/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include <openssl/base64.h> #include <assert.h> #include <limits.h> #include <string.h> #include <openssl/type_check.h> #include "../internal.h" // constant_time_lt_args_8 behaves like |constant_time_lt_8| but takes |uint8_t| // arguments for a slightly simpler implementation. static inline uint8_t constant_time_lt_args_8(uint8_t a, uint8_t b) { crypto_word_t aw = a; crypto_word_t bw = b; // |crypto_word_t| is larger than |uint8_t|, so |aw| and |bw| have the same // MSB. |aw| < |bw| iff MSB(|aw| - |bw|) is 1. return constant_time_msb_w(aw - bw); } // constant_time_in_range_8 returns |CONSTTIME_TRUE_8| if |min| <= |a| <= |max| // and |CONSTTIME_FALSE_8| otherwise. static inline uint8_t constant_time_in_range_8(uint8_t a, uint8_t min, uint8_t max) { a -= min; return constant_time_lt_args_8(a, max - min + 1); } // Encoding. static uint8_t conv_bin2ascii(uint8_t a) { // Since PEM is sometimes used to carry private keys, we encode base64 data // itself in constant-time. a &= 0x3f; uint8_t ret = constant_time_select_8(constant_time_eq_8(a, 62), '+', '/'); ret = constant_time_select_8(constant_time_lt_args_8(a, 62), a - 52 + '0', ret); ret = constant_time_select_8(constant_time_lt_args_8(a, 52), a - 26 + 'a', ret); ret = constant_time_select_8(constant_time_lt_args_8(a, 26), a + 'A', ret); return ret; } OPENSSL_COMPILE_ASSERT(sizeof(((EVP_ENCODE_CTX *)(NULL))->data) % 3 == 0, data_length_must_be_multiple_of_base64_chunk_size); int EVP_EncodedLength(size_t *out_len, size_t len) { if (len + 2 < len) { return 0; } len += 2; len /= 3; if (((len << 2) >> 2) != len) { return 0; } len <<= 2; if (len + 1 < len) { return 0; } len++; *out_len = len; return 1; } void EVP_EncodeInit(EVP_ENCODE_CTX *ctx) { OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX)); } void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len, const uint8_t *in, size_t in_len) { size_t total = 0; *out_len = 0; if (in_len == 0) { return; } assert(ctx->data_used < sizeof(ctx->data)); if (sizeof(ctx->data) - ctx->data_used > in_len) { OPENSSL_memcpy(&ctx->data[ctx->data_used], in, in_len); ctx->data_used += (unsigned)in_len; return; } if (ctx->data_used != 0) { const size_t todo = sizeof(ctx->data) - ctx->data_used; OPENSSL_memcpy(&ctx->data[ctx->data_used], in, todo); in += todo; in_len -= todo; size_t encoded = EVP_EncodeBlock(out, ctx->data, sizeof(ctx->data)); ctx->data_used = 0; out += encoded; *(out++) = '\n'; *out = '\0'; total = encoded + 1; } while (in_len >= sizeof(ctx->data)) { size_t encoded = EVP_EncodeBlock(out, in, sizeof(ctx->data)); in += sizeof(ctx->data); in_len -= sizeof(ctx->data); out += encoded; *(out++) = '\n'; *out = '\0'; if (total + encoded + 1 < total) { *out_len = 0; return; } total += encoded + 1; } if (in_len != 0) { OPENSSL_memcpy(ctx->data, in, in_len); } ctx->data_used = (unsigned)in_len; if (total > INT_MAX) { // We cannot signal an error, but we can at least avoid making *out_len // negative. total = 0; } *out_len = (int)total; } void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) { if (ctx->data_used == 0) { *out_len = 0; return; } size_t encoded = EVP_EncodeBlock(out, ctx->data, ctx->data_used); out[encoded++] = '\n'; out[encoded] = '\0'; ctx->data_used = 0; // ctx->data_used is bounded by sizeof(ctx->data), so this does not // overflow. assert(encoded <= INT_MAX); *out_len = (int)encoded; } size_t EVP_EncodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) { uint32_t l; size_t remaining = src_len, ret = 0; while (remaining) { if (remaining >= 3) { l = (((uint32_t)src[0]) << 16L) | (((uint32_t)src[1]) << 8L) | src[2]; *(dst++) = conv_bin2ascii(l >> 18L); *(dst++) = conv_bin2ascii(l >> 12L); *(dst++) = conv_bin2ascii(l >> 6L); *(dst++) = conv_bin2ascii(l); remaining -= 3; } else { l = ((uint32_t)src[0]) << 16L; if (remaining == 2) { l |= ((uint32_t)src[1] << 8L); } *(dst++) = conv_bin2ascii(l >> 18L); *(dst++) = conv_bin2ascii(l >> 12L); *(dst++) = (remaining == 1) ? '=' : conv_bin2ascii(l >> 6L); *(dst++) = '='; remaining = 0; } ret += 4; src += 3; } *dst = '\0'; return ret; } // Decoding. int EVP_DecodedLength(size_t *out_len, size_t len) { if (len % 4 != 0) { return 0; } *out_len = (len / 4) * 3; return 1; } void EVP_DecodeInit(EVP_ENCODE_CTX *ctx) { OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX)); } static uint8_t base64_ascii_to_bin(uint8_t a) { // Since PEM is sometimes used to carry private keys, we decode base64 data // itself in constant-time. const uint8_t is_upper = constant_time_in_range_8(a, 'A', 'Z'); const uint8_t is_lower = constant_time_in_range_8(a, 'a', 'z'); const uint8_t is_digit = constant_time_in_range_8(a, '0', '9'); const uint8_t is_plus = constant_time_eq_8(a, '+'); const uint8_t is_slash = constant_time_eq_8(a, '/'); const uint8_t is_equals = constant_time_eq_8(a, '='); uint8_t ret = 0xff; // 0xff signals invalid. ret = constant_time_select_8(is_upper, a - 'A', ret); // [0,26) ret = constant_time_select_8(is_lower, a - 'a' + 26, ret); // [26,52) ret = constant_time_select_8(is_digit, a - '0' + 52, ret); // [52,62) ret = constant_time_select_8(is_plus, 62, ret); ret = constant_time_select_8(is_slash, 63, ret); // Padding maps to zero, to be further handled by the caller. ret = constant_time_select_8(is_equals, 0, ret); return ret; } // base64_decode_quad decodes a single “quad” (i.e. four characters) of base64 // data and writes up to three bytes to |out|. It sets |*out_num_bytes| to the // number of bytes written, which will be less than three if the quad ended // with padding. It returns one on success or zero on error. static int base64_decode_quad(uint8_t *out, size_t *out_num_bytes, const uint8_t *in) { const uint8_t a = base64_ascii_to_bin(in[0]); const uint8_t b = base64_ascii_to_bin(in[1]); const uint8_t c = base64_ascii_to_bin(in[2]); const uint8_t d = base64_ascii_to_bin(in[3]); if (a == 0xff || b == 0xff || c == 0xff || d == 0xff) { return 0; } const uint32_t v = ((uint32_t)a) << 18 | ((uint32_t)b) << 12 | ((uint32_t)c) << 6 | (uint32_t)d; const unsigned padding_pattern = (in[0] == '=') << 3 | (in[1] == '=') << 2 | (in[2] == '=') << 1 | (in[3] == '='); switch (padding_pattern) { case 0: // The common case of no padding. *out_num_bytes = 3; out[0] = v >> 16; out[1] = v >> 8; out[2] = v; break; case 1: // xxx= *out_num_bytes = 2; out[0] = v >> 16; out[1] = v >> 8; break; case 3: // xx== *out_num_bytes = 1; out[0] = v >> 16; break; default: return 0; } return 1; } int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len, const uint8_t *in, size_t in_len) { *out_len = 0; if (ctx->error_encountered) { return -1; } size_t bytes_out = 0, i; for (i = 0; i < in_len; i++) { const char c = in[i]; switch (c) { case ' ': case '\t': case '\r': case '\n': continue; } if (ctx->eof_seen) { ctx->error_encountered = 1; return -1; } ctx->data[ctx->data_used++] = c; if (ctx->data_used == 4) { size_t num_bytes_resulting; if (!base64_decode_quad(out, &num_bytes_resulting, ctx->data)) { ctx->error_encountered = 1; return -1; } ctx->data_used = 0; bytes_out += num_bytes_resulting; out += num_bytes_resulting; if (num_bytes_resulting < 3) { ctx->eof_seen = 1; } } } if (bytes_out > INT_MAX) { ctx->error_encountered = 1; *out_len = 0; return -1; } *out_len = (int)bytes_out; if (ctx->eof_seen) { return 0; } return 1; } int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) { *out_len = 0; if (ctx->error_encountered || ctx->data_used != 0) { return -1; } return 1; } int EVP_DecodeBase64(uint8_t *out, size_t *out_len, size_t max_out, const uint8_t *in, size_t in_len) { *out_len = 0; if (in_len % 4 != 0) { return 0; } size_t max_len; if (!EVP_DecodedLength(&max_len, in_len) || max_out < max_len) { return 0; } size_t i, bytes_out = 0; for (i = 0; i < in_len; i += 4) { size_t num_bytes_resulting; if (!base64_decode_quad(out, &num_bytes_resulting, &in[i])) { return 0; } bytes_out += num_bytes_resulting; out += num_bytes_resulting; if (num_bytes_resulting != 3 && i != in_len - 4) { return 0; } } *out_len = bytes_out; return 1; } int EVP_DecodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) { // Trim spaces and tabs from the beginning of the input. while (src_len > 0) { if (src[0] != ' ' && src[0] != '\t') { break; } src++; src_len--; } // Trim newlines, spaces and tabs from the end of the line. while (src_len > 0) { switch (src[src_len-1]) { case ' ': case '\t': case '\r': case '\n': src_len--; continue; } break; } size_t dst_len; if (!EVP_DecodedLength(&dst_len, src_len) || dst_len > INT_MAX || !EVP_DecodeBase64(dst, &dst_len, dst_len, src, src_len)) { return -1; } // EVP_DecodeBlock does not take padding into account, so put the // NULs back in... so the caller can strip them back out. while (dst_len % 3 != 0) { dst[dst_len++] = '\0'; } assert(dst_len <= INT_MAX); return (int)dst_len; }