/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_LIBARTBASE_BASE_HISTOGRAM_INL_H_ #define ART_LIBARTBASE_BASE_HISTOGRAM_INL_H_ #include <algorithm> #include <cmath> #include <limits> #include <ostream> #include "histogram.h" #include <android-base/logging.h> #include "base/bit_utils.h" #include "base/time_utils.h" #include "base/utils.h" namespace art { template <class Value> inline void Histogram<Value>::AddValue(Value value) { CHECK_GE(value, static_cast<Value>(0)); if (value >= max_) { Value new_max = ((value + 1) / bucket_width_ + 1) * bucket_width_; DCHECK_GT(new_max, max_); GrowBuckets(new_max); } BucketiseValue(value); } template <class Value> inline void Histogram<Value>::AdjustAndAddValue(Value value) { AddValue(value / kAdjust); } template <class Value> inline Histogram<Value>::Histogram(const char* name) : kAdjust(0), kInitialBucketCount(0), name_(name), max_buckets_(0), sample_size_(0) { } template <class Value> inline Histogram<Value>::Histogram(const char* name, Value initial_bucket_width, size_t max_buckets) : kAdjust(1000), kInitialBucketCount(8), name_(name), max_buckets_(max_buckets), bucket_width_(initial_bucket_width) { Reset(); } template <class Value> inline void Histogram<Value>::GrowBuckets(Value new_max) { while (max_ < new_max) { // If we have reached the maximum number of buckets, merge buckets together. if (frequency_.size() >= max_buckets_) { CHECK_ALIGNED(frequency_.size(), 2); // We double the width of each bucket to reduce the number of buckets by a factor of 2. bucket_width_ *= 2; const size_t limit = frequency_.size() / 2; // Merge the frequencies by adding each adjacent two together. for (size_t i = 0; i < limit; ++i) { frequency_[i] = frequency_[i * 2] + frequency_[i * 2 + 1]; } // Remove frequencies in the second half of the array which were added to the first half. while (frequency_.size() > limit) { frequency_.pop_back(); } } max_ += bucket_width_; frequency_.push_back(0); } } template <class Value> inline size_t Histogram<Value>::FindBucket(Value val) const { // Since this is only a linear histogram, bucket index can be found simply with // dividing the value by the bucket width. DCHECK_GE(val, min_); DCHECK_LE(val, max_); const size_t bucket_idx = static_cast<size_t>((val - min_) / bucket_width_); DCHECK_GE(bucket_idx, 0ul); DCHECK_LE(bucket_idx, GetBucketCount()); return bucket_idx; } template <class Value> inline void Histogram<Value>::BucketiseValue(Value val) { CHECK_LT(val, max_); sum_ += val; sum_of_squares_ += val * val; ++sample_size_; ++frequency_[FindBucket(val)]; max_value_added_ = std::max(val, max_value_added_); min_value_added_ = std::min(val, min_value_added_); } template <class Value> inline void Histogram<Value>::Initialize() { for (size_t idx = 0; idx < kInitialBucketCount; idx++) { frequency_.push_back(0); } // Cumulative frequency and ranges has a length of 1 over frequency. max_ = bucket_width_ * GetBucketCount(); } template <class Value> inline size_t Histogram<Value>::GetBucketCount() const { return frequency_.size(); } template <class Value> inline void Histogram<Value>::Reset() { sum_of_squares_ = 0; sample_size_ = 0; min_ = 0; sum_ = 0; min_value_added_ = std::numeric_limits<Value>::max(); max_value_added_ = std::numeric_limits<Value>::min(); frequency_.clear(); Initialize(); } template <class Value> inline Value Histogram<Value>::GetRange(size_t bucket_idx) const { DCHECK_LE(bucket_idx, GetBucketCount()); return min_ + bucket_idx * bucket_width_; } template <class Value> inline double Histogram<Value>::Mean() const { DCHECK_GT(sample_size_, 0ull); return static_cast<double>(sum_) / static_cast<double>(sample_size_); } template <class Value> inline double Histogram<Value>::Variance() const { DCHECK_GT(sample_size_, 0ull); // Using algorithms for calculating variance over a population: // http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance Value sum_squared = sum_ * sum_; double sum_squared_by_n_squared = static_cast<double>(sum_squared) / static_cast<double>(sample_size_ * sample_size_); double sum_of_squares_by_n = static_cast<double>(sum_of_squares_) / static_cast<double>(sample_size_); return sum_of_squares_by_n - sum_squared_by_n_squared; } template <class Value> inline void Histogram<Value>::PrintBins(std::ostream& os, const CumulativeData& data) const { DCHECK_GT(sample_size_, 0ull); for (size_t bin_idx = 0; bin_idx < data.freq_.size(); ++bin_idx) { if (bin_idx > 0 && data.perc_[bin_idx] == data.perc_[bin_idx - 1]) { bin_idx++; continue; } os << GetRange(bin_idx) << ": " << data.freq_[bin_idx] << "\t" << data.perc_[bin_idx] * 100.0 << "%\n"; } } template <class Value> inline void Histogram<Value>::DumpBins(std::ostream& os) const { DCHECK_GT(sample_size_, 0ull); bool dumped_one = false; for (size_t bin_idx = 0; bin_idx < frequency_.size(); ++bin_idx) { if (frequency_[bin_idx] != 0U) { if (dumped_one) { // Prepend a comma if not the first bin. os << ","; } else { dumped_one = true; } os << GetRange(bin_idx) << ":" << frequency_[bin_idx]; } } } template <class Value> inline void Histogram<Value>::PrintConfidenceIntervals(std::ostream &os, double interval, const CumulativeData& data) const { static constexpr size_t kFractionalDigits = 3; DCHECK_GT(interval, 0); DCHECK_LT(interval, 1.0); const double per_0 = (1.0 - interval) / 2.0; const double per_1 = per_0 + interval; const TimeUnit unit = GetAppropriateTimeUnit(Mean() * kAdjust); os << Name() << ":\tSum: " << PrettyDuration(Sum() * kAdjust) << " " << (interval * 100) << "% C.I. " << FormatDuration(Percentile(per_0, data) * kAdjust, unit, kFractionalDigits) << "-" << FormatDuration(Percentile(per_1, data) * kAdjust, unit, kFractionalDigits) << " " << "Avg: " << FormatDuration(Mean() * kAdjust, unit, kFractionalDigits) << " Max: " << FormatDuration(Max() * kAdjust, unit, kFractionalDigits) << std::endl; } template <class Value> inline void Histogram<Value>::PrintMemoryUse(std::ostream &os) const { os << Name(); if (sample_size_ != 0u) { os << ": Avg: " << PrettySize(Mean()) << " Max: " << PrettySize(Max()) << " Min: " << PrettySize(Min()) << "\n"; } else { os << ": <no data>\n"; } } template <class Value> inline void Histogram<Value>::CreateHistogram(CumulativeData* out_data) const { DCHECK_GT(sample_size_, 0ull); out_data->freq_.clear(); out_data->perc_.clear(); uint64_t accumulated = 0; out_data->freq_.push_back(accumulated); out_data->perc_.push_back(0.0); for (size_t idx = 0; idx < frequency_.size(); idx++) { accumulated += frequency_[idx]; out_data->freq_.push_back(accumulated); out_data->perc_.push_back(static_cast<double>(accumulated) / static_cast<double>(sample_size_)); } DCHECK_EQ(out_data->freq_.back(), sample_size_); DCHECK_LE(std::abs(out_data->perc_.back() - 1.0), 0.001); } #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wfloat-equal" template <class Value> inline double Histogram<Value>::Percentile(double per, const CumulativeData& data) const { DCHECK_GT(data.perc_.size(), 0ull); size_t upper_idx = 0, lower_idx = 0; for (size_t idx = 0; idx < data.perc_.size(); idx++) { if (per <= data.perc_[idx]) { upper_idx = idx; break; } if (per >= data.perc_[idx] && idx != 0 && data.perc_[idx] != data.perc_[idx - 1]) { lower_idx = idx; } } const double lower_perc = data.perc_[lower_idx]; const double lower_value = static_cast<double>(GetRange(lower_idx)); if (per == lower_perc) { return lower_value; } const double upper_perc = data.perc_[upper_idx]; const double upper_value = static_cast<double>(GetRange(upper_idx)); if (per == upper_perc) { return upper_value; } DCHECK_GT(upper_perc, lower_perc); double value = lower_value + (upper_value - lower_value) * (per - lower_perc) / (upper_perc - lower_perc); if (value < min_value_added_) { value = min_value_added_; } else if (value > max_value_added_) { value = max_value_added_; } return value; } #pragma clang diagnostic pop } // namespace art #endif // ART_LIBARTBASE_BASE_HISTOGRAM_INL_H_