/*++ Copyright (c) 2005 - 2012, Intel Corporation. All rights reserved.<BR> This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. Module Name: PcatPciRootBridgeIo.c Abstract: EFI PC AT PCI Root Bridge Io Protocol Revision History --*/ #include "PcatPciRootBridge.h" BOOLEAN mPciOptionRomTableInstalled = FALSE; EFI_PCI_OPTION_ROM_TABLE mPciOptionRomTable = {0, NULL}; EFI_STATUS EFIAPI PcatRootBridgeIoIoRead ( IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This, IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width, IN UINT64 UserAddress, IN UINTN Count, IN OUT VOID *UserBuffer ) { return gCpuIo->Io.Read ( gCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) Width, UserAddress, Count, UserBuffer ); } EFI_STATUS EFIAPI PcatRootBridgeIoIoWrite ( IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This, IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width, IN UINT64 UserAddress, IN UINTN Count, IN OUT VOID *UserBuffer ) { return gCpuIo->Io.Write ( gCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) Width, UserAddress, Count, UserBuffer ); } EFI_STATUS PcatRootBridgeIoGetIoPortMapping ( OUT EFI_PHYSICAL_ADDRESS *IoPortMapping, OUT EFI_PHYSICAL_ADDRESS *MemoryPortMapping ) /*++ Get the IO Port Mapping. For IA-32 it is always 0. --*/ { *IoPortMapping = 0; *MemoryPortMapping = 0; return EFI_SUCCESS; } EFI_STATUS PcatRootBridgeIoPciRW ( IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This, IN BOOLEAN Write, IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width, IN UINT64 UserAddress, IN UINTN Count, IN OUT VOID *UserBuffer ) { PCI_CONFIG_ACCESS_CF8 Pci; PCI_CONFIG_ACCESS_CF8 PciAligned; UINT32 InStride; UINT32 OutStride; UINTN PciData; UINTN PciDataStride; PCAT_PCI_ROOT_BRIDGE_INSTANCE *PrivateData; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress; UINT64 PciExpressRegAddr; BOOLEAN UsePciExpressAccess; if ((UINT32)Width >= EfiPciWidthMaximum) { return EFI_INVALID_PARAMETER; } if ((Width & 0x03) >= EfiPciWidthUint64) { return EFI_INVALID_PARAMETER; } PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS(This); InStride = 1 << (Width & 0x03); OutStride = InStride; if (Width >= EfiPciWidthFifoUint8 && Width <= EfiPciWidthFifoUint64) { InStride = 0; } if (Width >= EfiPciWidthFillUint8 && Width <= EfiPciWidthFillUint64) { OutStride = 0; } UsePciExpressAccess = FALSE; CopyMem (&PciAddress, &UserAddress, sizeof(UINT64)); if (PciAddress.ExtendedRegister > 0xFF) { // // Check PciExpressBaseAddress // if ((PrivateData->PciExpressBaseAddress == 0) || (PrivateData->PciExpressBaseAddress >= MAX_ADDRESS)) { return EFI_UNSUPPORTED; } else { UsePciExpressAccess = TRUE; } } else { if (PciAddress.ExtendedRegister != 0) { Pci.Bits.Reg = PciAddress.ExtendedRegister & 0xFF; } else { Pci.Bits.Reg = PciAddress.Register; } // // Note: We can also use PciExpress access here, if wanted. // } if (!UsePciExpressAccess) { Pci.Bits.Func = PciAddress.Function; Pci.Bits.Dev = PciAddress.Device; Pci.Bits.Bus = PciAddress.Bus; Pci.Bits.Reserved = 0; Pci.Bits.Enable = 1; // // PCI Config access are all 32-bit alligned, but by accessing the // CONFIG_DATA_REGISTER (0xcfc) with different widths more cycle types // are possible on PCI. // // To read a byte of PCI config space you load 0xcf8 and // read 0xcfc, 0xcfd, 0xcfe, 0xcff // PciDataStride = Pci.Bits.Reg & 0x03; while (Count) { PciAligned = Pci; PciAligned.Bits.Reg &= 0xfc; PciData = (UINTN)PrivateData->PciData + PciDataStride; EfiAcquireLock(&PrivateData->PciLock); This->Io.Write (This, EfiPciWidthUint32, PrivateData->PciAddress, 1, &PciAligned); if (Write) { This->Io.Write (This, Width, PciData, 1, UserBuffer); } else { This->Io.Read (This, Width, PciData, 1, UserBuffer); } EfiReleaseLock(&PrivateData->PciLock); UserBuffer = ((UINT8 *)UserBuffer) + OutStride; PciDataStride = (PciDataStride + InStride) % 4; Pci.Bits.Reg += InStride; Count -= 1; } } else { // // Access PCI-Express space by using memory mapped method. // PciExpressRegAddr = (PrivateData->PciExpressBaseAddress) | (PciAddress.Bus << 20) | (PciAddress.Device << 15) | (PciAddress.Function << 12); if (PciAddress.ExtendedRegister != 0) { PciExpressRegAddr += PciAddress.ExtendedRegister; } else { PciExpressRegAddr += PciAddress.Register; } while (Count) { if (Write) { This->Mem.Write (This, Width, (UINTN) PciExpressRegAddr, 1, UserBuffer); } else { This->Mem.Read (This, Width, (UINTN) PciExpressRegAddr, 1, UserBuffer); } UserBuffer = ((UINT8 *) UserBuffer) + OutStride; PciExpressRegAddr += InStride; Count -= 1; } } return EFI_SUCCESS; } VOID ScanPciBus( EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *IoDev, UINT16 MinBus, UINT16 MaxBus, UINT16 MinDevice, UINT16 MaxDevice, UINT16 MinFunc, UINT16 MaxFunc, EFI_PCI_BUS_SCAN_CALLBACK Callback, VOID *Context ) { UINT16 Bus; UINT16 Device; UINT16 Func; UINT64 Address; PCI_TYPE00 PciHeader; // // Loop through all busses // for (Bus = MinBus; Bus <= MaxBus; Bus++) { // // Loop 32 devices per bus // for (Device = MinDevice; Device <= MaxDevice; Device++) { // // Loop through 8 functions per device // for (Func = MinFunc; Func <= MaxFunc; Func++) { // // Compute the EFI Address required to access the PCI Configuration Header of this PCI Device // Address = EFI_PCI_ADDRESS (Bus, Device, Func, 0); // // Read the VendorID from this PCI Device's Confioguration Header // IoDev->Pci.Read (IoDev, EfiPciWidthUint16, Address, 1, &PciHeader.Hdr.VendorId); // // If VendorId = 0xffff, there does not exist a device at this // location. For each device, if there is any function on it, // there must be 1 function at Function 0. So if Func = 0, there // will be no more functions in the same device, so we can break // loop to deal with the next device. // if (PciHeader.Hdr.VendorId == 0xffff && Func == 0) { break; } if (PciHeader.Hdr.VendorId != 0xffff) { // // Read the HeaderType to determine if this is a multi-function device // IoDev->Pci.Read (IoDev, EfiPciWidthUint8, Address + 0x0e, 1, &PciHeader.Hdr.HeaderType); // // Call the callback function for the device that was found // Callback( IoDev, MinBus, MaxBus, MinDevice, MaxDevice, MinFunc, MaxFunc, Bus, Device, Func, Context ); // // If this is not a multi-function device, we can leave the loop // to deal with the next device. // if ((PciHeader.Hdr.HeaderType & HEADER_TYPE_MULTI_FUNCTION) == 0x00 && Func == 0) { break; } } } } } } VOID CheckForRom ( EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *IoDev, UINT16 MinBus, UINT16 MaxBus, UINT16 MinDevice, UINT16 MaxDevice, UINT16 MinFunc, UINT16 MaxFunc, UINT16 Bus, UINT16 Device, UINT16 Func, IN VOID *VoidContext ) { EFI_STATUS Status; PCAT_PCI_ROOT_BRIDGE_SCAN_FOR_ROM_CONTEXT *Context; UINT64 Address; PCI_TYPE00 PciHeader; PCI_TYPE01 *PciBridgeHeader; UINT32 Register; UINT32 RomBar; UINT32 RomBarSize; EFI_PHYSICAL_ADDRESS RomBuffer; UINT32 MaxRomSize; EFI_PCI_EXPANSION_ROM_HEADER EfiRomHeader; PCI_DATA_STRUCTURE Pcir; EFI_PCI_OPTION_ROM_DESCRIPTOR *TempPciOptionRomDescriptors; BOOLEAN LastImage; Context = (PCAT_PCI_ROOT_BRIDGE_SCAN_FOR_ROM_CONTEXT *)VoidContext; Address = EFI_PCI_ADDRESS (Bus, Device, Func, 0); // // Save the contents of the PCI Configuration Header // IoDev->Pci.Read (IoDev, EfiPciWidthUint32, Address, sizeof(PciHeader)/sizeof(UINT32), &PciHeader); if (IS_PCI_BRIDGE(&PciHeader)) { PciBridgeHeader = (PCI_TYPE01 *)(&PciHeader); // // See if the PCI-PCI Bridge has its secondary interface enabled. // if (PciBridgeHeader->Bridge.SubordinateBus >= PciBridgeHeader->Bridge.SecondaryBus) { // // Disable the Prefetchable Memory Window // Register = 0x00000000; IoDev->Pci.Write (IoDev, EfiPciWidthUint16, Address + 0x26, 1, &Register); IoDev->Pci.Write (IoDev, EfiPciWidthUint32, Address + 0x2c, 1, &Register); Register = 0xffffffff; IoDev->Pci.Write (IoDev, EfiPciWidthUint16, Address + 0x24, 1, &Register); IoDev->Pci.Write (IoDev, EfiPciWidthUint16, Address + 0x28, 1, &Register); // // Program Memory Window to the PCI Root Bridge Memory Window // IoDev->Pci.Write (IoDev, EfiPciWidthUint16, Address + 0x20, 4, &Context->PpbMemoryWindow); // // Enable the Memory decode for the PCI-PCI Bridge // IoDev->Pci.Read (IoDev, EfiPciWidthUint16, Address + 4, 1, &Register); Register |= 0x02; IoDev->Pci.Write (IoDev, EfiPciWidthUint16, Address + 4, 1, &Register); // // Recurse on the Secondary Bus Number // ScanPciBus( IoDev, PciBridgeHeader->Bridge.SecondaryBus, PciBridgeHeader->Bridge.SecondaryBus, 0, PCI_MAX_DEVICE, 0, PCI_MAX_FUNC, CheckForRom, Context ); } } else { // // Check if an Option ROM Register is present and save the Option ROM Window Register // RomBar = 0xffffffff; IoDev->Pci.Write (IoDev, EfiPciWidthUint32, Address + 0x30, 1, &RomBar); IoDev->Pci.Read (IoDev, EfiPciWidthUint32, Address + 0x30, 1, &RomBar); RomBarSize = (~(RomBar & 0xfffff800)) + 1; // // Make sure the size of the ROM is between 0 and 16 MB // if (RomBarSize > 0 && RomBarSize <= 0x01000000) { // // Program Option ROM Window Register to the PCI Root Bridge Window and Enable the Option ROM Window // RomBar = (Context->PpbMemoryWindow & 0xffff) << 16; RomBar = ((RomBar - 1) & (~(RomBarSize - 1))) + RomBarSize; if (RomBar < (Context->PpbMemoryWindow & 0xffff0000)) { MaxRomSize = (Context->PpbMemoryWindow & 0xffff0000) - RomBar; RomBar = RomBar + 1; IoDev->Pci.Write (IoDev, EfiPciWidthUint32, Address + 0x30, 1, &RomBar); IoDev->Pci.Read (IoDev, EfiPciWidthUint32, Address + 0x30, 1, &RomBar); RomBar = RomBar - 1; // // Enable the Memory decode for the PCI Device // IoDev->Pci.Read (IoDev, EfiPciWidthUint16, Address + 4, 1, &Register); Register |= 0x02; IoDev->Pci.Write (IoDev, EfiPciWidthUint16, Address + 4, 1, &Register); // // Follow the chain of images to determine the size of the Option ROM present // Keep going until the last image is found by looking at the Indicator field // or the size of an image is 0, or the size of all the images is bigger than the // size of the window programmed into the PPB. // RomBarSize = 0; do { LastImage = TRUE; ZeroMem (&EfiRomHeader, sizeof(EfiRomHeader)); IoDev->Mem.Read ( IoDev, EfiPciWidthUint8, RomBar + RomBarSize, sizeof(EfiRomHeader), &EfiRomHeader ); Pcir.ImageLength = 0; if (EfiRomHeader.Signature == PCI_EXPANSION_ROM_HEADER_SIGNATURE && EfiRomHeader.PcirOffset != 0 && (EfiRomHeader.PcirOffset & 3) == 0 && RomBarSize + EfiRomHeader.PcirOffset + sizeof (PCI_DATA_STRUCTURE) <= MaxRomSize) { ZeroMem (&Pcir, sizeof(Pcir)); IoDev->Mem.Read ( IoDev, EfiPciWidthUint8, RomBar + RomBarSize + EfiRomHeader.PcirOffset, sizeof(Pcir), &Pcir ); if (Pcir.Signature != PCI_DATA_STRUCTURE_SIGNATURE) { break; } if (RomBarSize + Pcir.ImageLength * 512 > MaxRomSize) { break; } if ((Pcir.Indicator & 0x80) == 0x00) { LastImage = FALSE; } RomBarSize += Pcir.ImageLength * 512; } } while (!LastImage && RomBarSize < MaxRomSize && Pcir.ImageLength !=0); if (RomBarSize > 0) { // // Allocate a memory buffer for the Option ROM contents. // Status = gBS->AllocatePages( AllocateAnyPages, EfiBootServicesData, EFI_SIZE_TO_PAGES(RomBarSize), &RomBuffer ); if (!EFI_ERROR (Status)) { // // Copy the contents of the Option ROM to the memory buffer // IoDev->Mem.Read (IoDev, EfiPciWidthUint32, RomBar, RomBarSize / sizeof(UINT32), (VOID *)(UINTN)RomBuffer); Status = gBS->AllocatePool( EfiBootServicesData, ((UINT32)mPciOptionRomTable.PciOptionRomCount + 1) * sizeof(EFI_PCI_OPTION_ROM_DESCRIPTOR), (VOID*)&TempPciOptionRomDescriptors ); if (mPciOptionRomTable.PciOptionRomCount > 0) { CopyMem( TempPciOptionRomDescriptors, mPciOptionRomTable.PciOptionRomDescriptors, (UINT32)mPciOptionRomTable.PciOptionRomCount * sizeof(EFI_PCI_OPTION_ROM_DESCRIPTOR) ); gBS->FreePool(mPciOptionRomTable.PciOptionRomDescriptors); } mPciOptionRomTable.PciOptionRomDescriptors = TempPciOptionRomDescriptors; TempPciOptionRomDescriptors = &(mPciOptionRomTable.PciOptionRomDescriptors[(UINT32)mPciOptionRomTable.PciOptionRomCount]); TempPciOptionRomDescriptors->RomAddress = RomBuffer; TempPciOptionRomDescriptors->MemoryType = EfiBootServicesData; TempPciOptionRomDescriptors->RomLength = RomBarSize; TempPciOptionRomDescriptors->Seg = (UINT32)IoDev->SegmentNumber; TempPciOptionRomDescriptors->Bus = (UINT8)Bus; TempPciOptionRomDescriptors->Dev = (UINT8)Device; TempPciOptionRomDescriptors->Func = (UINT8)Func; TempPciOptionRomDescriptors->ExecutedLegacyBiosImage = TRUE; TempPciOptionRomDescriptors->DontLoadEfiRom = FALSE; mPciOptionRomTable.PciOptionRomCount++; } } // // Disable the Memory decode for the PCI-PCI Bridge // IoDev->Pci.Read (IoDev, EfiPciWidthUint16, Address + 4, 1, &Register); Register &= (~0x02); IoDev->Pci.Write (IoDev, EfiPciWidthUint16, Address + 4, 1, &Register); } } } // // Restore the PCI Configuration Header // IoDev->Pci.Write (IoDev, EfiPciWidthUint32, Address, sizeof(PciHeader)/sizeof(UINT32), &PciHeader); } VOID SaveCommandRegister ( EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *IoDev, UINT16 MinBus, UINT16 MaxBus, UINT16 MinDevice, UINT16 MaxDevice, UINT16 MinFunc, UINT16 MaxFunc, UINT16 Bus, UINT16 Device, UINT16 Func, IN VOID *VoidContext ) { PCAT_PCI_ROOT_BRIDGE_SCAN_FOR_ROM_CONTEXT *Context; UINT64 Address; UINTN Index; UINT16 Command; Context = (PCAT_PCI_ROOT_BRIDGE_SCAN_FOR_ROM_CONTEXT *)VoidContext; Address = EFI_PCI_ADDRESS (Bus, Device, Func, 4); Index = (Bus - MinBus) * (PCI_MAX_DEVICE+1) * (PCI_MAX_FUNC+1) + Device * (PCI_MAX_FUNC+1) + Func; IoDev->Pci.Read (IoDev, EfiPciWidthUint16, Address, 1, &Context->CommandRegisterBuffer[Index]); // // Clear the memory enable bit // Command = (UINT16) (Context->CommandRegisterBuffer[Index] & (~0x02)); IoDev->Pci.Write (IoDev, EfiPciWidthUint16, Address, 1, &Command); } VOID RestoreCommandRegister ( EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *IoDev, UINT16 MinBus, UINT16 MaxBus, UINT16 MinDevice, UINT16 MaxDevice, UINT16 MinFunc, UINT16 MaxFunc, UINT16 Bus, UINT16 Device, UINT16 Func, IN VOID *VoidContext ) { PCAT_PCI_ROOT_BRIDGE_SCAN_FOR_ROM_CONTEXT *Context; UINT64 Address; UINTN Index; Context = (PCAT_PCI_ROOT_BRIDGE_SCAN_FOR_ROM_CONTEXT *)VoidContext; Address = EFI_PCI_ADDRESS (Bus, Device, Func, 4); Index = (Bus - MinBus) * (PCI_MAX_DEVICE+1) * (PCI_MAX_FUNC+1) + Device * (PCI_MAX_FUNC+1) + Func; IoDev->Pci.Write (IoDev, EfiPciWidthUint16, Address, 1, &Context->CommandRegisterBuffer[Index]); } EFI_STATUS ScanPciRootBridgeForRoms( EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *IoDev ) { EFI_STATUS Status; EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptors; UINT16 MinBus; UINT16 MaxBus; UINT64 RootWindowBase; UINT64 RootWindowLimit; PCAT_PCI_ROOT_BRIDGE_SCAN_FOR_ROM_CONTEXT Context; if (mPciOptionRomTableInstalled == FALSE) { gBS->InstallConfigurationTable(&gEfiPciOptionRomTableGuid, &mPciOptionRomTable); mPciOptionRomTableInstalled = TRUE; } Status = IoDev->Configuration(IoDev, (VOID **)&Descriptors); if (EFI_ERROR (Status) || Descriptors == NULL) { return EFI_NOT_FOUND; } MinBus = 0xffff; MaxBus = 0xffff; RootWindowBase = 0; RootWindowLimit = 0; while (Descriptors->Desc != ACPI_END_TAG_DESCRIPTOR) { // // Find bus range // if (Descriptors->ResType == ACPI_ADDRESS_SPACE_TYPE_BUS) { MinBus = (UINT16)Descriptors->AddrRangeMin; MaxBus = (UINT16)Descriptors->AddrRangeMax; } // // Find memory descriptors that are not prefetchable // if (Descriptors->ResType == ACPI_ADDRESS_SPACE_TYPE_MEM && Descriptors->SpecificFlag == 0) { // // Find Memory Descriptors that are less than 4GB, so the PPB Memory Window can be used for downstream devices // if (Descriptors->AddrRangeMax < 0x100000000ULL) { // // Find the largest Non-Prefetchable Memory Descriptor that is less than 4GB // if ((Descriptors->AddrRangeMax - Descriptors->AddrRangeMin) > (RootWindowLimit - RootWindowBase)) { RootWindowBase = Descriptors->AddrRangeMin; RootWindowLimit = Descriptors->AddrRangeMax; } } } Descriptors ++; } // // Make sure a bus range was found // if (MinBus == 0xffff || MaxBus == 0xffff) { return EFI_NOT_FOUND; } // // Make sure a non-prefetchable memory region was found // if (RootWindowBase == 0 && RootWindowLimit == 0) { return EFI_NOT_FOUND; } // // Round the Base and Limit values to 1 MB boudaries // RootWindowBase = ((RootWindowBase - 1) & 0xfff00000) + 0x00100000; RootWindowLimit = ((RootWindowLimit + 1) & 0xfff00000) - 1; // // Make sure that the size of the rounded window is greater than zero // if (RootWindowLimit <= RootWindowBase) { return EFI_NOT_FOUND; } // // Allocate buffer to save the Command register from all the PCI devices // Context.CommandRegisterBuffer = NULL; Status = gBS->AllocatePool( EfiBootServicesData, sizeof(UINT16) * (MaxBus - MinBus + 1) * (PCI_MAX_DEVICE+1) * (PCI_MAX_FUNC+1), (VOID **)&Context.CommandRegisterBuffer ); if (EFI_ERROR (Status)) { return Status; } Context.PpbMemoryWindow = (((UINT32)RootWindowBase) >> 16) | ((UINT32)RootWindowLimit & 0xffff0000); // // Save the Command register from all the PCI devices, and disable the I/O, Mem, and BusMaster bits // ScanPciBus( IoDev, MinBus, MaxBus, 0, PCI_MAX_DEVICE, 0, PCI_MAX_FUNC, SaveCommandRegister, &Context ); // // Recursively scan all the busses for PCI Option ROMs // ScanPciBus( IoDev, MinBus, MinBus, 0, PCI_MAX_DEVICE, 0, PCI_MAX_FUNC, CheckForRom, &Context ); // // Restore the Command register in all the PCI devices // ScanPciBus( IoDev, MinBus, MaxBus, 0, PCI_MAX_DEVICE, 0, PCI_MAX_FUNC, RestoreCommandRegister, &Context ); // // Free the buffer used to save all the Command register values // gBS->FreePool(Context.CommandRegisterBuffer); return EFI_SUCCESS; }