; if (callback != NULL) { ssl->verify_callback = callback; } } void SSL_set_verify_depth(SSL *ssl, int depth) { check_ssl_x509_method(ssl); X509_VERIFY_PARAM_set_depth(ssl->param, depth); } void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, int (*cb)(X509_STORE_CTX *store_ctx, void *arg), void *arg) { check_ssl_ctx_x509_method(ctx); ctx->app_verify_callback = cb; ctx->app_verify_arg = arg; } void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, int (*cb)(int, X509_STORE_CTX *)) { check_ssl_ctx_x509_method(ctx); ctx->verify_mode = mode; ctx->default_verify_callback = cb; } void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) { check_ssl_ctx_x509_method(ctx); X509_VERIFY_PARAM_set_depth(ctx->param, depth); } int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) { check_ssl_ctx_x509_method(ctx); return X509_STORE_set_default_paths(ctx->cert_store); } int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *ca_file, const char *ca_dir) { check_ssl_ctx_x509_method(ctx); return X509_STORE_load_locations(ctx->cert_store, ca_file, ca_dir); } void SSL_set_verify_result(SSL *ssl, long result) { check_ssl_x509_method(ssl); if (result != X509_V_OK) { abort(); } } long SSL_get_verify_result(const SSL *ssl) { check_ssl_x509_method(ssl); SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL) { return X509_V_ERR_INVALID_CALL; } return session->verify_result; } X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) { check_ssl_ctx_x509_method(ctx); return ctx->cert_store; } void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) { check_ssl_ctx_x509_method(ctx); X509_STORE_free(ctx->cert_store); ctx->cert_store = store; } static int ssl_use_certificate(CERT *cert, X509 *x) { if (x == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } UniquePtr<CRYPTO_BUFFER> buffer = x509_to_buffer(x); if (!buffer) { return 0; } return ssl_set_cert(cert, std::move(buffer)); } int SSL_use_certificate(SSL *ssl, X509 *x) { check_ssl_x509_method(ssl); return ssl_use_certificate(ssl->cert, x); } int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x) { check_ssl_ctx_x509_method(ctx); return ssl_use_certificate(ctx->cert, x); } // ssl_cert_cache_leaf_cert sets |cert->x509_leaf|, if currently NULL, from the // first element of |cert->chain|. static int ssl_cert_cache_leaf_cert(CERT *cert) { assert(cert->x509_method); if (cert->x509_leaf != NULL || cert->chain == NULL) { return 1; } CRYPTO_BUFFER *leaf = sk_CRYPTO_BUFFER_value(cert->chain, 0); if (!leaf) { return 1; } cert->x509_leaf = X509_parse_from_buffer(leaf); return cert->x509_leaf != NULL; } static X509 *ssl_cert_get0_leaf(CERT *cert) { if (cert->x509_leaf == NULL && !ssl_cert_cache_leaf_cert(cert)) { return NULL; } return cert->x509_leaf; } X509 *SSL_get_certificate(const SSL *ssl) { check_ssl_x509_method(ssl); return ssl_cert_get0_leaf(ssl->cert); } X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) { check_ssl_ctx_x509_method(ctx); MutexWriteLock lock(const_cast<CRYPTO_MUTEX*>(&ctx->lock)); return ssl_cert_get0_leaf(ctx->cert); } static int ssl_cert_set0_chain(CERT *cert, STACK_OF(X509) *chain) { if (!ssl_cert_set_chain(cert, chain)) { return 0; } sk_X509_pop_free(chain, X509_free); ssl_crypto_x509_cert_flush_cached_chain(cert); return 1; } static int ssl_cert_set1_chain(CERT *cert, STACK_OF(X509) *chain) { if (!ssl_cert_set_chain(cert, chain)) { return 0; } ssl_crypto_x509_cert_flush_cached_chain(cert); return 1; } static int ssl_cert_append_cert(CERT *cert, X509 *x509) { assert(cert->x509_method); UniquePtr<CRYPTO_BUFFER> buffer = x509_to_buffer(x509); if (!buffer) { return 0; } if (cert->chain != NULL) { return PushToStack(cert->chain, std::move(buffer)); } cert->chain = new_leafless_chain(); if (cert->chain == NULL || !PushToStack(cert->chain, std::move(buffer))) { sk_CRYPTO_BUFFER_free(cert->chain); cert->chain = NULL; return 0; } return 1; } static int ssl_cert_add0_chain_cert(CERT *cert, X509 *x509) { if (!ssl_cert_append_cert(cert, x509)) { return 0; } X509_free(cert->x509_stash); cert->x509_stash = x509; ssl_crypto_x509_cert_flush_cached_chain(cert); return 1; } static int ssl_cert_add1_chain_cert(CERT *cert, X509 *x509) { if (!ssl_cert_append_cert(cert, x509)) { return 0; } ssl_crypto_x509_cert_flush_cached_chain(cert); return 1; } int SSL_CTX_set0_chain(SSL_CTX *ctx, STACK_OF(X509) *chain) { check_ssl_ctx_x509_method(ctx); return ssl_cert_set0_chain(ctx->cert, chain); } int SSL_CTX_set1_chain(SSL_CTX *ctx, STACK_OF(X509) *chain) { check_ssl_ctx_x509_method(ctx); return ssl_cert_set1_chain(ctx->cert, chain); } int SSL_set0_chain(SSL *ssl, STACK_OF(X509) *chain) { check_ssl_x509_method(ssl); return ssl_cert_set0_chain(ssl->cert, chain); } int SSL_set1_chain(SSL *ssl, STACK_OF(X509) *chain) { check_ssl_x509_method(ssl); return ssl_cert_set1_chain(ssl->cert, chain); } int SSL_CTX_add0_chain_cert(SSL_CTX *ctx, X509 *x509) { check_ssl_ctx_x509_method(ctx); return ssl_cert_add0_chain_cert(ctx->cert, x509); } int SSL_CTX_add1_chain_cert(SSL_CTX *ctx, X509 *x509) { check_ssl_ctx_x509_method(ctx); return ssl_cert_add1_chain_cert(ctx->cert, x509); } int SSL_CTX_add_extra_chain_cert(SSL_CTX *ctx, X509 *x509) { check_ssl_ctx_x509_method(ctx); return SSL_CTX_add0_chain_cert(ctx, x509); } int SSL_add0_chain_cert(SSL *ssl, X509 *x509) { check_ssl_x509_method(ssl); return ssl_cert_add0_chain_cert(ssl->cert, x509); } int SSL_add1_chain_cert(SSL *ssl, X509 *x509) { check_ssl_x509_method(ssl); return ssl_cert_add1_chain_cert(ssl->cert, x509); } int SSL_CTX_clear_chain_certs(SSL_CTX *ctx) { check_ssl_ctx_x509_method(ctx); return SSL_CTX_set0_chain(ctx, NULL); } int SSL_CTX_clear_extra_chain_certs(SSL_CTX *ctx) { check_ssl_ctx_x509_method(ctx); return SSL_CTX_clear_chain_certs(ctx); } int SSL_clear_chain_certs(SSL *ssl) { check_ssl_x509_method(ssl); return SSL_set0_chain(ssl, NULL); } // ssl_cert_cache_chain_certs fills in |cert->x509_chain| from elements 1.. of // |cert->chain|. static int ssl_cert_cache_chain_certs(CERT *cert) { assert(cert->x509_method); if (cert->x509_chain != NULL || cert->chain == NULL || sk_CRYPTO_BUFFER_num(cert->chain) < 2) { return 1; } UniquePtr<STACK_OF(X509)> chain(sk_X509_new_null()); if (!chain) { return 0; } for (size_t i = 1; i < sk_CRYPTO_BUFFER_num(cert->chain); i++) { CRYPTO_BUFFER *buffer = sk_CRYPTO_BUFFER_value(cert->chain, i); UniquePtr<X509> x509(X509_parse_from_buffer(buffer)); if (!x509 || !PushToStack(chain.get(), std::move(x509))) { return 0; } } cert->x509_chain = chain.release(); return 1; } int SSL_CTX_get0_chain_certs(const SSL_CTX *ctx, STACK_OF(X509) **out_chain) { check_ssl_ctx_x509_method(ctx); MutexWriteLock lock(const_cast<CRYPTO_MUTEX*>(&ctx->lock)); if (!ssl_cert_cache_chain_certs(ctx->cert)) { *out_chain = NULL; return 0; } *out_chain = ctx->cert->x509_chain; return 1; } int SSL_CTX_get_extra_chain_certs(const SSL_CTX *ctx, STACK_OF(X509) **out_chain) { return SSL_CTX_get0_chain_certs(ctx, out_chain); } int SSL_get0_chain_certs(const SSL *ssl, STACK_OF(X509) **out_chain) { check_ssl_x509_method(ssl); if (!ssl_cert_cache_chain_certs(ssl->cert)) { *out_chain = NULL; return 0; } *out_chain = ssl->cert->x509_chain; return 1; } static SSL_SESSION *ssl_session_new_with_crypto_x509(void) { return ssl_session_new(&ssl_crypto_x509_method).release(); } SSL_SESSION *d2i_SSL_SESSION_bio(BIO *bio, SSL_SESSION **out) { return ASN1_d2i_bio_of(SSL_SESSION, ssl_session_new_with_crypto_x509, d2i_SSL_SESSION, bio, out); } int i2d_SSL_SESSION_bio(BIO *bio, const SSL_SESSION *session) { return ASN1_i2d_bio_of(SSL_SESSION, i2d_SSL_SESSION, bio, session); } IMPLEMENT_PEM_rw(SSL_SESSION, SSL_SESSION, PEM_STRING_SSL_SESSION, SSL_SESSION) SSL_SESSION *d2i_SSL_SESSION(SSL_SESSION **a, const uint8_t **pp, long length) { if (length < 0) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return NULL; } CBS cbs; CBS_init(&cbs, *pp, length); UniquePtr<SSL_SESSION> ret = SSL_SESSION_parse(&cbs, &ssl_crypto_x509_method, NULL /* no buffer pool */); if (!ret) { return NULL; } if (a) { SSL_SESSION_free(*a); *a = ret.get(); } *pp = CBS_data(&cbs); return ret.release(); } STACK_OF(X509_NAME) *SSL_dup_CA_list(STACK_OF(X509_NAME) *list) { return sk_X509_NAME_deep_copy(list, X509_NAME_dup, X509_NAME_free); } static void set_client_CA_list(STACK_OF(CRYPTO_BUFFER) **ca_list, const STACK_OF(X509_NAME) *name_list, CRYPTO_BUFFER_POOL *pool) { UniquePtr<STACK_OF(CRYPTO_BUFFER)> buffers(sk_CRYPTO_BUFFER_new_null()); if (!buffers) { return; } for (X509_NAME *name : name_list) { uint8_t *outp = NULL; int len = i2d_X509_NAME(name, &outp); if (len < 0) { return; } UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(outp, len, pool)); OPENSSL_free(outp); if (!buffer || !PushToStack(buffers.get(), std::move(buffer))) { return; } } sk_CRYPTO_BUFFER_pop_free(*ca_list, CRYPTO_BUFFER_free); *ca_list = buffers.release(); } void SSL_set_client_CA_list(SSL *ssl, STACK_OF(X509_NAME) *name_list) { check_ssl_x509_method(ssl); ssl->ctx->x509_method->ssl_flush_cached_client_CA(ssl); set_client_CA_list(&ssl->client_CA, name_list, ssl->ctx->pool); sk_X509_NAME_pop_free(name_list, X509_NAME_free); } void SSL_CTX_set_client_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *name_list) { check_ssl_ctx_x509_method(ctx); ctx->x509_method->ssl_ctx_flush_cached_client_CA(ctx); set_client_CA_list(&ctx->client_CA, name_list, ctx->pool); sk_X509_NAME_pop_free(name_list, X509_NAME_free); } static STACK_OF(X509_NAME) * buffer_names_to_x509(const STACK_OF(CRYPTO_BUFFER) *names, STACK_OF(X509_NAME) **cached) { if (names == NULL) { return NULL; } if (*cached != NULL) { return *cached; } UniquePtr<STACK_OF(X509_NAME)> new_cache(sk_X509_NAME_new_null()); if (!new_cache) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return NULL; } for (const CRYPTO_BUFFER *buffer : names) { const uint8_t *inp = CRYPTO_BUFFER_data(buffer); UniquePtr<X509_NAME> name( d2i_X509_NAME(nullptr, &inp, CRYPTO_BUFFER_len(buffer))); if (!name || inp != CRYPTO_BUFFER_data(buffer) + CRYPTO_BUFFER_len(buffer) || !PushToStack(new_cache.get(), std::move(name))) { return NULL; } } *cached = new_cache.release(); return *cached; } STACK_OF(X509_NAME) *SSL_get_client_CA_list(const SSL *ssl) { check_ssl_x509_method(ssl); // For historical reasons, this function is used both to query configuration // state on a server as well as handshake state on a client. However, whether // |ssl| is a client or server is not known until explicitly configured with // |SSL_set_connect_state|. If |do_handshake| is NULL, |ssl| is in an // indeterminate mode and |ssl->server| is unset. if (ssl->do_handshake != NULL && !ssl->server) { if (ssl->s3->hs != NULL) { return buffer_names_to_x509(ssl->s3->hs->ca_names.get(), &ssl->s3->hs->cached_x509_ca_names); } return NULL; } if (ssl->client_CA != NULL) { return buffer_names_to_x509( ssl->client_CA, (STACK_OF(X509_NAME) **)&ssl->cached_x509_client_CA); } return SSL_CTX_get_client_CA_list(ssl->ctx); } STACK_OF(X509_NAME) *SSL_CTX_get_client_CA_list(const SSL_CTX *ctx) { check_ssl_ctx_x509_method(ctx); // This is a logically const operation that may be called on multiple threads, // so it needs to lock around updating |cached_x509_client_CA|. MutexWriteLock lock(const_cast<CRYPTO_MUTEX *>(&ctx->lock)); return buffer_names_to_x509( ctx->client_CA, const_cast<STACK_OF(X509_NAME) **>(&ctx->cached_x509_client_CA)); } static int add_client_CA(STACK_OF(CRYPTO_BUFFER) **names, X509 *x509, CRYPTO_BUFFER_POOL *pool) { if (x509 == NULL) { return 0; } uint8_t *outp = NULL; int len = i2d_X509_NAME(X509_get_subject_name(x509), &outp); if (len < 0) { return 0; } UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(outp, len, pool)); OPENSSL_free(outp); if (!buffer) { return 0; } int alloced = 0; if (*names == NULL) { *names = sk_CRYPTO_BUFFER_new_null(); alloced = 1; if (*names == NULL) { return 0; } } if (!PushToStack(*names, std::move(buffer))) { if (alloced) { sk_CRYPTO_BUFFER_pop_free(*names, CRYPTO_BUFFER_free); *names = NULL; } return 0; } return 1; } int SSL_add_client_CA(SSL *ssl, X509 *x509) { check_ssl_x509_method(ssl); if (!add_client_CA(&ssl->client_CA, x509, ssl->ctx->pool)) { return 0; } ssl_crypto_x509_ssl_flush_cached_client_CA(ssl); return 1; } int SSL_CTX_add_client_CA(SSL_CTX *ctx, X509 *x509) { check_ssl_ctx_x509_method(ctx); if (!add_client_CA(&ctx->client_CA, x509, ctx->pool)) { return 0; } ssl_crypto_x509_ssl_ctx_flush_cached_client_CA(ctx); return 1; } static int do_client_cert_cb(SSL *ssl, void *arg) { if (ssl_has_certificate(ssl) || ssl->ctx->client_cert_cb == NULL) { return 1; } X509 *x509 = NULL; EVP_PKEY *pkey = NULL; int ret = ssl->ctx->client_cert_cb(ssl, &x509, &pkey); if (ret < 0) { return -1; } UniquePtr<X509> free_x509(x509); UniquePtr<EVP_PKEY> free_pkey(pkey); if (ret != 0) { if (!SSL_use_certificate(ssl, x509) || !SSL_use_PrivateKey(ssl, pkey)) { return 0; } } return 1; } void SSL_CTX_set_client_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey)) { check_ssl_ctx_x509_method(ctx); // Emulate the old client certificate callback with the new one. SSL_CTX_set_cert_cb(ctx, do_client_cert_cb, NULL); ctx->client_cert_cb = cb; } static int set_cert_store(X509_STORE **store_ptr, X509_STORE *new_store, int take_ref) { X509_STORE_free(*store_ptr); *store_ptr = new_store; if (new_store != NULL && take_ref) { X509_STORE_up_ref(new_store); } return 1; } int SSL_get_ex_data_X509_STORE_CTX_idx(void) { // The ex_data index to go from |X509_STORE_CTX| to |SSL| always uses the // reserved app_data slot. Before ex_data was introduced, app_data was used. // Avoid breaking any software which assumes |X509_STORE_CTX_get_app_data| // works. return 0; } int SSL_CTX_set0_verify_cert_store(SSL_CTX *ctx, X509_STORE *store) { check_ssl_ctx_x509_method(ctx); return set_cert_store(&ctx->cert->verify_store, store, 0); } int SSL_CTX_set1_verify_cert_store(SSL_CTX *ctx, X509_STORE *store) { check_ssl_ctx_x509_method(ctx); return set_cert_store(&ctx->cert->verify_store, store, 1); } int SSL_set0_verify_cert_store(SSL *ssl, X509_STORE *store) { check_ssl_x509_method(ssl); return set_cert_store(&ssl->cert->verify_store, store, 0); } int SSL_set1_verify_cert_store(SSL *ssl, X509_STORE *store) { check_ssl_x509_method(ssl); return set_cert_store(&ssl->cert->verify_store, store, 1); } int SSL_alert_from_verify_result(long result) { switch (result) { case X509_V_ERR_CERT_CHAIN_TOO_LONG: case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: case X509_V_ERR_INVALID_CA: case X509_V_ERR_PATH_LENGTH_EXCEEDED: case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: case X509_V_ERR_UNABLE_TO_GET_CRL: case X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER: case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY: case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE: return SSL_AD_UNKNOWN_CA; case X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE: case X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE: case X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY: case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD: case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD: case X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD: case X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD: case X509_V_ERR_CERT_UNTRUSTED: case X509_V_ERR_CERT_REJECTED: case X509_V_ERR_HOSTNAME_MISMATCH: case X509_V_ERR_EMAIL_MISMATCH: case X509_V_ERR_IP_ADDRESS_MISMATCH: return SSL_AD_BAD_CERTIFICATE; case X509_V_ERR_CERT_SIGNATURE_FAILURE: case X509_V_ERR_CRL_SIGNATURE_FAILURE: return SSL_AD_DECRYPT_ERROR; case X509_V_ERR_CERT_HAS_EXPIRED: case X509_V_ERR_CERT_NOT_YET_VALID: case X509_V_ERR_CRL_HAS_EXPIRED: case X509_V_ERR_CRL_NOT_YET_VALID: return SSL_AD_CERTIFICATE_EXPIRED; case X509_V_ERR_CERT_REVOKED: return SSL_AD_CERTIFICATE_REVOKED; case X509_V_ERR_UNSPECIFIED: case X509_V_ERR_OUT_OF_MEM: case X509_V_ERR_INVALID_CALL: case X509_V_ERR_STORE_LOOKUP: return SSL_AD_INTERNAL_ERROR; case X509_V_ERR_APPLICATION_VERIFICATION: return SSL_AD_HANDSHAKE_FAILURE; case X509_V_ERR_INVALID_PURPOSE: return SSL_AD_UNSUPPORTED_CERTIFICATE; default: return SSL_AD_CERTIFICATE_UNKNOWN; } }