/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.]. */ #include <openssl/cast.h> #if defined(OPENSSL_WINDOWS) OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include <intrin.h> OPENSSL_MSVC_PRAGMA(warning(pop)) #endif #include "internal.h" #include "../macros.h" void CAST_ecb_encrypt(const uint8_t *in, uint8_t *out, const CAST_KEY *ks, int enc) { uint32_t d[2]; n2l(in, d[0]); n2l(in, d[1]); if (enc) { CAST_encrypt(d, ks); } else { CAST_decrypt(d, ks); } l2n(d[0], out); l2n(d[1], out); } #if defined(OPENSSL_WINDOWS) && defined(_MSC_VER) #define ROTL(a, n) (_lrotl(a, n)) #else #define ROTL(a, n) ((((a) << (n)) | ((a) >> ((-(n))&31))) & 0xffffffffL) #endif #define E_CAST(n, key, L, R, OP1, OP2, OP3) \ { \ uint32_t a, b, c, d; \ t = (key[n * 2] OP1 R) & 0xffffffff; \ t = ROTL(t, (key[n * 2 + 1])); \ a = CAST_S_table0[(t >> 8) & 0xff]; \ b = CAST_S_table1[(t)&0xff]; \ c = CAST_S_table2[(t >> 24) & 0xff]; \ d = CAST_S_table3[(t >> 16) & 0xff]; \ L ^= (((((a OP2 b)&0xffffffffL)OP3 c) & 0xffffffffL)OP1 d) & 0xffffffffL; \ } void CAST_encrypt(uint32_t *data, const CAST_KEY *key) { uint32_t l, r, t; const uint32_t *k; k = &key->data[0]; l = data[0]; r = data[1]; E_CAST(0, k, l, r, +, ^, -); E_CAST(1, k, r, l, ^, -, +); E_CAST(2, k, l, r, -, +, ^); E_CAST(3, k, r, l, +, ^, -); E_CAST(4, k, l, r, ^, -, +); E_CAST(5, k, r, l, -, +, ^); E_CAST(6, k, l, r, +, ^, -); E_CAST(7, k, r, l, ^, -, +); E_CAST(8, k, l, r, -, +, ^); E_CAST(9, k, r, l, +, ^, -); E_CAST(10, k, l, r, ^, -, +); E_CAST(11, k, r, l, -, +, ^); if (!key->short_key) { E_CAST(12, k, l, r, +, ^, -); E_CAST(13, k, r, l, ^, -, +); E_CAST(14, k, l, r, -, +, ^); E_CAST(15, k, r, l, +, ^, -); } data[1] = l & 0xffffffffL; data[0] = r & 0xffffffffL; } void CAST_decrypt(uint32_t *data, const CAST_KEY *key) { uint32_t l, r, t; const uint32_t *k; k = &key->data[0]; l = data[0]; r = data[1]; if (!key->short_key) { E_CAST(15, k, l, r, +, ^, -); E_CAST(14, k, r, l, -, +, ^); E_CAST(13, k, l, r, ^, -, +); E_CAST(12, k, r, l, +, ^, -); } E_CAST(11, k, l, r, -, +, ^); E_CAST(10, k, r, l, ^, -, +); E_CAST(9, k, l, r, +, ^, -); E_CAST(8, k, r, l, -, +, ^); E_CAST(7, k, l, r, ^, -, +); E_CAST(6, k, r, l, +, ^, -); E_CAST(5, k, l, r, -, +, ^); E_CAST(4, k, r, l, ^, -, +); E_CAST(3, k, l, r, +, ^, -); E_CAST(2, k, r, l, -, +, ^); E_CAST(1, k, l, r, ^, -, +); E_CAST(0, k, r, l, +, ^, -); data[1] = l & 0xffffffffL; data[0] = r & 0xffffffffL; } void CAST_cbc_encrypt(const uint8_t *in, uint8_t *out, long length, const CAST_KEY *ks, uint8_t *iv, int enc) { uint32_t tin0, tin1; uint32_t tout0, tout1, xor0, xor1; long l = length; uint32_t tin[2]; if (enc) { n2l(iv, tout0); n2l(iv, tout1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { n2l(in, tin0); n2l(in, tin1); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; CAST_encrypt(tin, ks); tout0 = tin[0]; tout1 = tin[1]; l2n(tout0, out); l2n(tout1, out); } if (l != -8) { n2ln(in, tin0, tin1, l + 8); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; CAST_encrypt(tin, ks); tout0 = tin[0]; tout1 = tin[1]; l2n(tout0, out); l2n(tout1, out); } l2n(tout0, iv); l2n(tout1, iv); } else { n2l(iv, xor0); n2l(iv, xor1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { n2l(in, tin0); n2l(in, tin1); tin[0] = tin0; tin[1] = tin1; CAST_decrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2n(tout0, out); l2n(tout1, out); xor0 = tin0; xor1 = tin1; } if (l != -8) { n2l(in, tin0); n2l(in, tin1); tin[0] = tin0; tin[1] = tin1; CAST_decrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2nn(tout0, tout1, out, l + 8); xor0 = tin0; xor1 = tin1; } l2n(xor0, iv); l2n(xor1, iv); } tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; tin[0] = tin[1] = 0; } #define CAST_exp(l, A, a, n) \ A[n / 4] = l; \ a[n + 3] = (l)&0xff; \ a[n + 2] = (l >> 8) & 0xff; \ a[n + 1] = (l >> 16) & 0xff; \ a[n + 0] = (l >> 24) & 0xff; #define S4 CAST_S_table4 #define S5 CAST_S_table5 #define S6 CAST_S_table6 #define S7 CAST_S_table7 void CAST_set_key(CAST_KEY *key, size_t len, const uint8_t *data) { uint32_t x[16]; uint32_t z[16]; uint32_t k[32]; uint32_t X[4], Z[4]; uint32_t l, *K; size_t i; for (i = 0; i < 16; i++) { x[i] = 0; } if (len > 16) { len = 16; } for (i = 0; i < len; i++) { x[i] = data[i]; } if (len <= 10) { key->short_key = 1; } else { key->short_key = 0; } K = &k[0]; X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL; X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL; X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL; X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL; for (;;) { l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]]; CAST_exp(l, Z, z, 0); l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]]; CAST_exp(l, Z, z, 4); l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]]; CAST_exp(l, Z, z, 8); l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]]; CAST_exp(l, Z, z, 12); K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]]; K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]]; K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]]; K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]]; l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]]; CAST_exp(l, X, x, 0); l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]]; CAST_exp(l, X, x, 4); l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]]; CAST_exp(l, X, x, 8); l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]]; CAST_exp(l, X, x, 12); K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]]; K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]]; K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]]; K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]]; l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]]; CAST_exp(l, Z, z, 0); l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]]; CAST_exp(l, Z, z, 4); l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]]; CAST_exp(l, Z, z, 8); l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]]; CAST_exp(l, Z, z, 12); K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]]; K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]]; K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]]; K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]]; l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]]; CAST_exp(l, X, x, 0); l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]]; CAST_exp(l, X, x, 4); l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]]; CAST_exp(l, X, x, 8); l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]]; CAST_exp(l, X, x, 12); K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]]; K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]]; K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]]; K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]]; if (K != k) { break; } K += 16; } for (i = 0; i < 16; i++) { key->data[i * 2] = k[i]; key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f; } } // The input and output encrypted as though 64bit cfb mode is being used. The // extra state information to record how much of the 64bit block we have used // is contained in *num. void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out, long length, const CAST_KEY *schedule, uint8_t *ivec, int *num, int enc) { uint32_t v0, v1, t; int n = *num; long l = length; uint32_t ti[2]; uint8_t *iv, c, cc; iv = ivec; if (enc) { while (l--) { if (n == 0) { n2l(iv, v0); ti[0] = v0; n2l(iv, v1); ti[1] = v1; CAST_encrypt((uint32_t *)ti, schedule); iv = ivec; t = ti[0]; l2n(t, iv); t = ti[1]; l2n(t, iv); iv = ivec; } c = *(in++) ^ iv[n]; *(out++) = c; iv[n] = c; n = (n + 1) & 0x07; } } else { while (l--) { if (n == 0) { n2l(iv, v0); ti[0] = v0; n2l(iv, v1); ti[1] = v1; CAST_encrypt((uint32_t *)ti, schedule); iv = ivec; t = ti[0]; l2n(t, iv); t = ti[1]; l2n(t, iv); iv = ivec; } cc = *(in++); c = iv[n]; iv[n] = cc; *(out++) = c ^ cc; n = (n + 1) & 0x07; } } v0 = v1 = ti[0] = ti[1] = t = c = cc = 0; *num = n; }