/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_OPTIMIZING_NODES_H_ #define ART_COMPILER_OPTIMIZING_NODES_H_ #include <algorithm> #include <array> #include <type_traits> #include "base/arena_bit_vector.h" #include "base/arena_containers.h" #include "base/arena_object.h" #include "base/array_ref.h" #include "base/iteration_range.h" #include "base/quasi_atomic.h" #include "base/stl_util.h" #include "base/transform_array_ref.h" #include "data_type.h" #include "deoptimization_kind.h" #include "dex/dex_file.h" #include "dex/dex_file_types.h" #include "dex/invoke_type.h" #include "dex/method_reference.h" #include "entrypoints/quick/quick_entrypoints_enum.h" #include "handle.h" #include "handle_scope.h" #include "intrinsics_enum.h" #include "locations.h" #include "mirror/class.h" #include "offsets.h" #include "utils/intrusive_forward_list.h" namespace art { class ArenaStack; class GraphChecker; class HBasicBlock; class HConstructorFence; class HCurrentMethod; class HDoubleConstant; class HEnvironment; class HFloatConstant; class HGraphBuilder; class HGraphVisitor; class HInstruction; class HIntConstant; class HInvoke; class HLongConstant; class HNullConstant; class HParameterValue; class HPhi; class HSuspendCheck; class HTryBoundary; class LiveInterval; class LocationSummary; class SlowPathCode; class SsaBuilder; namespace mirror { class DexCache; } // namespace mirror static const int kDefaultNumberOfBlocks = 8; static const int kDefaultNumberOfSuccessors = 2; static const int kDefaultNumberOfPredecessors = 2; static const int kDefaultNumberOfExceptionalPredecessors = 0; static const int kDefaultNumberOfDominatedBlocks = 1; static const int kDefaultNumberOfBackEdges = 1; // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation. static constexpr int32_t kMaxIntShiftDistance = 0x1f; // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation. static constexpr int32_t kMaxLongShiftDistance = 0x3f; static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1); static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1); static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1); static constexpr uint32_t kNoDexPc = -1; inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) { // For the purposes of the compiler, the dex files must actually be the same object // if we want to safely treat them as the same. This is especially important for JIT // as custom class loaders can open the same underlying file (or memory) multiple // times and provide different class resolution but no two class loaders should ever // use the same DexFile object - doing so is an unsupported hack that can lead to // all sorts of weird failures. return &lhs == &rhs; } enum IfCondition { // All types. kCondEQ, // == kCondNE, // != // Signed integers and floating-point numbers. kCondLT, // < kCondLE, // <= kCondGT, // > kCondGE, // >= // Unsigned integers. kCondB, // < kCondBE, // <= kCondA, // > kCondAE, // >= // First and last aliases. kCondFirst = kCondEQ, kCondLast = kCondAE, }; enum GraphAnalysisResult { kAnalysisSkipped, kAnalysisInvalidBytecode, kAnalysisFailThrowCatchLoop, kAnalysisFailAmbiguousArrayOp, kAnalysisSuccess, }; template <typename T> static inline typename std::make_unsigned<T>::type MakeUnsigned(T x) { return static_cast<typename std::make_unsigned<T>::type>(x); } class HInstructionList : public ValueObject { public: HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {} void AddInstruction(HInstruction* instruction); void RemoveInstruction(HInstruction* instruction); // Insert `instruction` before/after an existing instruction `cursor`. void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); // Return true if this list contains `instruction`. bool Contains(HInstruction* instruction) const; // Return true if `instruction1` is found before `instruction2` in // this instruction list and false otherwise. Abort if none // of these instructions is found. bool FoundBefore(const HInstruction* instruction1, const HInstruction* instruction2) const; bool IsEmpty() const { return first_instruction_ == nullptr; } void Clear() { first_instruction_ = last_instruction_ = nullptr; } // Update the block of all instructions to be `block`. void SetBlockOfInstructions(HBasicBlock* block) const; void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list); void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list); void Add(const HInstructionList& instruction_list); // Return the number of instructions in the list. This is an expensive operation. size_t CountSize() const; private: HInstruction* first_instruction_; HInstruction* last_instruction_; friend class HBasicBlock; friend class HGraph; friend class HInstruction; friend class HInstructionIterator; friend class HInstructionIteratorHandleChanges; friend class HBackwardInstructionIterator; DISALLOW_COPY_AND_ASSIGN(HInstructionList); }; class ReferenceTypeInfo : ValueObject { public: typedef Handle<mirror::Class> TypeHandle; static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact); static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) { return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes()); } static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) { return ReferenceTypeInfo(type_handle, is_exact); } static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); } static bool IsValidHandle(TypeHandle handle) { return handle.GetReference() != nullptr; } bool IsValid() const { return IsValidHandle(type_handle_); } bool IsExact() const { return is_exact_; } bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsValid()); return GetTypeHandle()->IsObjectClass(); } bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsValid()); return GetTypeHandle()->IsStringClass(); } bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsValid()); return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass(); } bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsValid()); return GetTypeHandle()->IsInterface(); } bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsValid()); return GetTypeHandle()->IsArrayClass(); } bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsValid()); return GetTypeHandle()->IsPrimitiveArray(); } bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsValid()); return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray(); } bool CanArrayHold(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsValid()); if (!IsExact()) return false; if (!IsArrayClass()) return false; return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get()); } bool CanArrayHoldValuesOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsValid()); if (!IsExact()) return false; if (!IsArrayClass()) return false; if (!rti.IsArrayClass()) return false; return GetTypeHandle()->GetComponentType()->IsAssignableFrom( rti.GetTypeHandle()->GetComponentType()); } Handle<mirror::Class> GetTypeHandle() const { return type_handle_; } bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsValid()); DCHECK(rti.IsValid()); return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get()); } bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsValid()); DCHECK(rti.IsValid()); return GetTypeHandle().Get() != rti.GetTypeHandle().Get() && GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get()); } // Returns true if the type information provide the same amount of details. // Note that it does not mean that the instructions have the same actual type // (because the type can be the result of a merge). bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { if (!IsValid() && !rti.IsValid()) { // Invalid types are equal. return true; } if (!IsValid() || !rti.IsValid()) { // One is valid, the other not. return false; } return IsExact() == rti.IsExact() && GetTypeHandle().Get() == rti.GetTypeHandle().Get(); } private: ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {} ReferenceTypeInfo(TypeHandle type_handle, bool is_exact) : type_handle_(type_handle), is_exact_(is_exact) { } // The class of the object. TypeHandle type_handle_; // Whether or not the type is exact or a superclass of the actual type. // Whether or not we have any information about this type. bool is_exact_; }; std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs); // Control-flow graph of a method. Contains a list of basic blocks. class HGraph : public ArenaObject<kArenaAllocGraph> { public: HGraph(ArenaAllocator* allocator, ArenaStack* arena_stack, const DexFile& dex_file, uint32_t method_idx, InstructionSet instruction_set, InvokeType invoke_type = kInvalidInvokeType, bool debuggable = false, bool osr = false, int start_instruction_id = 0) : allocator_(allocator), arena_stack_(arena_stack), blocks_(allocator->Adapter(kArenaAllocBlockList)), reverse_post_order_(allocator->Adapter(kArenaAllocReversePostOrder)), linear_order_(allocator->Adapter(kArenaAllocLinearOrder)), entry_block_(nullptr), exit_block_(nullptr), maximum_number_of_out_vregs_(0), number_of_vregs_(0), number_of_in_vregs_(0), temporaries_vreg_slots_(0), has_bounds_checks_(false), has_try_catch_(false), has_simd_(false), has_loops_(false), has_irreducible_loops_(false), debuggable_(debuggable), current_instruction_id_(start_instruction_id), dex_file_(dex_file), method_idx_(method_idx), invoke_type_(invoke_type), in_ssa_form_(false), number_of_cha_guards_(0), instruction_set_(instruction_set), cached_null_constant_(nullptr), cached_int_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)), cached_float_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)), cached_long_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)), cached_double_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)), cached_current_method_(nullptr), art_method_(nullptr), inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()), osr_(osr), cha_single_implementation_list_(allocator->Adapter(kArenaAllocCHA)) { blocks_.reserve(kDefaultNumberOfBlocks); } // Acquires and stores RTI of inexact Object to be used when creating HNullConstant. void InitializeInexactObjectRTI(VariableSizedHandleScope* handles); ArenaAllocator* GetAllocator() const { return allocator_; } ArenaStack* GetArenaStack() const { return arena_stack_; } const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; } bool IsInSsaForm() const { return in_ssa_form_; } void SetInSsaForm() { in_ssa_form_ = true; } HBasicBlock* GetEntryBlock() const { return entry_block_; } HBasicBlock* GetExitBlock() const { return exit_block_; } bool HasExitBlock() const { return exit_block_ != nullptr; } void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; } void SetExitBlock(HBasicBlock* block) { exit_block_ = block; } void AddBlock(HBasicBlock* block); void ComputeDominanceInformation(); void ClearDominanceInformation(); void ClearLoopInformation(); void FindBackEdges(ArenaBitVector* visited); GraphAnalysisResult BuildDominatorTree(); void SimplifyCFG(); void SimplifyCatchBlocks(); // Analyze all natural loops in this graph. Returns a code specifying that it // was successful or the reason for failure. The method will fail if a loop // is a throw-catch loop, i.e. the header is a catch block. GraphAnalysisResult AnalyzeLoops() const; // Iterate over blocks to compute try block membership. Needs reverse post // order and loop information. void ComputeTryBlockInformation(); // Inline this graph in `outer_graph`, replacing the given `invoke` instruction. // Returns the instruction to replace the invoke expression or null if the // invoke is for a void method. Note that the caller is responsible for replacing // and removing the invoke instruction. HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke); // Update the loop and try membership of `block`, which was spawned from `reference`. // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block` // should be the new back edge. void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block, HBasicBlock* reference, bool replace_if_back_edge); // Need to add a couple of blocks to test if the loop body is entered and // put deoptimization instructions, etc. void TransformLoopHeaderForBCE(HBasicBlock* header); // Adds a new loop directly after the loop with the given header and exit. // Returns the new preheader. HBasicBlock* TransformLoopForVectorization(HBasicBlock* header, HBasicBlock* body, HBasicBlock* exit); // Removes `block` from the graph. Assumes `block` has been disconnected from // other blocks and has no instructions or phis. void DeleteDeadEmptyBlock(HBasicBlock* block); // Splits the edge between `block` and `successor` while preserving the // indices in the predecessor/successor lists. If there are multiple edges // between the blocks, the lowest indices are used. // Returns the new block which is empty and has the same dex pc as `successor`. HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor); void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor); void OrderLoopHeaderPredecessors(HBasicBlock* header); // Transform a loop into a format with a single preheader. // // Each phi in the header should be split: original one in the header should only hold // inputs reachable from the back edges and a single input from the preheader. The newly created // phi in the preheader should collate the inputs from the original multiple incoming blocks. // // Loops in the graph typically have a single preheader, so this method is used to "repair" loops // that no longer have this property. void TransformLoopToSinglePreheaderFormat(HBasicBlock* header); void SimplifyLoop(HBasicBlock* header); int32_t GetNextInstructionId() { CHECK_NE(current_instruction_id_, INT32_MAX); return current_instruction_id_++; } int32_t GetCurrentInstructionId() const { return current_instruction_id_; } void SetCurrentInstructionId(int32_t id) { CHECK_GE(id, current_instruction_id_); current_instruction_id_ = id; } uint16_t GetMaximumNumberOfOutVRegs() const { return maximum_number_of_out_vregs_; } void SetMaximumNumberOfOutVRegs(uint16_t new_value) { maximum_number_of_out_vregs_ = new_value; } void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) { maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value); } void UpdateTemporariesVRegSlots(size_t slots) { temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_); } size_t GetTemporariesVRegSlots() const { DCHECK(!in_ssa_form_); return temporaries_vreg_slots_; } void SetNumberOfVRegs(uint16_t number_of_vregs) { number_of_vregs_ = number_of_vregs; } uint16_t GetNumberOfVRegs() const { return number_of_vregs_; } void SetNumberOfInVRegs(uint16_t value) { number_of_in_vregs_ = value; } uint16_t GetNumberOfInVRegs() const { return number_of_in_vregs_; } uint16_t GetNumberOfLocalVRegs() const { DCHECK(!in_ssa_form_); return number_of_vregs_ - number_of_in_vregs_; } const ArenaVector<HBasicBlock*>& GetReversePostOrder() const { return reverse_post_order_; } ArrayRef<HBasicBlock* const> GetReversePostOrderSkipEntryBlock() { DCHECK(GetReversePostOrder()[0] == entry_block_); return ArrayRef<HBasicBlock* const>(GetReversePostOrder()).SubArray(1); } IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetPostOrder() const { return ReverseRange(GetReversePostOrder()); } const ArenaVector<HBasicBlock*>& GetLinearOrder() const { return linear_order_; } IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetLinearPostOrder() const { return ReverseRange(GetLinearOrder()); } bool HasBoundsChecks() const { return has_bounds_checks_; } void SetHasBoundsChecks(bool value) { has_bounds_checks_ = value; } bool IsDebuggable() const { return debuggable_; } // Returns a constant of the given type and value. If it does not exist // already, it is created and inserted into the graph. This method is only for // integral types. HConstant* GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc = kNoDexPc); // TODO: This is problematic for the consistency of reference type propagation // because it can be created anytime after the pass and thus it will be left // with an invalid type. HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc); HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) { return CreateConstant(value, &cached_int_constants_, dex_pc); } HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) { return CreateConstant(value, &cached_long_constants_, dex_pc); } HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) { return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc); } HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) { return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc); } HCurrentMethod* GetCurrentMethod(); const DexFile& GetDexFile() const { return dex_file_; } uint32_t GetMethodIdx() const { return method_idx_; } // Get the method name (without the signature), e.g. "<init>" const char* GetMethodName() const; // Get the pretty method name (class + name + optionally signature). std::string PrettyMethod(bool with_signature = true) const; InvokeType GetInvokeType() const { return invoke_type_; } InstructionSet GetInstructionSet() const { return instruction_set_; } bool IsCompilingOsr() const { return osr_; } ArenaSet<ArtMethod*>& GetCHASingleImplementationList() { return cha_single_implementation_list_; } void AddCHASingleImplementationDependency(ArtMethod* method) { cha_single_implementation_list_.insert(method); } bool HasShouldDeoptimizeFlag() const { return number_of_cha_guards_ != 0; } bool HasTryCatch() const { return has_try_catch_; } void SetHasTryCatch(bool value) { has_try_catch_ = value; } bool HasSIMD() const { return has_simd_; } void SetHasSIMD(bool value) { has_simd_ = value; } bool HasLoops() const { return has_loops_; } void SetHasLoops(bool value) { has_loops_ = value; } bool HasIrreducibleLoops() const { return has_irreducible_loops_; } void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; } ArtMethod* GetArtMethod() const { return art_method_; } void SetArtMethod(ArtMethod* method) { art_method_ = method; } // Returns an instruction with the opposite Boolean value from 'cond'. // The instruction has been inserted into the graph, either as a constant, or // before cursor. HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor); ReferenceTypeInfo GetInexactObjectRti() const { return inexact_object_rti_; } uint32_t GetNumberOfCHAGuards() { return number_of_cha_guards_; } void SetNumberOfCHAGuards(uint32_t num) { number_of_cha_guards_ = num; } void IncrementNumberOfCHAGuards() { number_of_cha_guards_++; } private: void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const; void RemoveDeadBlocks(const ArenaBitVector& visited); template <class InstructionType, typename ValueType> InstructionType* CreateConstant(ValueType value, ArenaSafeMap<ValueType, InstructionType*>* cache, uint32_t dex_pc = kNoDexPc) { // Try to find an existing constant of the given value. InstructionType* constant = nullptr; auto cached_constant = cache->find(value); if (cached_constant != cache->end()) { constant = cached_constant->second; } // If not found or previously deleted, create and cache a new instruction. // Don't bother reviving a previously deleted instruction, for simplicity. if (constant == nullptr || constant->GetBlock() == nullptr) { constant = new (allocator_) InstructionType(value, dex_pc); cache->Overwrite(value, constant); InsertConstant(constant); } return constant; } void InsertConstant(HConstant* instruction); // Cache a float constant into the graph. This method should only be // called by the SsaBuilder when creating "equivalent" instructions. void CacheFloatConstant(HFloatConstant* constant); // See CacheFloatConstant comment. void CacheDoubleConstant(HDoubleConstant* constant); ArenaAllocator* const allocator_; ArenaStack* const arena_stack_; // List of blocks in insertion order. ArenaVector<HBasicBlock*> blocks_; // List of blocks to perform a reverse post order tree traversal. ArenaVector<HBasicBlock*> reverse_post_order_; // List of blocks to perform a linear order tree traversal. Unlike the reverse // post order, this order is not incrementally kept up-to-date. ArenaVector<HBasicBlock*> linear_order_; HBasicBlock* entry_block_; HBasicBlock* exit_block_; // The maximum number of virtual registers arguments passed to a HInvoke in this graph. uint16_t maximum_number_of_out_vregs_; // The number of virtual registers in this method. Contains the parameters. uint16_t number_of_vregs_; // The number of virtual registers used by parameters of this method. uint16_t number_of_in_vregs_; // Number of vreg size slots that the temporaries use (used in baseline compiler). size_t temporaries_vreg_slots_; // Flag whether there are bounds checks in the graph. We can skip // BCE if it's false. It's only best effort to keep it up to date in // the presence of code elimination so there might be false positives. bool has_bounds_checks_; // Flag whether there are try/catch blocks in the graph. We will skip // try/catch-related passes if it's false. It's only best effort to keep // it up to date in the presence of code elimination so there might be // false positives. bool has_try_catch_; // Flag whether SIMD instructions appear in the graph. If true, the // code generators may have to be more careful spilling the wider // contents of SIMD registers. bool has_simd_; // Flag whether there are any loops in the graph. We can skip loop // optimization if it's false. It's only best effort to keep it up // to date in the presence of code elimination so there might be false // positives. bool has_loops_; // Flag whether there are any irreducible loops in the graph. It's only // best effort to keep it up to date in the presence of code elimination // so there might be false positives. bool has_irreducible_loops_; // Indicates whether the graph should be compiled in a way that // ensures full debuggability. If false, we can apply more // aggressive optimizations that may limit the level of debugging. const bool debuggable_; // The current id to assign to a newly added instruction. See HInstruction.id_. int32_t current_instruction_id_; // The dex file from which the method is from. const DexFile& dex_file_; // The method index in the dex file. const uint32_t method_idx_; // If inlined, this encodes how the callee is being invoked. const InvokeType invoke_type_; // Whether the graph has been transformed to SSA form. Only used // in debug mode to ensure we are not using properties only valid // for non-SSA form (like the number of temporaries). bool in_ssa_form_; // Number of CHA guards in the graph. Used to short-circuit the // CHA guard optimization pass when there is no CHA guard left. uint32_t number_of_cha_guards_; const InstructionSet instruction_set_; // Cached constants. HNullConstant* cached_null_constant_; ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_; ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_; ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_; ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_; HCurrentMethod* cached_current_method_; // The ArtMethod this graph is for. Note that for AOT, it may be null, // for example for methods whose declaring class could not be resolved // (such as when the superclass could not be found). ArtMethod* art_method_; // Keep the RTI of inexact Object to avoid having to pass stack handle // collection pointer to passes which may create NullConstant. ReferenceTypeInfo inexact_object_rti_; // Whether we are compiling this graph for on stack replacement: this will // make all loops seen as irreducible and emit special stack maps to mark // compiled code entries which the interpreter can directly jump to. const bool osr_; // List of methods that are assumed to have single implementation. ArenaSet<ArtMethod*> cha_single_implementation_list_; friend class SsaBuilder; // For caching constants. friend class SsaLivenessAnalysis; // For the linear order. friend class HInliner; // For the reverse post order. ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1); DISALLOW_COPY_AND_ASSIGN(HGraph); }; class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> { public: HLoopInformation(HBasicBlock* header, HGraph* graph) : header_(header), suspend_check_(nullptr), irreducible_(false), contains_irreducible_loop_(false), back_edges_(graph->GetAllocator()->Adapter(kArenaAllocLoopInfoBackEdges)), // Make bit vector growable, as the number of blocks may change. blocks_(graph->GetAllocator(), graph->GetBlocks().size(), true, kArenaAllocLoopInfoBackEdges) { back_edges_.reserve(kDefaultNumberOfBackEdges); } bool IsIrreducible() const { return irreducible_; } bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; } void Dump(std::ostream& os); HBasicBlock* GetHeader() const { return header_; } void SetHeader(HBasicBlock* block) { header_ = block; } HSuspendCheck* GetSuspendCheck() const { return suspend_check_; } void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; } bool HasSuspendCheck() const { return suspend_check_ != nullptr; } void AddBackEdge(HBasicBlock* back_edge) { back_edges_.push_back(back_edge); } void RemoveBackEdge(HBasicBlock* back_edge) { RemoveElement(back_edges_, back_edge); } bool IsBackEdge(const HBasicBlock& block) const { return ContainsElement(back_edges_, &block); } size_t NumberOfBackEdges() const { return back_edges_.size(); } HBasicBlock* GetPreHeader() const; const ArenaVector<HBasicBlock*>& GetBackEdges() const { return back_edges_; } // Returns the lifetime position of the back edge that has the // greatest lifetime position. size_t GetLifetimeEnd() const; void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) { ReplaceElement(back_edges_, existing, new_back_edge); } // Finds blocks that are part of this loop. void Populate(); // Updates blocks population of the loop and all of its outer' ones recursively after the // population of the inner loop is updated. void PopulateInnerLoopUpwards(HLoopInformation* inner_loop); // Returns whether this loop information contains `block`. // Note that this loop information *must* be populated before entering this function. bool Contains(const HBasicBlock& block) const; // Returns whether this loop information is an inner loop of `other`. // Note that `other` *must* be populated before entering this function. bool IsIn(const HLoopInformation& other) const; // Returns true if instruction is not defined within this loop. bool IsDefinedOutOfTheLoop(HInstruction* instruction) const; const ArenaBitVector& GetBlocks() const { return blocks_; } void Add(HBasicBlock* block); void Remove(HBasicBlock* block); void ClearAllBlocks() { blocks_.ClearAllBits(); } bool HasBackEdgeNotDominatedByHeader() const; bool IsPopulated() const { return blocks_.GetHighestBitSet() != -1; } bool DominatesAllBackEdges(HBasicBlock* block); bool HasExitEdge() const; // Resets back edge and blocks-in-loop data. void ResetBasicBlockData() { back_edges_.clear(); ClearAllBlocks(); } private: // Internal recursive implementation of `Populate`. void PopulateRecursive(HBasicBlock* block); void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized); HBasicBlock* header_; HSuspendCheck* suspend_check_; bool irreducible_; bool contains_irreducible_loop_; ArenaVector<HBasicBlock*> back_edges_; ArenaBitVector blocks_; DISALLOW_COPY_AND_ASSIGN(HLoopInformation); }; // Stores try/catch information for basic blocks. // Note that HGraph is constructed so that catch blocks cannot simultaneously // be try blocks. class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> { public: // Try block information constructor. explicit TryCatchInformation(const HTryBoundary& try_entry) : try_entry_(&try_entry), catch_dex_file_(nullptr), catch_type_index_(DexFile::kDexNoIndex16) { DCHECK(try_entry_ != nullptr); } // Catch block information constructor. TryCatchInformation(dex::TypeIndex catch_type_index, const DexFile& dex_file) : try_entry_(nullptr), catch_dex_file_(&dex_file), catch_type_index_(catch_type_index) {} bool IsTryBlock() const { return try_entry_ != nullptr; } const HTryBoundary& GetTryEntry() const { DCHECK(IsTryBlock()); return *try_entry_; } bool IsCatchBlock() const { return catch_dex_file_ != nullptr; } bool IsCatchAllTypeIndex() const { DCHECK(IsCatchBlock()); return !catch_type_index_.IsValid(); } dex::TypeIndex GetCatchTypeIndex() const { DCHECK(IsCatchBlock()); return catch_type_index_; } const DexFile& GetCatchDexFile() const { DCHECK(IsCatchBlock()); return *catch_dex_file_; } private: // One of possibly several TryBoundary instructions entering the block's try. // Only set for try blocks. const HTryBoundary* try_entry_; // Exception type information. Only set for catch blocks. const DexFile* catch_dex_file_; const dex::TypeIndex catch_type_index_; }; static constexpr size_t kNoLifetime = -1; static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1); // A block in a method. Contains the list of instructions represented // as a double linked list. Each block knows its predecessors and // successors. class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> { public: explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc) : graph_(graph), predecessors_(graph->GetAllocator()->Adapter(kArenaAllocPredecessors)), successors_(graph->GetAllocator()->Adapter(kArenaAllocSuccessors)), loop_information_(nullptr), dominator_(nullptr), dominated_blocks_(graph->GetAllocator()->Adapter(kArenaAllocDominated)), block_id_(kInvalidBlockId), dex_pc_(dex_pc), lifetime_start_(kNoLifetime), lifetime_end_(kNoLifetime), try_catch_information_(nullptr) { predecessors_.reserve(kDefaultNumberOfPredecessors); successors_.reserve(kDefaultNumberOfSuccessors); dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks); } const ArenaVector<HBasicBlock*>& GetPredecessors() const { return predecessors_; } const ArenaVector<HBasicBlock*>& GetSuccessors() const { return successors_; } ArrayRef<HBasicBlock* const> GetNormalSuccessors() const; ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const; bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) { return ContainsElement(successors_, block, start_from); } const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const { return dominated_blocks_; } bool IsEntryBlock() const { return graph_->GetEntryBlock() == this; } bool IsExitBlock() const { return graph_->GetExitBlock() == this; } bool IsSingleGoto() const; bool IsSingleReturn() const; bool IsSingleReturnOrReturnVoidAllowingPhis() const; bool IsSingleTryBoundary() const; // Returns true if this block emits nothing but a jump. bool IsSingleJump() const { HLoopInformation* loop_info = GetLoopInformation(); return (IsSingleGoto() || IsSingleTryBoundary()) // Back edges generate a suspend check. && (loop_info == nullptr || !loop_info->IsBackEdge(*this)); } void AddBackEdge(HBasicBlock* back_edge) { if (loop_information_ == nullptr) { loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_); } DCHECK_EQ(loop_information_->GetHeader(), this); loop_information_->AddBackEdge(back_edge); } // Registers a back edge; if the block was not a loop header before the call associates a newly // created loop info with it. // // Used in SuperblockCloner to preserve LoopInformation object instead of reseting loop // info for all blocks during back edges recalculation. void AddBackEdgeWhileUpdating(HBasicBlock* back_edge) { if (loop_information_ == nullptr || loop_information_->GetHeader() != this) { loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_); } loop_information_->AddBackEdge(back_edge); } HGraph* GetGraph() const { return graph_; } void SetGraph(HGraph* graph) { graph_ = graph; } uint32_t GetBlockId() const { return block_id_; } void SetBlockId(int id) { block_id_ = id; } uint32_t GetDexPc() const { return dex_pc_; } HBasicBlock* GetDominator() const { return dominator_; } void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; } void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); } void RemoveDominatedBlock(HBasicBlock* block) { RemoveElement(dominated_blocks_, block); } void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) { ReplaceElement(dominated_blocks_, existing, new_block); } void ClearDominanceInformation(); int NumberOfBackEdges() const { return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0; } HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; } HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; } const HInstructionList& GetInstructions() const { return instructions_; } HInstruction* GetFirstPhi() const { return phis_.first_instruction_; } HInstruction* GetLastPhi() const { return phis_.last_instruction_; } const HInstructionList& GetPhis() const { return phis_; } HInstruction* GetFirstInstructionDisregardMoves() const; void AddSuccessor(HBasicBlock* block) { successors_.push_back(block); block->predecessors_.push_back(this); } void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) { size_t successor_index = GetSuccessorIndexOf(existing); existing->RemovePredecessor(this); new_block->predecessors_.push_back(this); successors_[successor_index] = new_block; } void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) { size_t predecessor_index = GetPredecessorIndexOf(existing); existing->RemoveSuccessor(this); new_block->successors_.push_back(this); predecessors_[predecessor_index] = new_block; } // Insert `this` between `predecessor` and `successor. This method // preserves the indicies, and will update the first edge found between // `predecessor` and `successor`. void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) { size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor); size_t successor_index = predecessor->GetSuccessorIndexOf(successor); successor->predecessors_[predecessor_index] = this; predecessor->successors_[successor_index] = this; successors_.push_back(successor); predecessors_.push_back(predecessor); } void RemovePredecessor(HBasicBlock* block) { predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block)); } void RemoveSuccessor(HBasicBlock* block) { successors_.erase(successors_.begin() + GetSuccessorIndexOf(block)); } void ClearAllPredecessors() { predecessors_.clear(); } void AddPredecessor(HBasicBlock* block) { predecessors_.push_back(block); block->successors_.push_back(this); } void SwapPredecessors() { DCHECK_EQ(predecessors_.size(), 2u); std::swap(predecessors_[0], predecessors_[1]); } void SwapSuccessors() { DCHECK_EQ(successors_.size(), 2u); std::swap(successors_[0], successors_[1]); } size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const { return IndexOfElement(predecessors_, predecessor); } size_t GetSuccessorIndexOf(HBasicBlock* successor) const { return IndexOfElement(successors_, successor); } HBasicBlock* GetSinglePredecessor() const { DCHECK_EQ(GetPredecessors().size(), 1u); return GetPredecessors()[0]; } HBasicBlock* GetSingleSuccessor() const { DCHECK_EQ(GetSuccessors().size(), 1u); return GetSuccessors()[0]; } // Returns whether the first occurrence of `predecessor` in the list of // predecessors is at index `idx`. bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const { DCHECK_EQ(GetPredecessors()[idx], predecessor); return GetPredecessorIndexOf(predecessor) == idx; } // Create a new block between this block and its predecessors. The new block // is added to the graph, all predecessor edges are relinked to it and an edge // is created to `this`. Returns the new empty block. Reverse post order or // loop and try/catch information are not updated. HBasicBlock* CreateImmediateDominator(); // Split the block into two blocks just before `cursor`. Returns the newly // created, latter block. Note that this method will add the block to the // graph, create a Goto at the end of the former block and will create an edge // between the blocks. It will not, however, update the reverse post order or // loop and try/catch information. HBasicBlock* SplitBefore(HInstruction* cursor); // Split the block into two blocks just before `cursor`. Returns the newly // created block. Note that this method just updates raw block information, // like predecessors, successors, dominators, and instruction list. It does not // update the graph, reverse post order, loop information, nor make sure the // blocks are consistent (for example ending with a control flow instruction). HBasicBlock* SplitBeforeForInlining(HInstruction* cursor); // Similar to `SplitBeforeForInlining` but does it after `cursor`. HBasicBlock* SplitAfterForInlining(HInstruction* cursor); // Merge `other` at the end of `this`. Successors and dominated blocks of // `other` are changed to be successors and dominated blocks of `this`. Note // that this method does not update the graph, reverse post order, loop // information, nor make sure the blocks are consistent (for example ending // with a control flow instruction). void MergeWithInlined(HBasicBlock* other); // Replace `this` with `other`. Predecessors, successors, and dominated blocks // of `this` are moved to `other`. // Note that this method does not update the graph, reverse post order, loop // information, nor make sure the blocks are consistent (for example ending // with a control flow instruction). void ReplaceWith(HBasicBlock* other); // Merges the instructions of `other` at the end of `this`. void MergeInstructionsWith(HBasicBlock* other); // Merge `other` at the end of `this`. This method updates loops, reverse post // order, links to predecessors, successors, dominators and deletes the block // from the graph. The two blocks must be successive, i.e. `this` the only // predecessor of `other` and vice versa. void MergeWith(HBasicBlock* other); // Disconnects `this` from all its predecessors, successors and dominator, // removes it from all loops it is included in and eventually from the graph. // The block must not dominate any other block. Predecessors and successors // are safely updated. void DisconnectAndDelete(); void AddInstruction(HInstruction* instruction); // Insert `instruction` before/after an existing instruction `cursor`. void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); // Replace phi `initial` with `replacement` within this block. void ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement); // Replace instruction `initial` with `replacement` within this block. void ReplaceAndRemoveInstructionWith(HInstruction* initial, HInstruction* replacement); void AddPhi(HPhi* phi); void InsertPhiAfter(HPhi* instruction, HPhi* cursor); // RemoveInstruction and RemovePhi delete a given instruction from the respective // instruction list. With 'ensure_safety' set to true, it verifies that the // instruction is not in use and removes it from the use lists of its inputs. void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true); void RemovePhi(HPhi* phi, bool ensure_safety = true); void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true); bool IsLoopHeader() const { return IsInLoop() && (loop_information_->GetHeader() == this); } bool IsLoopPreHeaderFirstPredecessor() const { DCHECK(IsLoopHeader()); return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader(); } bool IsFirstPredecessorBackEdge() const { DCHECK(IsLoopHeader()); return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]); } HLoopInformation* GetLoopInformation() const { return loop_information_; } // Set the loop_information_ on this block. Overrides the current // loop_information if it is an outer loop of the passed loop information. // Note that this method is called while creating the loop information. void SetInLoop(HLoopInformation* info) { if (IsLoopHeader()) { // Nothing to do. This just means `info` is an outer loop. } else if (!IsInLoop()) { loop_information_ = info; } else if (loop_information_->Contains(*info->GetHeader())) { // Block is currently part of an outer loop. Make it part of this inner loop. // Note that a non loop header having a loop information means this loop information // has already been populated loop_information_ = info; } else { // Block is part of an inner loop. Do not update the loop information. // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()` // at this point, because this method is being called while populating `info`. } } // Raw update of the loop information. void SetLoopInformation(HLoopInformation* info) { loop_information_ = info; } bool IsInLoop() const { return loop_information_ != nullptr; } TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; } void SetTryCatchInformation(TryCatchInformation* try_catch_information) { try_catch_information_ = try_catch_information; } bool IsTryBlock() const { return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock(); } bool IsCatchBlock() const { return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock(); } // Returns the try entry that this block's successors should have. They will // be in the same try, unless the block ends in a try boundary. In that case, // the appropriate try entry will be returned. const HTryBoundary* ComputeTryEntryOfSuccessors() const; bool HasThrowingInstructions() const; // Returns whether this block dominates the blocked passed as parameter. bool Dominates(HBasicBlock* block) const; size_t GetLifetimeStart() const { return lifetime_start_; } size_t GetLifetimeEnd() const { return lifetime_end_; } void SetLifetimeStart(size_t start) { lifetime_start_ = start; } void SetLifetimeEnd(size_t end) { lifetime_end_ = end; } bool EndsWithControlFlowInstruction() const; bool EndsWithIf() const; bool EndsWithTryBoundary() const; bool HasSinglePhi() const; private: HGraph* graph_; ArenaVector<HBasicBlock*> predecessors_; ArenaVector<HBasicBlock*> successors_; HInstructionList instructions_; HInstructionList phis_; HLoopInformation* loop_information_; HBasicBlock* dominator_; ArenaVector<HBasicBlock*> dominated_blocks_; uint32_t block_id_; // The dex program counter of the first instruction of this block. const uint32_t dex_pc_; size_t lifetime_start_; size_t lifetime_end_; TryCatchInformation* try_catch_information_; friend class HGraph; friend class HInstruction; DISALLOW_COPY_AND_ASSIGN(HBasicBlock); }; // Iterates over the LoopInformation of all loops which contain 'block' // from the innermost to the outermost. class HLoopInformationOutwardIterator : public ValueObject { public: explicit HLoopInformationOutwardIterator(const HBasicBlock& block) : current_(block.GetLoopInformation()) {} bool Done() const { return current_ == nullptr; } void Advance() { DCHECK(!Done()); current_ = current_->GetPreHeader()->GetLoopInformation(); } HLoopInformation* Current() const { DCHECK(!Done()); return current_; } private: HLoopInformation* current_; DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator); }; #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \ M(Above, Condition) \ M(AboveOrEqual, Condition) \ M(Add, BinaryOperation) \ M(And, BinaryOperation) \ M(ArrayGet, Instruction) \ M(ArrayLength, Instruction) \ M(ArraySet, Instruction) \ M(Below, Condition) \ M(BelowOrEqual, Condition) \ M(BooleanNot, UnaryOperation) \ M(BoundsCheck, Instruction) \ M(BoundType, Instruction) \ M(CheckCast, Instruction) \ M(ClassTableGet, Instruction) \ M(ClearException, Instruction) \ M(ClinitCheck, Instruction) \ M(Compare, BinaryOperation) \ M(ConstructorFence, Instruction) \ M(CurrentMethod, Instruction) \ M(ShouldDeoptimizeFlag, Instruction) \ M(Deoptimize, Instruction) \ M(Div, BinaryOperation) \ M(DivZeroCheck, Instruction) \ M(DoubleConstant, Constant) \ M(Equal, Condition) \ M(Exit, Instruction) \ M(FloatConstant, Constant) \ M(Goto, Instruction) \ M(GreaterThan, Condition) \ M(GreaterThanOrEqual, Condition) \ M(If, Instruction) \ M(InstanceFieldGet, Instruction) \ M(InstanceFieldSet, Instruction) \ M(InstanceOf, Instruction) \ M(IntConstant, Constant) \ M(IntermediateAddress, Instruction) \ M(InvokeUnresolved, Invoke) \ M(InvokeInterface, Invoke) \ M(InvokeStaticOrDirect, Invoke) \ M(InvokeVirtual, Invoke) \ M(InvokePolymorphic, Invoke) \ M(LessThan, Condition) \ M(LessThanOrEqual, Condition) \ M(LoadClass, Instruction) \ M(LoadException, Instruction) \ M(LoadString, Instruction) \ M(LongConstant, Constant) \ M(MemoryBarrier, Instruction) \ M(MonitorOperation, Instruction) \ M(Mul, BinaryOperation) \ M(NativeDebugInfo, Instruction) \ M(Neg, UnaryOperation) \ M(NewArray, Instruction) \ M(NewInstance, Instruction) \ M(Not, UnaryOperation) \ M(NotEqual, Condition) \ M(NullConstant, Instruction) \ M(NullCheck, Instruction) \ M(Or, BinaryOperation) \ M(PackedSwitch, Instruction) \ M(ParallelMove, Instruction) \ M(ParameterValue, Instruction) \ M(Phi, Instruction) \ M(Rem, BinaryOperation) \ M(Return, Instruction) \ M(ReturnVoid, Instruction) \ M(Ror, BinaryOperation) \ M(Shl, BinaryOperation) \ M(Shr, BinaryOperation) \ M(StaticFieldGet, Instruction) \ M(StaticFieldSet, Instruction) \ M(UnresolvedInstanceFieldGet, Instruction) \ M(UnresolvedInstanceFieldSet, Instruction) \ M(UnresolvedStaticFieldGet, Instruction) \ M(UnresolvedStaticFieldSet, Instruction) \ M(Select, Instruction) \ M(Sub, BinaryOperation) \ M(SuspendCheck, Instruction) \ M(Throw, Instruction) \ M(TryBoundary, Instruction) \ M(TypeConversion, Instruction) \ M(UShr, BinaryOperation) \ M(Xor, BinaryOperation) \ M(VecReplicateScalar, VecUnaryOperation) \ M(VecExtractScalar, VecUnaryOperation) \ M(VecReduce, VecUnaryOperation) \ M(VecCnv, VecUnaryOperation) \ M(VecNeg, VecUnaryOperation) \ M(VecAbs, VecUnaryOperation) \ M(VecNot, VecUnaryOperation) \ M(VecAdd, VecBinaryOperation) \ M(VecHalvingAdd, VecBinaryOperation) \ M(VecSub, VecBinaryOperation) \ M(VecMul, VecBinaryOperation) \ M(VecDiv, VecBinaryOperation) \ M(VecMin, VecBinaryOperation) \ M(VecMax, VecBinaryOperation) \ M(VecAnd, VecBinaryOperation) \ M(VecAndNot, VecBinaryOperation) \ M(VecOr, VecBinaryOperation) \ M(VecXor, VecBinaryOperation) \ M(VecShl, VecBinaryOperation) \ M(VecShr, VecBinaryOperation) \ M(VecUShr, VecBinaryOperation) \ M(VecSetScalars, VecOperation) \ M(VecMultiplyAccumulate, VecOperation) \ M(VecSADAccumulate, VecOperation) \ M(VecLoad, VecMemoryOperation) \ M(VecStore, VecMemoryOperation) \ /* * Instructions, shared across several (not all) architectures. */ #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64) #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) #else #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \ M(BitwiseNegatedRight, Instruction) \ M(DataProcWithShifterOp, Instruction) \ M(MultiplyAccumulate, Instruction) \ M(IntermediateAddressIndex, Instruction) #endif #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) #ifndef ART_ENABLE_CODEGEN_mips #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) #else #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) \ M(MipsComputeBaseMethodAddress, Instruction) \ M(MipsPackedSwitch, Instruction) \ M(IntermediateArrayAddressIndex, Instruction) #endif #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M) #ifndef ART_ENABLE_CODEGEN_x86 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) #else #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \ M(X86ComputeBaseMethodAddress, Instruction) \ M(X86LoadFromConstantTable, Instruction) \ M(X86FPNeg, Instruction) \ M(X86PackedSwitch, Instruction) #endif #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) #define FOR_EACH_CONCRETE_INSTRUCTION(M) \ FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \ FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \ FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \ FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \ FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) \ FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M) \ FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \ FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) #define FOR_EACH_ABSTRACT_INSTRUCTION(M) \ M(Condition, BinaryOperation) \ M(Constant, Instruction) \ M(UnaryOperation, Instruction) \ M(BinaryOperation, Instruction) \ M(Invoke, Instruction) \ M(VecOperation, Instruction) \ M(VecUnaryOperation, VecOperation) \ M(VecBinaryOperation, VecOperation) \ M(VecMemoryOperation, VecOperation) #define FOR_EACH_INSTRUCTION(M) \ FOR_EACH_CONCRETE_INSTRUCTION(M) \ FOR_EACH_ABSTRACT_INSTRUCTION(M) #define FORWARD_DECLARATION(type, super) class H##type; FOR_EACH_INSTRUCTION(FORWARD_DECLARATION) #undef FORWARD_DECLARATION #define DECLARE_INSTRUCTION(type) \ private: \ H##type& operator=(const H##type&) = delete; \ public: \ const char* DebugName() const OVERRIDE { return #type; } \ bool InstructionTypeEquals(const HInstruction* other) const OVERRIDE { \ return other->Is##type(); \ } \ HInstruction* Clone(ArenaAllocator* arena) const OVERRIDE { \ DCHECK(IsClonable()); \ return new (arena) H##type(*this->As##type()); \ } \ void Accept(HGraphVisitor* visitor) OVERRIDE #define DECLARE_ABSTRACT_INSTRUCTION(type) \ private: \ H##type& operator=(const H##type&) = delete; \ public: \ bool Is##type() const { return As##type() != nullptr; } \ const H##type* As##type() const { return this; } \ H##type* As##type() { return this; } #define DEFAULT_COPY_CONSTRUCTOR(type) \ explicit H##type(const H##type& other) = default; template <typename T> class HUseListNode : public ArenaObject<kArenaAllocUseListNode>, public IntrusiveForwardListNode<HUseListNode<T>> { public: // Get the instruction which has this use as one of the inputs. T GetUser() const { return user_; } // Get the position of the input record that this use corresponds to. size_t GetIndex() const { return index_; } // Set the position of the input record that this use corresponds to. void SetIndex(size_t index) { index_ = index; } private: HUseListNode(T user, size_t index) : user_(user), index_(index) {} T const user_; size_t index_; friend class HInstruction; DISALLOW_COPY_AND_ASSIGN(HUseListNode); }; template <typename T> using HUseList = IntrusiveForwardList<HUseListNode<T>>; // This class is used by HEnvironment and HInstruction classes to record the // instructions they use and pointers to the corresponding HUseListNodes kept // by the used instructions. template <typename T> class HUserRecord : public ValueObject { public: HUserRecord() : instruction_(nullptr), before_use_node_() {} explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {} HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node) : HUserRecord(old_record.instruction_, before_use_node) {} HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node) : instruction_(instruction), before_use_node_(before_use_node) { DCHECK(instruction_ != nullptr); } HInstruction* GetInstruction() const { return instruction_; } typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; } typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); } private: // Instruction used by the user. HInstruction* instruction_; // Iterator before the corresponding entry in the use list kept by 'instruction_'. typename HUseList<T>::iterator before_use_node_; }; // Helper class that extracts the input instruction from HUserRecord<HInstruction*>. // This is used for HInstruction::GetInputs() to return a container wrapper providing // HInstruction* values even though the underlying container has HUserRecord<>s. struct HInputExtractor { HInstruction* operator()(HUserRecord<HInstruction*>& record) const { return record.GetInstruction(); } const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const { return record.GetInstruction(); } }; using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>; using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>; /** * Side-effects representation. * * For write/read dependences on fields/arrays, the dependence analysis uses * type disambiguation (e.g. a float field write cannot modify the value of an * integer field read) and the access type (e.g. a reference array write cannot * modify the value of a reference field read [although it may modify the * reference fetch prior to reading the field, which is represented by its own * write/read dependence]). The analysis makes conservative points-to * assumptions on reference types (e.g. two same typed arrays are assumed to be * the same, and any reference read depends on any reference read without * further regard of its type). * * The internal representation uses 38-bit and is described in the table below. * The first line indicates the side effect, and for field/array accesses the * second line indicates the type of the access (in the order of the * DataType::Type enum). * The two numbered lines below indicate the bit position in the bitfield (read * vertically). * * |Depends on GC|ARRAY-R |FIELD-R |Can trigger GC|ARRAY-W |FIELD-W | * +-------------+---------+---------+--------------+---------+---------+ * | |DFJISCBZL|DFJISCBZL| |DFJISCBZL|DFJISCBZL| * | 3 |333333322|222222221| 1 |111111110|000000000| * | 7 |654321098|765432109| 8 |765432109|876543210| * * Note that, to ease the implementation, 'changes' bits are least significant * bits, while 'dependency' bits are most significant bits. */ class SideEffects : public ValueObject { public: SideEffects() : flags_(0) {} static SideEffects None() { return SideEffects(0); } static SideEffects All() { return SideEffects(kAllChangeBits | kAllDependOnBits); } static SideEffects AllChanges() { return SideEffects(kAllChangeBits); } static SideEffects AllDependencies() { return SideEffects(kAllDependOnBits); } static SideEffects AllExceptGCDependency() { return AllWritesAndReads().Union(SideEffects::CanTriggerGC()); } static SideEffects AllWritesAndReads() { return SideEffects(kAllWrites | kAllReads); } static SideEffects AllWrites() { return SideEffects(kAllWrites); } static SideEffects AllReads() { return SideEffects(kAllReads); } static SideEffects FieldWriteOfType(DataType::Type type, bool is_volatile) { return is_volatile ? AllWritesAndReads() : SideEffects(TypeFlag(type, kFieldWriteOffset)); } static SideEffects ArrayWriteOfType(DataType::Type type) { return SideEffects(TypeFlag(type, kArrayWriteOffset)); } static SideEffects FieldReadOfType(DataType::Type type, bool is_volatile) { return is_volatile ? AllWritesAndReads() : SideEffects(TypeFlag(type, kFieldReadOffset)); } static SideEffects ArrayReadOfType(DataType::Type type) { return SideEffects(TypeFlag(type, kArrayReadOffset)); } static SideEffects CanTriggerGC() { return SideEffects(1ULL << kCanTriggerGCBit); } static SideEffects DependsOnGC() { return SideEffects(1ULL << kDependsOnGCBit); } // Combines the side-effects of this and the other. SideEffects Union(SideEffects other) const { return SideEffects(flags_ | other.flags_); } SideEffects Exclusion(SideEffects other) const { return SideEffects(flags_ & ~other.flags_); } void Add(SideEffects other) { flags_ |= other.flags_; } bool Includes(SideEffects other) const { return (other.flags_ & flags_) == other.flags_; } bool HasSideEffects() const { return (flags_ & kAllChangeBits); } bool HasDependencies() const { return (flags_ & kAllDependOnBits); } // Returns true if there are no side effects or dependencies. bool DoesNothing() const { return flags_ == 0; } // Returns true if something is written. bool DoesAnyWrite() const { return (flags_ & kAllWrites); } // Returns true if something is read. bool DoesAnyRead() const { return (flags_ & kAllReads); } // Returns true if potentially everything is written and read // (every type and every kind of access). bool DoesAllReadWrite() const { return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads); } bool DoesAll() const { return flags_ == (kAllChangeBits | kAllDependOnBits); } // Returns true if `this` may read something written by `other`. bool MayDependOn(SideEffects other) const { const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits; return (other.flags_ & depends_on_flags); } // Returns string representation of flags (for debugging only). // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL| std::string ToString() const { std::string flags = "|"; for (int s = kLastBit; s >= 0; s--) { bool current_bit_is_set = ((flags_ >> s) & 1) != 0; if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) { // This is a bit for the GC side effect. if (current_bit_is_set) { flags += "GC"; } flags += "|"; } else { // This is a bit for the array/field analysis. // The underscore character stands for the 'can trigger GC' bit. static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD"; if (current_bit_is_set) { flags += kDebug[s]; } if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) || (s == kFieldReadOffset) || (s == kArrayReadOffset)) { flags += "|"; } } } return flags; } bool Equals(const SideEffects& other) const { return flags_ == other.flags_; } private: static constexpr int kFieldArrayAnalysisBits = 9; static constexpr int kFieldWriteOffset = 0; static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits; static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1; static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1; static constexpr int kChangeBits = kCanTriggerGCBit + 1; static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1; static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits; static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1; static constexpr int kDependsOnGCBit = kLastBitForReads + 1; static constexpr int kLastBit = kDependsOnGCBit; static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits; // Aliases. static_assert(kChangeBits == kDependOnBits, "the 'change' bits should match the 'depend on' bits."); static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1); static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits; static constexpr uint64_t kAllWrites = ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset; static constexpr uint64_t kAllReads = ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset; // Translates type to bit flag. The type must correspond to a Java type. static uint64_t TypeFlag(DataType::Type type, int offset) { int shift; switch (type) { case DataType::Type::kReference: shift = 0; break; case DataType::Type::kBool: shift = 1; break; case DataType::Type::kInt8: shift = 2; break; case DataType::Type::kUint16: shift = 3; break; case DataType::Type::kInt16: shift = 4; break; case DataType::Type::kInt32: shift = 5; break; case DataType::Type::kInt64: shift = 6; break; case DataType::Type::kFloat32: shift = 7; break; case DataType::Type::kFloat64: shift = 8; break; default: LOG(FATAL) << "Unexpected data type " << type; UNREACHABLE(); } DCHECK_LE(kFieldWriteOffset, shift); DCHECK_LT(shift, kArrayWriteOffset); return UINT64_C(1) << (shift + offset); } // Private constructor on direct flags value. explicit SideEffects(uint64_t flags) : flags_(flags) {} uint64_t flags_; }; // A HEnvironment object contains the values of virtual registers at a given location. class HEnvironment : public ArenaObject<kArenaAllocEnvironment> { public: ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator, size_t number_of_vregs, ArtMethod* method, uint32_t dex_pc, HInstruction* holder) : vregs_(number_of_vregs, allocator->Adapter(kArenaAllocEnvironmentVRegs)), locations_(allocator->Adapter(kArenaAllocEnvironmentLocations)), parent_(nullptr), method_(method), dex_pc_(dex_pc), holder_(holder) { } ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator, const HEnvironment& to_copy, HInstruction* holder) : HEnvironment(allocator, to_copy.Size(), to_copy.GetMethod(), to_copy.GetDexPc(), holder) {} void AllocateLocations() { DCHECK(locations_.empty()); locations_.resize(vregs_.size()); } void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) { if (parent_ != nullptr) { parent_->SetAndCopyParentChain(allocator, parent); } else { parent_ = new (allocator) HEnvironment(allocator, *parent, holder_); parent_->CopyFrom(parent); if (parent->GetParent() != nullptr) { parent_->SetAndCopyParentChain(allocator, parent->GetParent()); } } } void CopyFrom(ArrayRef<HInstruction* const> locals); void CopyFrom(HEnvironment* environment); // Copy from `env`. If it's a loop phi for `loop_header`, copy the first // input to the loop phi instead. This is for inserting instructions that // require an environment (like HDeoptimization) in the loop pre-header. void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header); void SetRawEnvAt(size_t index, HInstruction* instruction) { vregs_[index] = HUserRecord<HEnvironment*>(instruction); } HInstruction* GetInstructionAt(size_t index) const { return vregs_[index].GetInstruction(); } void RemoveAsUserOfInput(size_t index) const; size_t Size() const { return vregs_.size(); } HEnvironment* GetParent() const { return parent_; } void SetLocationAt(size_t index, Location location) { locations_[index] = location; } Location GetLocationAt(size_t index) const { return locations_[index]; } uint32_t GetDexPc() const { return dex_pc_; } ArtMethod* GetMethod() const { return method_; } HInstruction* GetHolder() const { return holder_; } bool IsFromInlinedInvoke() const { return GetParent() != nullptr; } private: ArenaVector<HUserRecord<HEnvironment*>> vregs_; ArenaVector<Location> locations_; HEnvironment* parent_; ArtMethod* method_; const uint32_t dex_pc_; // The instruction that holds this environment. HInstruction* const holder_; friend class HInstruction; DISALLOW_COPY_AND_ASSIGN(HEnvironment); }; class HInstruction : public ArenaObject<kArenaAllocInstruction> { public: #define DECLARE_KIND(type, super) k##type, enum InstructionKind { FOR_EACH_INSTRUCTION(DECLARE_KIND) kLastInstructionKind }; #undef DECLARE_KIND HInstruction(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc) : previous_(nullptr), next_(nullptr), block_(nullptr), dex_pc_(dex_pc), id_(-1), ssa_index_(-1), packed_fields_(0u), environment_(nullptr), locations_(nullptr), live_interval_(nullptr), lifetime_position_(kNoLifetime), side_effects_(side_effects), reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) { SetPackedField<InstructionKindField>(kind); SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact()); } virtual ~HInstruction() {} HInstruction* GetNext() const { return next_; } HInstruction* GetPrevious() const { return previous_; } HInstruction* GetNextDisregardingMoves() const; HInstruction* GetPreviousDisregardingMoves() const; HBasicBlock* GetBlock() const { return block_; } ArenaAllocator* GetAllocator() const { return block_->GetGraph()->GetAllocator(); } void SetBlock(HBasicBlock* block) { block_ = block; } bool IsInBlock() const { return block_ != nullptr; } bool IsInLoop() const { return block_->IsInLoop(); } bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); } bool IsIrreducibleLoopHeaderPhi() const { return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible(); } virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0; ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const { // One virtual method is enough, just const_cast<> and then re-add the const. return ArrayRef<const HUserRecord<HInstruction*>>( const_cast<HInstruction*>(this)->GetInputRecords()); } HInputsRef GetInputs() { return MakeTransformArrayRef(GetInputRecords(), HInputExtractor()); } HConstInputsRef GetInputs() const { return MakeTransformArrayRef(GetInputRecords(), HInputExtractor()); } size_t InputCount() const { return GetInputRecords().size(); } HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); } bool HasInput(HInstruction* input) const { for (const HInstruction* i : GetInputs()) { if (i == input) { return true; } } return false; } void SetRawInputAt(size_t index, HInstruction* input) { SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input)); } virtual void Accept(HGraphVisitor* visitor) = 0; virtual const char* DebugName() const = 0; virtual DataType::Type GetType() const { return DataType::Type::kVoid; } virtual bool NeedsEnvironment() const { return false; } uint32_t GetDexPc() const { return dex_pc_; } virtual bool IsControlFlow() const { return false; } // Can the instruction throw? // TODO: We should rename to CanVisiblyThrow, as some instructions (like HNewInstance), // could throw OOME, but it is still OK to remove them if they are unused. virtual bool CanThrow() const { return false; } // Does the instruction always throw an exception unconditionally? virtual bool AlwaysThrows() const { return false; } bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); } bool HasSideEffects() const { return side_effects_.HasSideEffects(); } bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); } // Does not apply for all instructions, but having this at top level greatly // simplifies the null check elimination. // TODO: Consider merging can_be_null into ReferenceTypeInfo. virtual bool CanBeNull() const { DCHECK_EQ(GetType(), DataType::Type::kReference) << "CanBeNull only applies to reference types"; return true; } virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const { return false; } virtual bool IsActualObject() const { return GetType() == DataType::Type::kReference; } void SetReferenceTypeInfo(ReferenceTypeInfo rti); ReferenceTypeInfo GetReferenceTypeInfo() const { DCHECK_EQ(GetType(), DataType::Type::kReference); return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_, GetPackedFlag<kFlagReferenceTypeIsExact>()); } void AddUseAt(HInstruction* user, size_t index) { DCHECK(user != nullptr); // Note: fixup_end remains valid across push_front(). auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin(); HUseListNode<HInstruction*>* new_node = new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HInstruction*>(user, index); uses_.push_front(*new_node); FixUpUserRecordsAfterUseInsertion(fixup_end); } void AddEnvUseAt(HEnvironment* user, size_t index) { DCHECK(user != nullptr); // Note: env_fixup_end remains valid across push_front(). auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin(); HUseListNode<HEnvironment*>* new_node = new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HEnvironment*>(user, index); env_uses_.push_front(*new_node); FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end); } void RemoveAsUserOfInput(size_t input) { HUserRecord<HInstruction*> input_use = InputRecordAt(input); HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode(); input_use.GetInstruction()->uses_.erase_after(before_use_node); input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node); } void RemoveAsUserOfAllInputs() { for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) { HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode(); input_use.GetInstruction()->uses_.erase_after(before_use_node); input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node); } } const HUseList<HInstruction*>& GetUses() const { return uses_; } const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; } bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); } bool HasEnvironmentUses() const { return !env_uses_.empty(); } bool HasNonEnvironmentUses() const { return !uses_.empty(); } bool HasOnlyOneNonEnvironmentUse() const { return !HasEnvironmentUses() && GetUses().HasExactlyOneElement(); } bool IsRemovable() const { return !DoesAnyWrite() && !CanThrow() && !IsSuspendCheck() && !IsControlFlow() && !IsNativeDebugInfo() && !IsParameterValue() && // If we added an explicit barrier then we should keep it. !IsMemoryBarrier() && !IsConstructorFence(); } bool IsDeadAndRemovable() const { return IsRemovable() && !HasUses(); } // Does this instruction strictly dominate `other_instruction`? // Returns false if this instruction and `other_instruction` are the same. // Aborts if this instruction and `other_instruction` are both phis. bool StrictlyDominates(HInstruction* other_instruction) const; int GetId() const { return id_; } void SetId(int id) { id_ = id; } int GetSsaIndex() const { return ssa_index_; } void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; } bool HasSsaIndex() const { return ssa_index_ != -1; } bool HasEnvironment() const { return environment_ != nullptr; } HEnvironment* GetEnvironment() const { return environment_; } // Set the `environment_` field. Raw because this method does not // update the uses lists. void SetRawEnvironment(HEnvironment* environment) { DCHECK(environment_ == nullptr); DCHECK_EQ(environment->GetHolder(), this); environment_ = environment; } void InsertRawEnvironment(HEnvironment* environment) { DCHECK(environment_ != nullptr); DCHECK_EQ(environment->GetHolder(), this); DCHECK(environment->GetParent() == nullptr); environment->parent_ = environment_; environment_ = environment; } void RemoveEnvironment(); // Set the environment of this instruction, copying it from `environment`. While // copying, the uses lists are being updated. void CopyEnvironmentFrom(HEnvironment* environment) { DCHECK(environment_ == nullptr); ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator(); environment_ = new (allocator) HEnvironment(allocator, *environment, this); environment_->CopyFrom(environment); if (environment->GetParent() != nullptr) { environment_->SetAndCopyParentChain(allocator, environment->GetParent()); } } void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment, HBasicBlock* block) { DCHECK(environment_ == nullptr); ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator(); environment_ = new (allocator) HEnvironment(allocator, *environment, this); environment_->CopyFromWithLoopPhiAdjustment(environment, block); if (environment->GetParent() != nullptr) { environment_->SetAndCopyParentChain(allocator, environment->GetParent()); } } // Returns the number of entries in the environment. Typically, that is the // number of dex registers in a method. It could be more in case of inlining. size_t EnvironmentSize() const; LocationSummary* GetLocations() const { return locations_; } void SetLocations(LocationSummary* locations) { locations_ = locations; } void ReplaceWith(HInstruction* instruction); void ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement); void ReplaceInput(HInstruction* replacement, size_t index); // This is almost the same as doing `ReplaceWith()`. But in this helper, the // uses of this instruction by `other` are *not* updated. void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) { ReplaceWith(other); other->ReplaceInput(this, use_index); } // Move `this` instruction before `cursor` void MoveBefore(HInstruction* cursor, bool do_checks = true); // Move `this` before its first user and out of any loops. If there is no // out-of-loop user that dominates all other users, move the instruction // to the end of the out-of-loop common dominator of the user's blocks. // // This can be used only on non-throwing instructions with no side effects that // have at least one use but no environment uses. void MoveBeforeFirstUserAndOutOfLoops(); #define INSTRUCTION_TYPE_CHECK(type, super) \ bool Is##type() const; \ const H##type* As##type() const; \ H##type* As##type(); FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK) #undef INSTRUCTION_TYPE_CHECK #define INSTRUCTION_TYPE_CHECK(type, super) \ bool Is##type() const { return (As##type() != nullptr); } \ virtual const H##type* As##type() const { return nullptr; } \ virtual H##type* As##type() { return nullptr; } FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK) #undef INSTRUCTION_TYPE_CHECK // Return a clone of the instruction if it is clonable (shallow copy by default, custom copy // if a custom copy-constructor is provided for a particular type). If IsClonable() is false for // the instruction then the behaviour of this function is undefined. // // Note: It is semantically valid to create a clone of the instruction only until // prepare_for_register_allocator phase as lifetime, intervals and codegen info are not // copied. // // Note: HEnvironment and some other fields are not copied and are set to default values, see // 'explicit HInstruction(const HInstruction& other)' for details. virtual HInstruction* Clone(ArenaAllocator* arena ATTRIBUTE_UNUSED) const { LOG(FATAL) << "Cloning is not implemented for the instruction " << DebugName() << " " << GetId(); UNREACHABLE(); } // Return whether instruction can be cloned (copied). virtual bool IsClonable() const { return false; } // Returns whether the instruction can be moved within the graph. // TODO: this method is used by LICM and GVN with possibly different // meanings? split and rename? virtual bool CanBeMoved() const { return false; } // Returns whether the two instructions are of the same kind. virtual bool InstructionTypeEquals(const HInstruction* other ATTRIBUTE_UNUSED) const { return false; } // Returns whether any data encoded in the two instructions is equal. // This method does not look at the inputs. Both instructions must be // of the same type, otherwise the method has undefined behavior. virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const { return false; } // Returns whether two instructions are equal, that is: // 1) They have the same type and contain the same data (InstructionDataEquals). // 2) Their inputs are identical. bool Equals(const HInstruction* other) const; // TODO: Remove this indirection when the [[pure]] attribute proposal (n3744) // is adopted and implemented by our C++ compiler(s). Fow now, we need to hide // the virtual function because the __attribute__((__pure__)) doesn't really // apply the strong requirement for virtual functions, preventing optimizations. InstructionKind GetKind() const { return GetPackedField<InstructionKindField>(); } virtual size_t ComputeHashCode() const { size_t result = GetKind(); for (const HInstruction* input : GetInputs()) { result = (result * 31) + input->GetId(); } return result; } SideEffects GetSideEffects() const { return side_effects_; } void SetSideEffects(SideEffects other) { side_effects_ = other; } void AddSideEffects(SideEffects other) { side_effects_.Add(other); } size_t GetLifetimePosition() const { return lifetime_position_; } void SetLifetimePosition(size_t position) { lifetime_position_ = position; } LiveInterval* GetLiveInterval() const { return live_interval_; } void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; } bool HasLiveInterval() const { return live_interval_ != nullptr; } bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); } // Returns whether the code generation of the instruction will require to have access // to the current method. Such instructions are: // (1): Instructions that require an environment, as calling the runtime requires // to walk the stack and have the current method stored at a specific stack address. // (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass // to access the dex cache. bool NeedsCurrentMethod() const { return NeedsEnvironment() || IsCurrentMethod(); } // Returns whether the code generation of the instruction will require to have access // to the dex cache of the current method's declaring class via the current method. virtual bool NeedsDexCacheOfDeclaringClass() const { return false; } // Does this instruction have any use in an environment before // control flow hits 'other'? bool HasAnyEnvironmentUseBefore(HInstruction* other); // Remove all references to environment uses of this instruction. // The caller must ensure that this is safe to do. void RemoveEnvironmentUsers(); bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); } void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); } protected: // If set, the machine code for this instruction is assumed to be generated by // its users. Used by liveness analysis to compute use positions accordingly. static constexpr size_t kFlagEmittedAtUseSite = 0u; static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1; static constexpr size_t kFieldInstructionKind = kFlagReferenceTypeIsExact + 1; static constexpr size_t kFieldInstructionKindSize = MinimumBitsToStore(static_cast<size_t>(InstructionKind::kLastInstructionKind - 1)); static constexpr size_t kNumberOfGenericPackedBits = kFieldInstructionKind + kFieldInstructionKindSize; static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte; static_assert(kNumberOfGenericPackedBits <= kMaxNumberOfPackedBits, "Too many generic packed fields"); const HUserRecord<HInstruction*> InputRecordAt(size_t i) const { return GetInputRecords()[i]; } void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) { ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords(); input_records[index] = input; } uint32_t GetPackedFields() const { return packed_fields_; } template <size_t flag> bool GetPackedFlag() const { return (packed_fields_ & (1u << flag)) != 0u; } template <size_t flag> void SetPackedFlag(bool value = true) { packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag); } template <typename BitFieldType> typename BitFieldType::value_type GetPackedField() const { return BitFieldType::Decode(packed_fields_); } template <typename BitFieldType> void SetPackedField(typename BitFieldType::value_type value) { DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value))); packed_fields_ = BitFieldType::Update(value, packed_fields_); } // Copy construction for the instruction (used for Clone function). // // Fields (e.g. lifetime, intervals and codegen info) associated with phases starting from // prepare_for_register_allocator are not copied (set to default values). // // Copy constructors must be provided for every HInstruction type; default copy constructor is // fine for most of them. However for some of the instructions a custom copy constructor must be // specified (when instruction has non-trivially copyable fields and must have a special behaviour // for copying them). explicit HInstruction(const HInstruction& other) : previous_(nullptr), next_(nullptr), block_(nullptr), dex_pc_(other.dex_pc_), id_(-1), ssa_index_(-1), packed_fields_(other.packed_fields_), environment_(nullptr), locations_(nullptr), live_interval_(nullptr), lifetime_position_(kNoLifetime), side_effects_(other.side_effects_), reference_type_handle_(other.reference_type_handle_) { } private: using InstructionKindField = BitField<InstructionKind, kFieldInstructionKind, kFieldInstructionKindSize>; void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) { auto before_use_node = uses_.before_begin(); for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) { HInstruction* user = use_node->GetUser(); size_t input_index = use_node->GetIndex(); user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node)); before_use_node = use_node; } } void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) { auto next = ++HUseList<HInstruction*>::iterator(before_use_node); if (next != uses_.end()) { HInstruction* next_user = next->GetUser(); size_t next_index = next->GetIndex(); DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this); next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node)); } } void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) { auto before_env_use_node = env_uses_.before_begin(); for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) { HEnvironment* user = env_use_node->GetUser(); size_t input_index = env_use_node->GetIndex(); user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node); before_env_use_node = env_use_node; } } void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) { auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node); if (next != env_uses_.end()) { HEnvironment* next_user = next->GetUser(); size_t next_index = next->GetIndex(); DCHECK(next_user->vregs_[next_index].GetInstruction() == this); next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node); } } HInstruction* previous_; HInstruction* next_; HBasicBlock* block_; const uint32_t dex_pc_; // An instruction gets an id when it is added to the graph. // It reflects creation order. A negative id means the instruction // has not been added to the graph. int id_; // When doing liveness analysis, instructions that have uses get an SSA index. int ssa_index_; // Packed fields. uint32_t packed_fields_; // List of instructions that have this instruction as input. HUseList<HInstruction*> uses_; // List of environments that contain this instruction. HUseList<HEnvironment*> env_uses_; // The environment associated with this instruction. Not null if the instruction // might jump out of the method. HEnvironment* environment_; // Set by the code generator. LocationSummary* locations_; // Set by the liveness analysis. LiveInterval* live_interval_; // Set by the liveness analysis, this is the position in a linear // order of blocks where this instruction's live interval start. size_t lifetime_position_; SideEffects side_effects_; // The reference handle part of the reference type info. // The IsExact() flag is stored in packed fields. // TODO: for primitive types this should be marked as invalid. ReferenceTypeInfo::TypeHandle reference_type_handle_; friend class GraphChecker; friend class HBasicBlock; friend class HEnvironment; friend class HGraph; friend class HInstructionList; }; std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs); // Iterates over the instructions, while preserving the next instruction // in case the current instruction gets removed from the list by the user // of this iterator. class HInstructionIterator : public ValueObject { public: explicit HInstructionIterator(const HInstructionList& instructions) : instruction_(instructions.first_instruction_) { next_ = Done() ? nullptr : instruction_->GetNext(); } bool Done() const { return instruction_ == nullptr; } HInstruction* Current() const { return instruction_; } void Advance() { instruction_ = next_; next_ = Done() ? nullptr : instruction_->GetNext(); } private: HInstruction* instruction_; HInstruction* next_; DISALLOW_COPY_AND_ASSIGN(HInstructionIterator); }; // Iterates over the instructions without saving the next instruction, // therefore handling changes in the graph potentially made by the user // of this iterator. class HInstructionIteratorHandleChanges : public ValueObject { public: explicit HInstructionIteratorHandleChanges(const HInstructionList& instructions) : instruction_(instructions.first_instruction_) { } bool Done() const { return instruction_ == nullptr; } HInstruction* Current() const { return instruction_; } void Advance() { instruction_ = instruction_->GetNext(); } private: HInstruction* instruction_; DISALLOW_COPY_AND_ASSIGN(HInstructionIteratorHandleChanges); }; class HBackwardInstructionIterator : public ValueObject { public: explicit HBackwardInstructionIterator(const HInstructionList& instructions) : instruction_(instructions.last_instruction_) { next_ = Done() ? nullptr : instruction_->GetPrevious(); } bool Done() const { return instruction_ == nullptr; } HInstruction* Current() const { return instruction_; } void Advance() { instruction_ = next_; next_ = Done() ? nullptr : instruction_->GetPrevious(); } private: HInstruction* instruction_; HInstruction* next_; DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator); }; class HVariableInputSizeInstruction : public HInstruction { public: using HInstruction::GetInputRecords; // Keep the const version visible. ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE { return ArrayRef<HUserRecord<HInstruction*>>(inputs_); } void AddInput(HInstruction* input); void InsertInputAt(size_t index, HInstruction* input); void RemoveInputAt(size_t index); // Removes all the inputs. // Also removes this instructions from each input's use list // (for non-environment uses only). void RemoveAllInputs(); protected: HVariableInputSizeInstruction(InstructionKind inst_kind, SideEffects side_effects, uint32_t dex_pc, ArenaAllocator* allocator, size_t number_of_inputs, ArenaAllocKind kind) : HInstruction(inst_kind, side_effects, dex_pc), inputs_(number_of_inputs, allocator->Adapter(kind)) {} DEFAULT_COPY_CONSTRUCTOR(VariableInputSizeInstruction); ArenaVector<HUserRecord<HInstruction*>> inputs_; }; template<size_t N> class HTemplateInstruction: public HInstruction { public: HTemplateInstruction<N>(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc) : HInstruction(kind, side_effects, dex_pc), inputs_() {} virtual ~HTemplateInstruction() {} using HInstruction::GetInputRecords; // Keep the const version visible. ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL { return ArrayRef<HUserRecord<HInstruction*>>(inputs_); } protected: DEFAULT_COPY_CONSTRUCTOR(TemplateInstruction<N>); private: std::array<HUserRecord<HInstruction*>, N> inputs_; friend class SsaBuilder; }; // HTemplateInstruction specialization for N=0. template<> class HTemplateInstruction<0>: public HInstruction { public: explicit HTemplateInstruction<0>(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc) : HInstruction(kind, side_effects, dex_pc) {} virtual ~HTemplateInstruction() {} using HInstruction::GetInputRecords; // Keep the const version visible. ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL { return ArrayRef<HUserRecord<HInstruction*>>(); } protected: DEFAULT_COPY_CONSTRUCTOR(TemplateInstruction<0>); private: friend class SsaBuilder; }; template<intptr_t N> class HExpression : public HTemplateInstruction<N> { public: using HInstruction::InstructionKind; HExpression<N>(InstructionKind kind, DataType::Type type, SideEffects side_effects, uint32_t dex_pc) : HTemplateInstruction<N>(kind, side_effects, dex_pc) { this->template SetPackedField<TypeField>(type); } virtual ~HExpression() {} DataType::Type GetType() const OVERRIDE { return TypeField::Decode(this->GetPackedFields()); } protected: static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits; static constexpr size_t kFieldTypeSize = MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); static constexpr size_t kNumberOfExpressionPackedBits = kFieldType + kFieldTypeSize; static_assert(kNumberOfExpressionPackedBits <= HInstruction::kMaxNumberOfPackedBits, "Too many packed fields."); using TypeField = BitField<DataType::Type, kFieldType, kFieldTypeSize>; DEFAULT_COPY_CONSTRUCTOR(Expression<N>); }; // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow // instruction that branches to the exit block. class HReturnVoid FINAL : public HTemplateInstruction<0> { public: explicit HReturnVoid(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(kReturnVoid, SideEffects::None(), dex_pc) { } bool IsControlFlow() const OVERRIDE { return true; } DECLARE_INSTRUCTION(ReturnVoid); protected: DEFAULT_COPY_CONSTRUCTOR(ReturnVoid); }; // Represents dex's RETURN opcodes. A HReturn is a control flow // instruction that branches to the exit block. class HReturn FINAL : public HTemplateInstruction<1> { public: explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(kReturn, SideEffects::None(), dex_pc) { SetRawInputAt(0, value); } bool IsControlFlow() const OVERRIDE { return true; } DECLARE_INSTRUCTION(Return); protected: DEFAULT_COPY_CONSTRUCTOR(Return); }; class HPhi FINAL : public HVariableInputSizeInstruction { public: HPhi(ArenaAllocator* allocator, uint32_t reg_number, size_t number_of_inputs, DataType::Type type, uint32_t dex_pc = kNoDexPc) : HVariableInputSizeInstruction( kPhi, SideEffects::None(), dex_pc, allocator, number_of_inputs, kArenaAllocPhiInputs), reg_number_(reg_number) { SetPackedField<TypeField>(ToPhiType(type)); DCHECK_NE(GetType(), DataType::Type::kVoid); // Phis are constructed live and marked dead if conflicting or unused. // Individual steps of SsaBuilder should assume that if a phi has been // marked dead, it can be ignored and will be removed by SsaPhiElimination. SetPackedFlag<kFlagIsLive>(true); SetPackedFlag<kFlagCanBeNull>(true); } bool IsClonable() const OVERRIDE { return true; } // Returns a type equivalent to the given `type`, but that a `HPhi` can hold. static DataType::Type ToPhiType(DataType::Type type) { return DataType::Kind(type); } bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); } DataType::Type GetType() const OVERRIDE { return GetPackedField<TypeField>(); } void SetType(DataType::Type new_type) { // Make sure that only valid type changes occur. The following are allowed: // (1) int -> float/ref (primitive type propagation), // (2) long -> double (primitive type propagation). DCHECK(GetType() == new_type || (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kFloat32) || (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kReference) || (GetType() == DataType::Type::kInt64 && new_type == DataType::Type::kFloat64)); SetPackedField<TypeField>(new_type); } bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); } void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); } uint32_t GetRegNumber() const { return reg_number_; } void SetDead() { SetPackedFlag<kFlagIsLive>(false); } void SetLive() { SetPackedFlag<kFlagIsLive>(true); } bool IsDead() const { return !IsLive(); } bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); } bool IsVRegEquivalentOf(const HInstruction* other) const { return other != nullptr && other->IsPhi() && other->AsPhi()->GetBlock() == GetBlock() && other->AsPhi()->GetRegNumber() == GetRegNumber(); } bool HasEquivalentPhi() const { if (GetPrevious() != nullptr && GetPrevious()->AsPhi()->GetRegNumber() == GetRegNumber()) { return true; } if (GetNext() != nullptr && GetNext()->AsPhi()->GetRegNumber() == GetRegNumber()) { return true; } return false; } // Returns the next equivalent phi (starting from the current one) or null if there is none. // An equivalent phi is a phi having the same dex register and type. // It assumes that phis with the same dex register are adjacent. HPhi* GetNextEquivalentPhiWithSameType() { HInstruction* next = GetNext(); while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) { if (next->GetType() == GetType()) { return next->AsPhi(); } next = next->GetNext(); } return nullptr; } DECLARE_INSTRUCTION(Phi); protected: DEFAULT_COPY_CONSTRUCTOR(Phi); private: static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits; static constexpr size_t kFieldTypeSize = MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); static constexpr size_t kFlagIsLive = kFieldType + kFieldTypeSize; static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1; static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1; static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using TypeField = BitField<DataType::Type, kFieldType, kFieldTypeSize>; const uint32_t reg_number_; }; // The exit instruction is the only instruction of the exit block. // Instructions aborting the method (HThrow and HReturn) must branch to the // exit block. class HExit FINAL : public HTemplateInstruction<0> { public: explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(kExit, SideEffects::None(), dex_pc) { } bool IsControlFlow() const OVERRIDE { return true; } DECLARE_INSTRUCTION(Exit); protected: DEFAULT_COPY_CONSTRUCTOR(Exit); }; // Jumps from one block to another. class HGoto FINAL : public HTemplateInstruction<0> { public: explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(kGoto, SideEffects::None(), dex_pc) { } bool IsClonable() const OVERRIDE { return true; } bool IsControlFlow() const OVERRIDE { return true; } HBasicBlock* GetSuccessor() const { return GetBlock()->GetSingleSuccessor(); } DECLARE_INSTRUCTION(Goto); protected: DEFAULT_COPY_CONSTRUCTOR(Goto); }; class HConstant : public HExpression<0> { public: explicit HConstant(InstructionKind kind, DataType::Type type, uint32_t dex_pc = kNoDexPc) : HExpression(kind, type, SideEffects::None(), dex_pc) { } bool CanBeMoved() const OVERRIDE { return true; } // Is this constant -1 in the arithmetic sense? virtual bool IsMinusOne() const { return false; } // Is this constant 0 in the arithmetic sense? virtual bool IsArithmeticZero() const { return false; } // Is this constant a 0-bit pattern? virtual bool IsZeroBitPattern() const { return false; } // Is this constant 1 in the arithmetic sense? virtual bool IsOne() const { return false; } virtual uint64_t GetValueAsUint64() const = 0; DECLARE_ABSTRACT_INSTRUCTION(Constant); protected: DEFAULT_COPY_CONSTRUCTOR(Constant); }; class HNullConstant FINAL : public HConstant { public: bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } uint64_t GetValueAsUint64() const OVERRIDE { return 0; } size_t ComputeHashCode() const OVERRIDE { return 0; } // The null constant representation is a 0-bit pattern. virtual bool IsZeroBitPattern() const { return true; } DECLARE_INSTRUCTION(NullConstant); protected: DEFAULT_COPY_CONSTRUCTOR(NullConstant); private: explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(kNullConstant, DataType::Type::kReference, dex_pc) { } friend class HGraph; }; // Constants of the type int. Those can be from Dex instructions, or // synthesized (for example with the if-eqz instruction). class HIntConstant FINAL : public HConstant { public: int32_t GetValue() const { return value_; } uint64_t GetValueAsUint64() const OVERRIDE { return static_cast<uint64_t>(static_cast<uint32_t>(value_)); } bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { DCHECK(other->IsIntConstant()) << other->DebugName(); return other->AsIntConstant()->value_ == value_; } size_t ComputeHashCode() const OVERRIDE { return GetValue(); } bool IsMinusOne() const OVERRIDE { return GetValue() == -1; } bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; } bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; } bool IsOne() const OVERRIDE { return GetValue() == 1; } // Integer constants are used to encode Boolean values as well, // where 1 means true and 0 means false. bool IsTrue() const { return GetValue() == 1; } bool IsFalse() const { return GetValue() == 0; } DECLARE_INSTRUCTION(IntConstant); protected: DEFAULT_COPY_CONSTRUCTOR(IntConstant); private: explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), value_(value) { } explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc) : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), value_(value ? 1 : 0) { } const int32_t value_; friend class HGraph; ART_FRIEND_TEST(GraphTest, InsertInstructionBefore); ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast); }; class HLongConstant FINAL : public HConstant { public: int64_t GetValue() const { return value_; } uint64_t GetValueAsUint64() const OVERRIDE { return value_; } bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { DCHECK(other->IsLongConstant()) << other->DebugName(); return other->AsLongConstant()->value_ == value_; } size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } bool IsMinusOne() const OVERRIDE { return GetValue() == -1; } bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; } bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; } bool IsOne() const OVERRIDE { return GetValue() == 1; } DECLARE_INSTRUCTION(LongConstant); protected: DEFAULT_COPY_CONSTRUCTOR(LongConstant); private: explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) : HConstant(kLongConstant, DataType::Type::kInt64, dex_pc), value_(value) { } const int64_t value_; friend class HGraph; }; class HFloatConstant FINAL : public HConstant { public: float GetValue() const { return value_; } uint64_t GetValueAsUint64() const OVERRIDE { return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_)); } bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { DCHECK(other->IsFloatConstant()) << other->DebugName(); return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64(); } size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } bool IsMinusOne() const OVERRIDE { return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f)); } bool IsArithmeticZero() const OVERRIDE { return std::fpclassify(value_) == FP_ZERO; } bool IsArithmeticPositiveZero() const { return IsArithmeticZero() && !std::signbit(value_); } bool IsArithmeticNegativeZero() const { return IsArithmeticZero() && std::signbit(value_); } bool IsZeroBitPattern() const OVERRIDE { return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f); } bool IsOne() const OVERRIDE { return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f); } bool IsNaN() const { return std::isnan(value_); } DECLARE_INSTRUCTION(FloatConstant); protected: DEFAULT_COPY_CONSTRUCTOR(FloatConstant); private: explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc) : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc), value_(value) { } explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc) : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc), value_(bit_cast<float, int32_t>(value)) { } const float value_; // Only the SsaBuilder and HGraph can create floating-point constants. friend class SsaBuilder; friend class HGraph; }; class HDoubleConstant FINAL : public HConstant { public: double GetValue() const { return value_; } uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); } bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { DCHECK(other->IsDoubleConstant()) << other->DebugName(); return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64(); } size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } bool IsMinusOne() const OVERRIDE { return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0)); } bool IsArithmeticZero() const OVERRIDE { return std::fpclassify(value_) == FP_ZERO; } bool IsArithmeticPositiveZero() const { return IsArithmeticZero() && !std::signbit(value_); } bool IsArithmeticNegativeZero() const { return IsArithmeticZero() && std::signbit(value_); } bool IsZeroBitPattern() const OVERRIDE { return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0)); } bool IsOne() const OVERRIDE { return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0); } bool IsNaN() const { return std::isnan(value_); } DECLARE_INSTRUCTION(DoubleConstant); protected: DEFAULT_COPY_CONSTRUCTOR(DoubleConstant); private: explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc), value_(value) { } explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc) : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc), value_(bit_cast<double, int64_t>(value)) { } const double value_; // Only the SsaBuilder and HGraph can create floating-point constants. friend class SsaBuilder; friend class HGraph; }; // Conditional branch. A block ending with an HIf instruction must have // two successors. class HIf FINAL : public HTemplateInstruction<1> { public: explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(kIf, SideEffects::None(), dex_pc) { SetRawInputAt(0, input); } bool IsClonable() const OVERRIDE { return true; } bool IsControlFlow() const OVERRIDE { return true; } HBasicBlock* IfTrueSuccessor() const { return GetBlock()->GetSuccessors()[0]; } HBasicBlock* IfFalseSuccessor() const { return GetBlock()->GetSuccessors()[1]; } DECLARE_INSTRUCTION(If); protected: DEFAULT_COPY_CONSTRUCTOR(If); }; // Abstract instruction which marks the beginning and/or end of a try block and // links it to the respective exception handlers. Behaves the same as a Goto in // non-exceptional control flow. // Normal-flow successor is stored at index zero, exception handlers under // higher indices in no particular order. class HTryBoundary FINAL : public HTemplateInstruction<0> { public: enum class BoundaryKind { kEntry, kExit, kLast = kExit }; explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(kTryBoundary, SideEffects::None(), dex_pc) { SetPackedField<BoundaryKindField>(kind); } bool IsControlFlow() const OVERRIDE { return true; } // Returns the block's non-exceptional successor (index zero). HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; } ArrayRef<HBasicBlock* const> GetExceptionHandlers() const { return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u); } // Returns whether `handler` is among its exception handlers (non-zero index // successors). bool HasExceptionHandler(const HBasicBlock& handler) const { DCHECK(handler.IsCatchBlock()); return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */); } // If not present already, adds `handler` to its block's list of exception // handlers. void AddExceptionHandler(HBasicBlock* handler) { if (!HasExceptionHandler(*handler)) { GetBlock()->AddSuccessor(handler); } } BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); } bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; } bool HasSameExceptionHandlersAs(const HTryBoundary& other) const; DECLARE_INSTRUCTION(TryBoundary); protected: DEFAULT_COPY_CONSTRUCTOR(TryBoundary); private: static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits; static constexpr size_t kFieldBoundaryKindSize = MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast)); static constexpr size_t kNumberOfTryBoundaryPackedBits = kFieldBoundaryKind + kFieldBoundaryKindSize; static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>; }; // Deoptimize to interpreter, upon checking a condition. class HDeoptimize FINAL : public HVariableInputSizeInstruction { public: // Use this constructor when the `HDeoptimize` acts as a barrier, where no code can move // across. HDeoptimize(ArenaAllocator* allocator, HInstruction* cond, DeoptimizationKind kind, uint32_t dex_pc) : HVariableInputSizeInstruction( kDeoptimize, SideEffects::All(), dex_pc, allocator, /* number_of_inputs */ 1, kArenaAllocMisc) { SetPackedFlag<kFieldCanBeMoved>(false); SetPackedField<DeoptimizeKindField>(kind); SetRawInputAt(0, cond); } bool IsClonable() const OVERRIDE { return true; } // Use this constructor when the `HDeoptimize` guards an instruction, and any user // that relies on the deoptimization to pass should have its input be the `HDeoptimize` // instead of `guard`. // We set CanTriggerGC to prevent any intermediate address to be live // at the point of the `HDeoptimize`. HDeoptimize(ArenaAllocator* allocator, HInstruction* cond, HInstruction* guard, DeoptimizationKind kind, uint32_t dex_pc) : HVariableInputSizeInstruction( kDeoptimize, SideEffects::CanTriggerGC(), dex_pc, allocator, /* number_of_inputs */ 2, kArenaAllocMisc) { SetPackedFlag<kFieldCanBeMoved>(true); SetPackedField<DeoptimizeKindField>(kind); SetRawInputAt(0, cond); SetRawInputAt(1, guard); } bool CanBeMoved() const OVERRIDE { return GetPackedFlag<kFieldCanBeMoved>(); } bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { return (other->CanBeMoved() == CanBeMoved()) && (other->AsDeoptimize()->GetKind() == GetKind()); } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } DeoptimizationKind GetDeoptimizationKind() const { return GetPackedField<DeoptimizeKindField>(); } DataType::Type GetType() const OVERRIDE { return GuardsAnInput() ? GuardedInput()->GetType() : DataType::Type::kVoid; } bool GuardsAnInput() const { return InputCount() == 2; } HInstruction* GuardedInput() const { DCHECK(GuardsAnInput()); return InputAt(1); } void RemoveGuard() { RemoveInputAt(1); } DECLARE_INSTRUCTION(Deoptimize); protected: DEFAULT_COPY_CONSTRUCTOR(Deoptimize); private: static constexpr size_t kFieldCanBeMoved = kNumberOfGenericPackedBits; static constexpr size_t kFieldDeoptimizeKind = kNumberOfGenericPackedBits + 1; static constexpr size_t kFieldDeoptimizeKindSize = MinimumBitsToStore(static_cast<size_t>(DeoptimizationKind::kLast)); static constexpr size_t kNumberOfDeoptimizePackedBits = kFieldDeoptimizeKind + kFieldDeoptimizeKindSize; static_assert(kNumberOfDeoptimizePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using DeoptimizeKindField = BitField<DeoptimizationKind, kFieldDeoptimizeKind, kFieldDeoptimizeKindSize>; }; // Represents a should_deoptimize flag. Currently used for CHA-based devirtualization. // The compiled code checks this flag value in a guard before devirtualized call and // if it's true, starts to do deoptimization. // It has a 4-byte slot on stack. // TODO: allocate a register for this flag. class HShouldDeoptimizeFlag FINAL : public HVariableInputSizeInstruction { public: // CHA guards are only optimized in a separate pass and it has no side effects // with regard to other passes. HShouldDeoptimizeFlag(ArenaAllocator* allocator, uint32_t dex_pc) : HVariableInputSizeInstruction(kShouldDeoptimizeFlag, SideEffects::None(), dex_pc, allocator, 0, kArenaAllocCHA) { } DataType::Type GetType() const OVERRIDE { return DataType::Type::kInt32; } // We do all CHA guard elimination/motion in a single pass, after which there is no // further guard elimination/motion since a guard might have been used for justification // of the elimination of another guard. Therefore, we pretend this guard cannot be moved // to avoid other optimizations trying to move it. bool CanBeMoved() const OVERRIDE { return false; } DECLARE_INSTRUCTION(ShouldDeoptimizeFlag); protected: DEFAULT_COPY_CONSTRUCTOR(ShouldDeoptimizeFlag); }; // Represents the ArtMethod that was passed as a first argument to // the method. It is used by instructions that depend on it, like // instructions that work with the dex cache. class HCurrentMethod FINAL : public HExpression<0> { public: explicit HCurrentMethod(DataType::Type type, uint32_t dex_pc = kNoDexPc) : HExpression(kCurrentMethod, type, SideEffects::None(), dex_pc) { } DECLARE_INSTRUCTION(CurrentMethod); protected: DEFAULT_COPY_CONSTRUCTOR(CurrentMethod); }; // Fetches an ArtMethod from the virtual table or the interface method table // of a class. class HClassTableGet FINAL : public HExpression<1> { public: enum class TableKind { kVTable, kIMTable, kLast = kIMTable }; HClassTableGet(HInstruction* cls, DataType::Type type, TableKind kind, size_t index, uint32_t dex_pc) : HExpression(kClassTableGet, type, SideEffects::None(), dex_pc), index_(index) { SetPackedField<TableKindField>(kind); SetRawInputAt(0, cls); } bool IsClonable() const OVERRIDE { return true; } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { return other->AsClassTableGet()->GetIndex() == index_ && other->AsClassTableGet()->GetPackedFields() == GetPackedFields(); } TableKind GetTableKind() const { return GetPackedField<TableKindField>(); } size_t GetIndex() const { return index_; } DECLARE_INSTRUCTION(ClassTableGet); protected: DEFAULT_COPY_CONSTRUCTOR(ClassTableGet); private: static constexpr size_t kFieldTableKind = kNumberOfExpressionPackedBits; static constexpr size_t kFieldTableKindSize = MinimumBitsToStore(static_cast<size_t>(TableKind::kLast)); static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize; static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>; // The index of the ArtMethod in the table. const size_t index_; }; // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will // have one successor for each entry in the switch table, and the final successor // will be the block containing the next Dex opcode. class HPackedSwitch FINAL : public HTemplateInstruction<1> { public: HPackedSwitch(int32_t start_value, uint32_t num_entries, HInstruction* input, uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(kPackedSwitch, SideEffects::None(), dex_pc), start_value_(start_value), num_entries_(num_entries) { SetRawInputAt(0, input); } bool IsClonable() const OVERRIDE { return true; } bool IsControlFlow() const OVERRIDE { return true; } int32_t GetStartValue() const { return start_value_; } uint32_t GetNumEntries() const { return num_entries_; } HBasicBlock* GetDefaultBlock() const { // Last entry is the default block. return GetBlock()->GetSuccessors()[num_entries_]; } DECLARE_INSTRUCTION(PackedSwitch); protected: DEFAULT_COPY_CONSTRUCTOR(PackedSwitch); private: const int32_t start_value_; const uint32_t num_entries_; }; class HUnaryOperation : public HExpression<1> { public: HUnaryOperation(InstructionKind kind, DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) : HExpression(kind, result_type, SideEffects::None(), dex_pc) { SetRawInputAt(0, input); } // All of the UnaryOperation instructions are clonable. bool IsClonable() const OVERRIDE { return true; } HInstruction* GetInput() const { return InputAt(0); } DataType::Type GetResultType() const { return GetType(); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } // Try to statically evaluate `this` and return a HConstant // containing the result of this evaluation. If `this` cannot // be evaluated as a constant, return null. HConstant* TryStaticEvaluation() const; // Apply this operation to `x`. virtual HConstant* Evaluate(HIntConstant* x) const = 0; virtual HConstant* Evaluate(HLongConstant* x) const = 0; virtual HConstant* Evaluate(HFloatConstant* x) const = 0; virtual HConstant* Evaluate(HDoubleConstant* x) const = 0; DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation); protected: DEFAULT_COPY_CONSTRUCTOR(UnaryOperation); }; class HBinaryOperation : public HExpression<2> { public: HBinaryOperation(InstructionKind kind, DataType::Type result_type, HInstruction* left, HInstruction* right, SideEffects side_effects = SideEffects::None(), uint32_t dex_pc = kNoDexPc) : HExpression(kind, result_type, side_effects, dex_pc) { SetRawInputAt(0, left); SetRawInputAt(1, right); } // All of the BinaryOperation instructions are clonable. bool IsClonable() const OVERRIDE { return true; } HInstruction* GetLeft() const { return InputAt(0); } HInstruction* GetRight() const { return InputAt(1); } DataType::Type GetResultType() const { return GetType(); } virtual bool IsCommutative() const { return false; } // Put constant on the right. // Returns whether order is changed. bool OrderInputsWithConstantOnTheRight() { HInstruction* left = InputAt(0); HInstruction* right = InputAt(1); if (left->IsConstant() && !right->IsConstant()) { ReplaceInput(right, 0); ReplaceInput(left, 1); return true; } return false; } // Order inputs by instruction id, but favor constant on the right side. // This helps GVN for commutative ops. void OrderInputs() { DCHECK(IsCommutative()); HInstruction* left = InputAt(0); HInstruction* right = InputAt(1); if (left == right || (!left->IsConstant() && right->IsConstant())) { return; } if (OrderInputsWithConstantOnTheRight()) { return; } // Order according to instruction id. if (left->GetId() > right->GetId()) { ReplaceInput(right, 0); ReplaceInput(left, 1); } } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } // Try to statically evaluate `this` and return a HConstant // containing the result of this evaluation. If `this` cannot // be evaluated as a constant, return null. HConstant* TryStaticEvaluation() const; // Apply this operation to `x` and `y`. virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, HNullConstant* y ATTRIBUTE_UNUSED) const { LOG(FATAL) << DebugName() << " is not defined for the (null, null) case."; UNREACHABLE(); } virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0; virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0; virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED, HIntConstant* y ATTRIBUTE_UNUSED) const { LOG(FATAL) << DebugName() << " is not defined for the (long, int) case."; UNREACHABLE(); } virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0; virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0; // Returns an input that can legally be used as the right input and is // constant, or null. HConstant* GetConstantRight() const; // If `GetConstantRight()` returns one of the input, this returns the other // one. Otherwise it returns null. HInstruction* GetLeastConstantLeft() const; DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation); protected: DEFAULT_COPY_CONSTRUCTOR(BinaryOperation); }; // The comparison bias applies for floating point operations and indicates how NaN // comparisons are treated: enum class ComparisonBias { kNoBias, // bias is not applicable (i.e. for long operation) kGtBias, // return 1 for NaN comparisons kLtBias, // return -1 for NaN comparisons kLast = kLtBias }; std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs); class HCondition : public HBinaryOperation { public: HCondition(InstructionKind kind, HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(kind, DataType::Type::kBool, first, second, SideEffects::None(), dex_pc) { SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias); } // For code generation purposes, returns whether this instruction is just before // `instruction`, and disregard moves in between. bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const; DECLARE_ABSTRACT_INSTRUCTION(Condition); virtual IfCondition GetCondition() const = 0; virtual IfCondition GetOppositeCondition() const = 0; bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; } bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; } ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); } void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); } bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { return GetPackedFields() == other->AsCondition()->GetPackedFields(); } bool IsFPConditionTrueIfNaN() const { DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); IfCondition if_cond = GetCondition(); if (if_cond == kCondNE) { return true; } else if (if_cond == kCondEQ) { return false; } return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias(); } bool IsFPConditionFalseIfNaN() const { DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); IfCondition if_cond = GetCondition(); if (if_cond == kCondEQ) { return true; } else if (if_cond == kCondNE) { return false; } return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias(); } protected: // Needed if we merge a HCompare into a HCondition. static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits; static constexpr size_t kFieldComparisonBiasSize = MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast)); static constexpr size_t kNumberOfConditionPackedBits = kFieldComparisonBias + kFieldComparisonBiasSize; static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using ComparisonBiasField = BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>; template <typename T> int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); } template <typename T> int32_t CompareFP(T x, T y) const { DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); DCHECK_NE(GetBias(), ComparisonBias::kNoBias); // Handle the bias. return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y); } // Return an integer constant containing the result of a condition evaluated at compile time. HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const { return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc); } DEFAULT_COPY_CONSTRUCTOR(Condition); }; // Instruction to check if two inputs are equal to each other. class HEqual FINAL : public HCondition { public: HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(kEqual, first, second, dex_pc) { } bool IsCommutative() const OVERRIDE { return true; } HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { return MakeConstantCondition(true, GetDexPc()); } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } // In the following Evaluate methods, a HCompare instruction has // been merged into this HEqual instruction; evaluate it as // `Compare(x, y) == 0`. HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } DECLARE_INSTRUCTION(Equal); IfCondition GetCondition() const OVERRIDE { return kCondEQ; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondNE; } protected: DEFAULT_COPY_CONSTRUCTOR(Equal); private: template <typename T> static bool Compute(T x, T y) { return x == y; } }; class HNotEqual FINAL : public HCondition { public: HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(kNotEqual, first, second, dex_pc) { } bool IsCommutative() const OVERRIDE { return true; } HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { return MakeConstantCondition(false, GetDexPc()); } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } // In the following Evaluate methods, a HCompare instruction has // been merged into this HNotEqual instruction; evaluate it as // `Compare(x, y) != 0`. HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } DECLARE_INSTRUCTION(NotEqual); IfCondition GetCondition() const OVERRIDE { return kCondNE; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondEQ; } protected: DEFAULT_COPY_CONSTRUCTOR(NotEqual); private: template <typename T> static bool Compute(T x, T y) { return x != y; } }; class HLessThan FINAL : public HCondition { public: HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(kLessThan, first, second, dex_pc) { } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } // In the following Evaluate methods, a HCompare instruction has // been merged into this HLessThan instruction; evaluate it as // `Compare(x, y) < 0`. HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } DECLARE_INSTRUCTION(LessThan); IfCondition GetCondition() const OVERRIDE { return kCondLT; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondGE; } protected: DEFAULT_COPY_CONSTRUCTOR(LessThan); private: template <typename T> static bool Compute(T x, T y) { return x < y; } }; class HLessThanOrEqual FINAL : public HCondition { public: HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(kLessThanOrEqual, first, second, dex_pc) { } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } // In the following Evaluate methods, a HCompare instruction has // been merged into this HLessThanOrEqual instruction; evaluate it as // `Compare(x, y) <= 0`. HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } DECLARE_INSTRUCTION(LessThanOrEqual); IfCondition GetCondition() const OVERRIDE { return kCondLE; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondGT; } protected: DEFAULT_COPY_CONSTRUCTOR(LessThanOrEqual); private: template <typename T> static bool Compute(T x, T y) { return x <= y; } }; class HGreaterThan FINAL : public HCondition { public: HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(kGreaterThan, first, second, dex_pc) { } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } // In the following Evaluate methods, a HCompare instruction has // been merged into this HGreaterThan instruction; evaluate it as // `Compare(x, y) > 0`. HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } DECLARE_INSTRUCTION(GreaterThan); IfCondition GetCondition() const OVERRIDE { return kCondGT; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondLE; } protected: DEFAULT_COPY_CONSTRUCTOR(GreaterThan); private: template <typename T> static bool Compute(T x, T y) { return x > y; } }; class HGreaterThanOrEqual FINAL : public HCondition { public: HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(kGreaterThanOrEqual, first, second, dex_pc) { } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } // In the following Evaluate methods, a HCompare instruction has // been merged into this HGreaterThanOrEqual instruction; evaluate it as // `Compare(x, y) >= 0`. HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } DECLARE_INSTRUCTION(GreaterThanOrEqual); IfCondition GetCondition() const OVERRIDE { return kCondGE; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondLT; } protected: DEFAULT_COPY_CONSTRUCTOR(GreaterThanOrEqual); private: template <typename T> static bool Compute(T x, T y) { return x >= y; } }; class HBelow FINAL : public HCondition { public: HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(kBelow, first, second, dex_pc) { } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Below); IfCondition GetCondition() const OVERRIDE { return kCondB; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondAE; } protected: DEFAULT_COPY_CONSTRUCTOR(Below); private: template <typename T> static bool Compute(T x, T y) { return MakeUnsigned(x) < MakeUnsigned(y); } }; class HBelowOrEqual FINAL : public HCondition { public: HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(kBelowOrEqual, first, second, dex_pc) { } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(BelowOrEqual); IfCondition GetCondition() const OVERRIDE { return kCondBE; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondA; } protected: DEFAULT_COPY_CONSTRUCTOR(BelowOrEqual); private: template <typename T> static bool Compute(T x, T y) { return MakeUnsigned(x) <= MakeUnsigned(y); } }; class HAbove FINAL : public HCondition { public: HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(kAbove, first, second, dex_pc) { } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Above); IfCondition GetCondition() const OVERRIDE { return kCondA; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondBE; } protected: DEFAULT_COPY_CONSTRUCTOR(Above); private: template <typename T> static bool Compute(T x, T y) { return MakeUnsigned(x) > MakeUnsigned(y); } }; class HAboveOrEqual FINAL : public HCondition { public: HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(kAboveOrEqual, first, second, dex_pc) { } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(AboveOrEqual); IfCondition GetCondition() const OVERRIDE { return kCondAE; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondB; } protected: DEFAULT_COPY_CONSTRUCTOR(AboveOrEqual); private: template <typename T> static bool Compute(T x, T y) { return MakeUnsigned(x) >= MakeUnsigned(y); } }; // Instruction to check how two inputs compare to each other. // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1. class HCompare FINAL : public HBinaryOperation { public: // Note that `comparison_type` is the type of comparison performed // between the comparison's inputs, not the type of the instantiated // HCompare instruction (which is always DataType::Type::kInt). HCompare(DataType::Type comparison_type, HInstruction* first, HInstruction* second, ComparisonBias bias, uint32_t dex_pc) : HBinaryOperation(kCompare, DataType::Type::kInt32, first, second, SideEffectsForArchRuntimeCalls(comparison_type), dex_pc) { SetPackedField<ComparisonBiasField>(bias); DCHECK_EQ(comparison_type, DataType::Kind(first->GetType())); DCHECK_EQ(comparison_type, DataType::Kind(second->GetType())); } template <typename T> int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); } template <typename T> int32_t ComputeFP(T x, T y) const { DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); DCHECK_NE(GetBias(), ComparisonBias::kNoBias); // Handle the bias. return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y); } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { // Note that there is no "cmp-int" Dex instruction so we shouldn't // reach this code path when processing a freshly built HIR // graph. However HCompare integer instructions can be synthesized // by the instruction simplifier to implement IntegerCompare and // IntegerSignum intrinsics, so we have to handle this case. return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); } bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { return GetPackedFields() == other->AsCompare()->GetPackedFields(); } ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); } // Does this compare instruction have a "gt bias" (vs an "lt bias")? // Only meaningful for floating-point comparisons. bool IsGtBias() const { DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); return GetBias() == ComparisonBias::kGtBias; } static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED) { // Comparisons do not require a runtime call in any back end. return SideEffects::None(); } DECLARE_INSTRUCTION(Compare); protected: static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits; static constexpr size_t kFieldComparisonBiasSize = MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast)); static constexpr size_t kNumberOfComparePackedBits = kFieldComparisonBias + kFieldComparisonBiasSize; static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using ComparisonBiasField = BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>; // Return an integer constant containing the result of a comparison evaluated at compile time. HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const { DCHECK(value == -1 || value == 0 || value == 1) << value; return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc); } DEFAULT_COPY_CONSTRUCTOR(Compare); }; class HNewInstance FINAL : public HExpression<1> { public: HNewInstance(HInstruction* cls, uint32_t dex_pc, dex::TypeIndex type_index, const DexFile& dex_file, bool finalizable, QuickEntrypointEnum entrypoint) : HExpression(kNewInstance, DataType::Type::kReference, SideEffects::CanTriggerGC(), dex_pc), type_index_(type_index), dex_file_(dex_file), entrypoint_(entrypoint) { SetPackedFlag<kFlagFinalizable>(finalizable); SetRawInputAt(0, cls); } bool IsClonable() const OVERRIDE { return true; } dex::TypeIndex GetTypeIndex() const { return type_index_; } const DexFile& GetDexFile() const { return dex_file_; } // Calls runtime so needs an environment. bool NeedsEnvironment() const OVERRIDE { return true; } // Can throw errors when out-of-memory or if it's not instantiable/accessible. bool CanThrow() const OVERRIDE { return true; } bool NeedsChecks() const { return entrypoint_ == kQuickAllocObjectWithChecks; } bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); } bool CanBeNull() const OVERRIDE { return false; } QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; } void SetEntrypoint(QuickEntrypointEnum entrypoint) { entrypoint_ = entrypoint; } HLoadClass* GetLoadClass() const { HInstruction* input = InputAt(0); if (input->IsClinitCheck()) { input = input->InputAt(0); } DCHECK(input->IsLoadClass()); return input->AsLoadClass(); } bool IsStringAlloc() const; DECLARE_INSTRUCTION(NewInstance); protected: DEFAULT_COPY_CONSTRUCTOR(NewInstance); private: static constexpr size_t kFlagFinalizable = kNumberOfExpressionPackedBits; static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1; static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); const dex::TypeIndex type_index_; const DexFile& dex_file_; QuickEntrypointEnum entrypoint_; }; enum IntrinsicNeedsEnvironmentOrCache { kNoEnvironmentOrCache, // Intrinsic does not require an environment or dex cache. kNeedsEnvironmentOrCache // Intrinsic requires an environment or requires a dex cache. }; enum IntrinsicSideEffects { kNoSideEffects, // Intrinsic does not have any heap memory side effects. kReadSideEffects, // Intrinsic may read heap memory. kWriteSideEffects, // Intrinsic may write heap memory. kAllSideEffects // Intrinsic may read or write heap memory, or trigger GC. }; enum IntrinsicExceptions { kNoThrow, // Intrinsic does not throw any exceptions. kCanThrow // Intrinsic may throw exceptions. }; class HInvoke : public HVariableInputSizeInstruction { public: bool NeedsEnvironment() const OVERRIDE; void SetArgumentAt(size_t index, HInstruction* argument) { SetRawInputAt(index, argument); } // Return the number of arguments. This number can be lower than // the number of inputs returned by InputCount(), as some invoke // instructions (e.g. HInvokeStaticOrDirect) can have non-argument // inputs at the end of their list of inputs. uint32_t GetNumberOfArguments() const { return number_of_arguments_; } DataType::Type GetType() const OVERRIDE { return GetPackedField<ReturnTypeField>(); } uint32_t GetDexMethodIndex() const { return dex_method_index_; } InvokeType GetInvokeType() const { return GetPackedField<InvokeTypeField>(); } Intrinsics GetIntrinsic() const { return intrinsic_; } void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache, IntrinsicSideEffects side_effects, IntrinsicExceptions exceptions); bool IsFromInlinedInvoke() const { return GetEnvironment()->IsFromInlinedInvoke(); } void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); } bool CanThrow() const OVERRIDE { return GetPackedFlag<kFlagCanThrow>(); } void SetAlwaysThrows(bool always_throws) { SetPackedFlag<kFlagAlwaysThrows>(always_throws); } bool AlwaysThrows() const OVERRIDE { return GetPackedFlag<kFlagAlwaysThrows>(); } bool CanBeMoved() const OVERRIDE { return IsIntrinsic() && !DoesAnyWrite(); } bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_; } uint32_t* GetIntrinsicOptimizations() { return &intrinsic_optimizations_; } const uint32_t* GetIntrinsicOptimizations() const { return &intrinsic_optimizations_; } bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; } ArtMethod* GetResolvedMethod() const { return resolved_method_; } void SetResolvedMethod(ArtMethod* method) { resolved_method_ = method; } DECLARE_ABSTRACT_INSTRUCTION(Invoke); protected: static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits; static constexpr size_t kFieldInvokeTypeSize = MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType)); static constexpr size_t kFieldReturnType = kFieldInvokeType + kFieldInvokeTypeSize; static constexpr size_t kFieldReturnTypeSize = MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); static constexpr size_t kFlagCanThrow = kFieldReturnType + kFieldReturnTypeSize; static constexpr size_t kFlagAlwaysThrows = kFlagCanThrow + 1; static constexpr size_t kNumberOfInvokePackedBits = kFlagAlwaysThrows + 1; static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>; using ReturnTypeField = BitField<DataType::Type, kFieldReturnType, kFieldReturnTypeSize>; HInvoke(InstructionKind kind, ArenaAllocator* allocator, uint32_t number_of_arguments, uint32_t number_of_other_inputs, DataType::Type return_type, uint32_t dex_pc, uint32_t dex_method_index, ArtMethod* resolved_method, InvokeType invoke_type) : HVariableInputSizeInstruction( kind, SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays. dex_pc, allocator, number_of_arguments + number_of_other_inputs, kArenaAllocInvokeInputs), number_of_arguments_(number_of_arguments), resolved_method_(resolved_method), dex_method_index_(dex_method_index), intrinsic_(Intrinsics::kNone), intrinsic_optimizations_(0) { SetPackedField<ReturnTypeField>(return_type); SetPackedField<InvokeTypeField>(invoke_type); SetPackedFlag<kFlagCanThrow>(true); } DEFAULT_COPY_CONSTRUCTOR(Invoke); uint32_t number_of_arguments_; ArtMethod* resolved_method_; const uint32_t dex_method_index_; Intrinsics intrinsic_; // A magic word holding optimizations for intrinsics. See intrinsics.h. uint32_t intrinsic_optimizations_; }; class HInvokeUnresolved FINAL : public HInvoke { public: HInvokeUnresolved(ArenaAllocator* allocator, uint32_t number_of_arguments, DataType::Type return_type, uint32_t dex_pc, uint32_t dex_method_index, InvokeType invoke_type) : HInvoke(kInvokeUnresolved, allocator, number_of_arguments, 0u /* number_of_other_inputs */, return_type, dex_pc, dex_method_index, nullptr, invoke_type) { } bool IsClonable() const OVERRIDE { return true; } DECLARE_INSTRUCTION(InvokeUnresolved); protected: DEFAULT_COPY_CONSTRUCTOR(InvokeUnresolved); }; class HInvokePolymorphic FINAL : public HInvoke { public: HInvokePolymorphic(ArenaAllocator* allocator, uint32_t number_of_arguments, DataType::Type return_type, uint32_t dex_pc, uint32_t dex_method_index) : HInvoke(kInvokePolymorphic, allocator, number_of_arguments, 0u /* number_of_other_inputs */, return_type, dex_pc, dex_method_index, nullptr, kVirtual) { } bool IsClonable() const OVERRIDE { return true; } DECLARE_INSTRUCTION(InvokePolymorphic); protected: DEFAULT_COPY_CONSTRUCTOR(InvokePolymorphic); }; class HInvokeStaticOrDirect FINAL : public HInvoke { public: // Requirements of this method call regarding the class // initialization (clinit) check of its declaring class. enum class ClinitCheckRequirement { kNone, // Class already initialized. kExplicit, // Static call having explicit clinit check as last input. kImplicit, // Static call implicitly requiring a clinit check. kLast = kImplicit }; // Determines how to load the target ArtMethod*. enum class MethodLoadKind { // Use a String init ArtMethod* loaded from Thread entrypoints. kStringInit, // Use the method's own ArtMethod* loaded by the register allocator. kRecursive, // Use PC-relative boot image ArtMethod* address that will be known at link time. // Used for boot image methods referenced by boot image code. kBootImageLinkTimePcRelative, // Use ArtMethod* at a known address, embed the direct address in the code. // Used for app->boot calls with non-relocatable image and for JIT-compiled calls. kDirectAddress, // Load from an entry in the .bss section using a PC-relative load. // Used for classes outside boot image when .bss is accessible with a PC-relative load. kBssEntry, // Make a runtime call to resolve and call the method. This is the last-resort-kind // used when other kinds are unimplemented on a particular architecture. kRuntimeCall, }; // Determines the location of the code pointer. enum class CodePtrLocation { // Recursive call, use local PC-relative call instruction. kCallSelf, // Use code pointer from the ArtMethod*. // Used when we don't know the target code. This is also the last-resort-kind used when // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture. kCallArtMethod, }; struct DispatchInfo { MethodLoadKind method_load_kind; CodePtrLocation code_ptr_location; // The method load data holds // - thread entrypoint offset for kStringInit method if this is a string init invoke. // Note that there are multiple string init methods, each having its own offset. // - the method address for kDirectAddress uint64_t method_load_data; }; HInvokeStaticOrDirect(ArenaAllocator* allocator, uint32_t number_of_arguments, DataType::Type return_type, uint32_t dex_pc, uint32_t method_index, ArtMethod* resolved_method, DispatchInfo dispatch_info, InvokeType invoke_type, MethodReference target_method, ClinitCheckRequirement clinit_check_requirement) : HInvoke(kInvokeStaticOrDirect, allocator, number_of_arguments, // There is potentially one extra argument for the HCurrentMethod node, and // potentially one other if the clinit check is explicit, and potentially // one other if the method is a string factory. (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) + (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u), return_type, dex_pc, method_index, resolved_method, invoke_type), target_method_(target_method), dispatch_info_(dispatch_info) { SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement); } bool IsClonable() const OVERRIDE { return true; } void SetDispatchInfo(const DispatchInfo& dispatch_info) { bool had_current_method_input = HasCurrentMethodInput(); bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind); // Using the current method is the default and once we find a better // method load kind, we should not go back to using the current method. DCHECK(had_current_method_input || !needs_current_method_input); if (had_current_method_input && !needs_current_method_input) { DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod()); RemoveInputAt(GetSpecialInputIndex()); } dispatch_info_ = dispatch_info; } DispatchInfo GetDispatchInfo() const { return dispatch_info_; } void AddSpecialInput(HInstruction* input) { // We allow only one special input. DCHECK(!IsStringInit() && !HasCurrentMethodInput()); DCHECK(InputCount() == GetSpecialInputIndex() || (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck())); InsertInputAt(GetSpecialInputIndex(), input); } using HInstruction::GetInputRecords; // Keep the const version visible. ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE { ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords(); if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) { DCHECK(!input_records.empty()); DCHECK_GT(input_records.size(), GetNumberOfArguments()); HInstruction* last_input = input_records.back().GetInstruction(); // Note: `last_input` may be null during arguments setup. if (last_input != nullptr) { // `last_input` is the last input of a static invoke marked as having // an explicit clinit check. It must either be: // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation. DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName(); } } return input_records; } bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE { // We access the method via the dex cache so we can't do an implicit null check. // TODO: for intrinsics we can generate implicit null checks. return false; } bool CanBeNull() const OVERRIDE { return GetPackedField<ReturnTypeField>() == DataType::Type::kReference && !IsStringInit(); } // Get the index of the special input, if any. // // If the invoke HasCurrentMethodInput(), the "special input" is the current // method pointer; otherwise there may be one platform-specific special input, // such as PC-relative addressing base. uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); } bool HasSpecialInput() const { return GetNumberOfArguments() != InputCount(); } MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; } CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; } bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; } bool NeedsDexCacheOfDeclaringClass() const OVERRIDE; bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; } bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; } bool HasPcRelativeMethodLoadKind() const { return GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative || GetMethodLoadKind() == MethodLoadKind::kBssEntry; } bool HasCurrentMethodInput() const { // This function can be called only after the invoke has been fully initialized by the builder. if (NeedsCurrentMethodInput(GetMethodLoadKind())) { DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod()); return true; } else { DCHECK(InputCount() == GetSpecialInputIndex() || !InputAt(GetSpecialInputIndex())->IsCurrentMethod()); return false; } } QuickEntrypointEnum GetStringInitEntryPoint() const { DCHECK(IsStringInit()); return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data); } uint64_t GetMethodAddress() const { DCHECK(HasMethodAddress()); return dispatch_info_.method_load_data; } const DexFile& GetDexFileForPcRelativeDexCache() const; ClinitCheckRequirement GetClinitCheckRequirement() const { return GetPackedField<ClinitCheckRequirementField>(); } // Is this instruction a call to a static method? bool IsStatic() const { return GetInvokeType() == kStatic; } MethodReference GetTargetMethod() const { return target_method_; } // Remove the HClinitCheck or the replacement HLoadClass (set as last input by // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck) // instruction; only relevant for static calls with explicit clinit check. void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) { DCHECK(IsStaticWithExplicitClinitCheck()); size_t last_input_index = inputs_.size() - 1u; HInstruction* last_input = inputs_.back().GetInstruction(); DCHECK(last_input != nullptr); DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName(); RemoveAsUserOfInput(last_input_index); inputs_.pop_back(); SetPackedField<ClinitCheckRequirementField>(new_requirement); DCHECK(!IsStaticWithExplicitClinitCheck()); } // Is this a call to a static method whose declaring class has an // explicit initialization check in the graph? bool IsStaticWithExplicitClinitCheck() const { return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit); } // Is this a call to a static method whose declaring class has an // implicit intialization check requirement? bool IsStaticWithImplicitClinitCheck() const { return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit); } // Does this method load kind need the current method as an input? static bool NeedsCurrentMethodInput(MethodLoadKind kind) { return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kRuntimeCall; } DECLARE_INSTRUCTION(InvokeStaticOrDirect); protected: DEFAULT_COPY_CONSTRUCTOR(InvokeStaticOrDirect); private: static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits; static constexpr size_t kFieldClinitCheckRequirementSize = MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast)); static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits = kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize; static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using ClinitCheckRequirementField = BitField<ClinitCheckRequirement, kFieldClinitCheckRequirement, kFieldClinitCheckRequirementSize>; // Cached values of the resolved method, to avoid needing the mutator lock. const MethodReference target_method_; DispatchInfo dispatch_info_; }; std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs); std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs); class HInvokeVirtual FINAL : public HInvoke { public: HInvokeVirtual(ArenaAllocator* allocator, uint32_t number_of_arguments, DataType::Type return_type, uint32_t dex_pc, uint32_t dex_method_index, ArtMethod* resolved_method, uint32_t vtable_index) : HInvoke(kInvokeVirtual, allocator, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, resolved_method, kVirtual), vtable_index_(vtable_index) { } bool IsClonable() const OVERRIDE { return true; } bool CanBeNull() const OVERRIDE { switch (GetIntrinsic()) { case Intrinsics::kThreadCurrentThread: case Intrinsics::kStringBufferAppend: case Intrinsics::kStringBufferToString: case Intrinsics::kStringBuilderAppend: case Intrinsics::kStringBuilderToString: return false; default: return HInvoke::CanBeNull(); } } bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { // TODO: Add implicit null checks in intrinsics. return (obj == InputAt(0)) && !GetLocations()->Intrinsified(); } uint32_t GetVTableIndex() const { return vtable_index_; } DECLARE_INSTRUCTION(InvokeVirtual); protected: DEFAULT_COPY_CONSTRUCTOR(InvokeVirtual); private: // Cached value of the resolved method, to avoid needing the mutator lock. const uint32_t vtable_index_; }; class HInvokeInterface FINAL : public HInvoke { public: HInvokeInterface(ArenaAllocator* allocator, uint32_t number_of_arguments, DataType::Type return_type, uint32_t dex_pc, uint32_t dex_method_index, ArtMethod* resolved_method, uint32_t imt_index) : HInvoke(kInvokeInterface, allocator, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, resolved_method, kInterface), imt_index_(imt_index) { } bool IsClonable() const OVERRIDE { return true; } bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { // TODO: Add implicit null checks in intrinsics. return (obj == InputAt(0)) && !GetLocations()->Intrinsified(); } bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { // The assembly stub currently needs it. return true; } uint32_t GetImtIndex() const { return imt_index_; } DECLARE_INSTRUCTION(InvokeInterface); protected: DEFAULT_COPY_CONSTRUCTOR(InvokeInterface); private: // Cached value of the resolved method, to avoid needing the mutator lock. const uint32_t imt_index_; }; class HNeg FINAL : public HUnaryOperation { public: HNeg(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) : HUnaryOperation(kNeg, result_type, input, dex_pc) { DCHECK_EQ(result_type, DataType::Kind(input->GetType())); } template <typename T> static T Compute(T x) { return -x; } HConstant* Evaluate(HIntConstant* x) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x) const OVERRIDE { return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x) const OVERRIDE { return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc()); } DECLARE_INSTRUCTION(Neg); protected: DEFAULT_COPY_CONSTRUCTOR(Neg); }; class HNewArray FINAL : public HExpression<2> { public: HNewArray(HInstruction* cls, HInstruction* length, uint32_t dex_pc) : HExpression(kNewArray, DataType::Type::kReference, SideEffects::CanTriggerGC(), dex_pc) { SetRawInputAt(0, cls); SetRawInputAt(1, length); } bool IsClonable() const OVERRIDE { return true; } // Calls runtime so needs an environment. bool NeedsEnvironment() const OVERRIDE { return true; } // May throw NegativeArraySizeException, OutOfMemoryError, etc. bool CanThrow() const OVERRIDE { return true; } bool CanBeNull() const OVERRIDE { return false; } HLoadClass* GetLoadClass() const { DCHECK(InputAt(0)->IsLoadClass()); return InputAt(0)->AsLoadClass(); } HInstruction* GetLength() const { return InputAt(1); } DECLARE_INSTRUCTION(NewArray); protected: DEFAULT_COPY_CONSTRUCTOR(NewArray); }; class HAdd FINAL : public HBinaryOperation { public: HAdd(DataType::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(kAdd, result_type, left, right, SideEffects::None(), dex_pc) { } bool IsCommutative() const OVERRIDE { return true; } template <typename T> static T Compute(T x, T y) { return x + y; } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetFloatConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetDoubleConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } DECLARE_INSTRUCTION(Add); protected: DEFAULT_COPY_CONSTRUCTOR(Add); }; class HSub FINAL : public HBinaryOperation { public: HSub(DataType::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(kSub, result_type, left, right, SideEffects::None(), dex_pc) { } template <typename T> static T Compute(T x, T y) { return x - y; } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetFloatConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetDoubleConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } DECLARE_INSTRUCTION(Sub); protected: DEFAULT_COPY_CONSTRUCTOR(Sub); }; class HMul FINAL : public HBinaryOperation { public: HMul(DataType::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(kMul, result_type, left, right, SideEffects::None(), dex_pc) { } bool IsCommutative() const OVERRIDE { return true; } template <typename T> static T Compute(T x, T y) { return x * y; } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetFloatConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetDoubleConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } DECLARE_INSTRUCTION(Mul); protected: DEFAULT_COPY_CONSTRUCTOR(Mul); }; class HDiv FINAL : public HBinaryOperation { public: HDiv(DataType::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc) : HBinaryOperation(kDiv, result_type, left, right, SideEffects::None(), dex_pc) { } template <typename T> T ComputeIntegral(T x, T y) const { DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType(); // Our graph structure ensures we never have 0 for `y` during // constant folding. DCHECK_NE(y, 0); // Special case -1 to avoid getting a SIGFPE on x86(_64). return (y == -1) ? -x : x / y; } template <typename T> T ComputeFP(T x, T y) const { DCHECK(DataType::IsFloatingPointType(GetType())) << GetType(); return x / y; } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetFloatConstant( ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetDoubleConstant( ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); } DECLARE_INSTRUCTION(Div); protected: DEFAULT_COPY_CONSTRUCTOR(Div); }; class HRem FINAL : public HBinaryOperation { public: HRem(DataType::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc) : HBinaryOperation(kRem, result_type, left, right, SideEffects::None(), dex_pc) { } template <typename T> T ComputeIntegral(T x, T y) const { DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType(); // Our graph structure ensures we never have 0 for `y` during // constant folding. DCHECK_NE(y, 0); // Special case -1 to avoid getting a SIGFPE on x86(_64). return (y == -1) ? 0 : x % y; } template <typename T> T ComputeFP(T x, T y) const { DCHECK(DataType::IsFloatingPointType(GetType())) << GetType(); return std::fmod(x, y); } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetFloatConstant( ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetDoubleConstant( ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); } DECLARE_INSTRUCTION(Rem); protected: DEFAULT_COPY_CONSTRUCTOR(Rem); }; class HDivZeroCheck FINAL : public HExpression<1> { public: // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException` // constructor. HDivZeroCheck(HInstruction* value, uint32_t dex_pc) : HExpression(kDivZeroCheck, value->GetType(), SideEffects::CanTriggerGC(), dex_pc) { SetRawInputAt(0, value); } DataType::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } DECLARE_INSTRUCTION(DivZeroCheck); protected: DEFAULT_COPY_CONSTRUCTOR(DivZeroCheck); }; class HShl FINAL : public HBinaryOperation { public: HShl(DataType::Type result_type, HInstruction* value, HInstruction* distance, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(kShl, result_type, value, distance, SideEffects::None(), dex_pc) { DCHECK_EQ(result_type, DataType::Kind(value->GetType())); DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); } template <typename T> static T Compute(T value, int32_t distance, int32_t max_shift_distance) { return value << (distance & max_shift_distance); } HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; UNREACHABLE(); } HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Shl); protected: DEFAULT_COPY_CONSTRUCTOR(Shl); }; class HShr FINAL : public HBinaryOperation { public: HShr(DataType::Type result_type, HInstruction* value, HInstruction* distance, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(kShr, result_type, value, distance, SideEffects::None(), dex_pc) { DCHECK_EQ(result_type, DataType::Kind(value->GetType())); DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); } template <typename T> static T Compute(T value, int32_t distance, int32_t max_shift_distance) { return value >> (distance & max_shift_distance); } HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; UNREACHABLE(); } HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Shr); protected: DEFAULT_COPY_CONSTRUCTOR(Shr); }; class HUShr FINAL : public HBinaryOperation { public: HUShr(DataType::Type result_type, HInstruction* value, HInstruction* distance, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(kUShr, result_type, value, distance, SideEffects::None(), dex_pc) { DCHECK_EQ(result_type, DataType::Kind(value->GetType())); DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); } template <typename T> static T Compute(T value, int32_t distance, int32_t max_shift_distance) { typedef typename std::make_unsigned<T>::type V; V ux = static_cast<V>(value); return static_cast<T>(ux >> (distance & max_shift_distance)); } HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; UNREACHABLE(); } HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(UShr); protected: DEFAULT_COPY_CONSTRUCTOR(UShr); }; class HAnd FINAL : public HBinaryOperation { public: HAnd(DataType::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(kAnd, result_type, left, right, SideEffects::None(), dex_pc) { } bool IsCommutative() const OVERRIDE { return true; } template <typename T> static T Compute(T x, T y) { return x & y; } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(And); protected: DEFAULT_COPY_CONSTRUCTOR(And); }; class HOr FINAL : public HBinaryOperation { public: HOr(DataType::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(kOr, result_type, left, right, SideEffects::None(), dex_pc) { } bool IsCommutative() const OVERRIDE { return true; } template <typename T> static T Compute(T x, T y) { return x | y; } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Or); protected: DEFAULT_COPY_CONSTRUCTOR(Or); }; class HXor FINAL : public HBinaryOperation { public: HXor(DataType::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(kXor, result_type, left, right, SideEffects::None(), dex_pc) { } bool IsCommutative() const OVERRIDE { return true; } template <typename T> static T Compute(T x, T y) { return x ^ y; } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Xor); protected: DEFAULT_COPY_CONSTRUCTOR(Xor); }; class HRor FINAL : public HBinaryOperation { public: HRor(DataType::Type result_type, HInstruction* value, HInstruction* distance) : HBinaryOperation(kRor, result_type, value, distance) { DCHECK_EQ(result_type, DataType::Kind(value->GetType())); DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); } template <typename T> static T Compute(T value, int32_t distance, int32_t max_shift_value) { typedef typename std::make_unsigned<T>::type V; V ux = static_cast<V>(value); if ((distance & max_shift_value) == 0) { return static_cast<T>(ux); } else { const V reg_bits = sizeof(T) * 8; return static_cast<T>(ux >> (distance & max_shift_value)) | (value << (reg_bits - (distance & max_shift_value))); } } HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; UNREACHABLE(); } HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Ror); protected: DEFAULT_COPY_CONSTRUCTOR(Ror); }; // The value of a parameter in this method. Its location depends on // the calling convention. class HParameterValue FINAL : public HExpression<0> { public: HParameterValue(const DexFile& dex_file, dex::TypeIndex type_index, uint8_t index, DataType::Type parameter_type, bool is_this = false) : HExpression(kParameterValue, parameter_type, SideEffects::None(), kNoDexPc), dex_file_(dex_file), type_index_(type_index), index_(index) { SetPackedFlag<kFlagIsThis>(is_this); SetPackedFlag<kFlagCanBeNull>(!is_this); } const DexFile& GetDexFile() const { return dex_file_; } dex::TypeIndex GetTypeIndex() const { return type_index_; } uint8_t GetIndex() const { return index_; } bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); } bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); } void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); } DECLARE_INSTRUCTION(ParameterValue); protected: DEFAULT_COPY_CONSTRUCTOR(ParameterValue); private: // Whether or not the parameter value corresponds to 'this' argument. static constexpr size_t kFlagIsThis = kNumberOfExpressionPackedBits; static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1; static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1; static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); const DexFile& dex_file_; const dex::TypeIndex type_index_; // The index of this parameter in the parameters list. Must be less // than HGraph::number_of_in_vregs_. const uint8_t index_; }; class HNot FINAL : public HUnaryOperation { public: HNot(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) : HUnaryOperation(kNot, result_type, input, dex_pc) { } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } template <typename T> static T Compute(T x) { return ~x; } HConstant* Evaluate(HIntConstant* x) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Not); protected: DEFAULT_COPY_CONSTRUCTOR(Not); }; class HBooleanNot FINAL : public HUnaryOperation { public: explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc) : HUnaryOperation(kBooleanNot, DataType::Type::kBool, input, dex_pc) { } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } template <typename T> static bool Compute(T x) { DCHECK(IsUint<1>(x)) << x; return !x; } HConstant* Evaluate(HIntConstant* x) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for long values"; UNREACHABLE(); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(BooleanNot); protected: DEFAULT_COPY_CONSTRUCTOR(BooleanNot); }; class HTypeConversion FINAL : public HExpression<1> { public: // Instantiate a type conversion of `input` to `result_type`. HTypeConversion(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) : HExpression(kTypeConversion, result_type, SideEffects::None(), dex_pc) { SetRawInputAt(0, input); // Invariant: We should never generate a conversion to a Boolean value. DCHECK_NE(DataType::Type::kBool, result_type); } HInstruction* GetInput() const { return InputAt(0); } DataType::Type GetInputType() const { return GetInput()->GetType(); } DataType::Type GetResultType() const { return GetType(); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } // Try to statically evaluate the conversion and return a HConstant // containing the result. If the input cannot be converted, return nullptr. HConstant* TryStaticEvaluation() const; DECLARE_INSTRUCTION(TypeConversion); protected: DEFAULT_COPY_CONSTRUCTOR(TypeConversion); }; static constexpr uint32_t kNoRegNumber = -1; class HNullCheck FINAL : public HExpression<1> { public: // `HNullCheck` can trigger GC, as it may call the `NullPointerException` // constructor. HNullCheck(HInstruction* value, uint32_t dex_pc) : HExpression(kNullCheck, value->GetType(), SideEffects::CanTriggerGC(), dex_pc) { SetRawInputAt(0, value); } bool IsClonable() const OVERRIDE { return true; } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } bool CanBeNull() const OVERRIDE { return false; } DECLARE_INSTRUCTION(NullCheck); protected: DEFAULT_COPY_CONSTRUCTOR(NullCheck); }; // Embeds an ArtField and all the information required by the compiler. We cache // that information to avoid requiring the mutator lock every time we need it. class FieldInfo : public ValueObject { public: FieldInfo(ArtField* field, MemberOffset field_offset, DataType::Type field_type, bool is_volatile, uint32_t index, uint16_t declaring_class_def_index, const DexFile& dex_file) : field_(field), field_offset_(field_offset), field_type_(field_type), is_volatile_(is_volatile), index_(index), declaring_class_def_index_(declaring_class_def_index), dex_file_(dex_file) {} ArtField* GetField() const { return field_; } MemberOffset GetFieldOffset() const { return field_offset_; } DataType::Type GetFieldType() const { return field_type_; } uint32_t GetFieldIndex() const { return index_; } uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;} const DexFile& GetDexFile() const { return dex_file_; } bool IsVolatile() const { return is_volatile_; } private: ArtField* const field_; const MemberOffset field_offset_; const DataType::Type field_type_; const bool is_volatile_; const uint32_t index_; const uint16_t declaring_class_def_index_; const DexFile& dex_file_; }; class HInstanceFieldGet FINAL : public HExpression<1> { public: HInstanceFieldGet(HInstruction* value, ArtField* field, DataType::Type field_type, MemberOffset field_offset, bool is_volatile, uint32_t field_idx, uint16_t declaring_class_def_index, const DexFile& dex_file, uint32_t dex_pc) : HExpression(kInstanceFieldGet, field_type, SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc), field_info_(field, field_offset, field_type, is_volatile, field_idx, declaring_class_def_index, dex_file) { SetRawInputAt(0, value); } bool IsClonable() const OVERRIDE { return true; } bool CanBeMoved() const OVERRIDE { return !IsVolatile(); } bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { const HInstanceFieldGet* other_get = other->AsInstanceFieldGet(); return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); } bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value()); } size_t ComputeHashCode() const OVERRIDE { return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); } const FieldInfo& GetFieldInfo() const { return field_info_; } MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } bool IsVolatile() const { return field_info_.IsVolatile(); } void SetType(DataType::Type new_type) { DCHECK(DataType::IsIntegralType(GetType())); DCHECK(DataType::IsIntegralType(new_type)); DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type)); SetPackedField<TypeField>(new_type); } DECLARE_INSTRUCTION(InstanceFieldGet); protected: DEFAULT_COPY_CONSTRUCTOR(InstanceFieldGet); private: const FieldInfo field_info_; }; class HInstanceFieldSet FINAL : public HTemplateInstruction<2> { public: HInstanceFieldSet(HInstruction* object, HInstruction* value, ArtField* field, DataType::Type field_type, MemberOffset field_offset, bool is_volatile, uint32_t field_idx, uint16_t declaring_class_def_index, const DexFile& dex_file, uint32_t dex_pc) : HTemplateInstruction(kInstanceFieldSet, SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc), field_info_(field, field_offset, field_type, is_volatile, field_idx, declaring_class_def_index, dex_file) { SetPackedFlag<kFlagValueCanBeNull>(true); SetRawInputAt(0, object); SetRawInputAt(1, value); } bool IsClonable() const OVERRIDE { return true; } bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value()); } const FieldInfo& GetFieldInfo() const { return field_info_; } MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } bool IsVolatile() const { return field_info_.IsVolatile(); } HInstruction* GetValue() const { return InputAt(1); } bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } DECLARE_INSTRUCTION(InstanceFieldSet); protected: DEFAULT_COPY_CONSTRUCTOR(InstanceFieldSet); private: static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits; static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1; static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); const FieldInfo field_info_; }; class HArrayGet FINAL : public HExpression<2> { public: HArrayGet(HInstruction* array, HInstruction* index, DataType::Type type, uint32_t dex_pc) : HArrayGet(array, index, type, SideEffects::ArrayReadOfType(type), dex_pc, /* is_string_char_at */ false) { } HArrayGet(HInstruction* array, HInstruction* index, DataType::Type type, SideEffects side_effects, uint32_t dex_pc, bool is_string_char_at) : HExpression(kArrayGet, type, side_effects, dex_pc) { SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at); SetRawInputAt(0, array); SetRawInputAt(1, index); } bool IsClonable() const OVERRIDE { return true; } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE { // TODO: We can be smarter here. // Currently, unless the array is the result of NewArray, the array access is always // preceded by some form of null NullCheck necessary for the bounds check, usually // implicit null check on the ArrayLength input to BoundsCheck or Deoptimize for // dynamic BCE. There are cases when these could be removed to produce better code. // If we ever add optimizations to do so we should allow an implicit check here // (as long as the address falls in the first page). // // As an example of such fancy optimization, we could eliminate BoundsCheck for // a = cond ? new int[1] : null; // a[0]; // The Phi does not need bounds check for either input. return false; } bool IsEquivalentOf(HArrayGet* other) const { bool result = (GetDexPc() == other->GetDexPc()); if (kIsDebugBuild && result) { DCHECK_EQ(GetBlock(), other->GetBlock()); DCHECK_EQ(GetArray(), other->GetArray()); DCHECK_EQ(GetIndex(), other->GetIndex()); if (DataType::IsIntOrLongType(GetType())) { DCHECK(DataType::IsFloatingPointType(other->GetType())) << other->GetType(); } else { DCHECK(DataType::IsFloatingPointType(GetType())) << GetType(); DCHECK(DataType::IsIntOrLongType(other->GetType())) << other->GetType(); } } return result; } bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); } HInstruction* GetArray() const { return InputAt(0); } HInstruction* GetIndex() const { return InputAt(1); } void SetType(DataType::Type new_type) { DCHECK(DataType::IsIntegralType(GetType())); DCHECK(DataType::IsIntegralType(new_type)); DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type)); SetPackedField<TypeField>(new_type); } DECLARE_INSTRUCTION(ArrayGet); protected: DEFAULT_COPY_CONSTRUCTOR(ArrayGet); private: // We treat a String as an array, creating the HArrayGet from String.charAt() // intrinsic in the instruction simplifier. We can always determine whether // a particular HArrayGet is actually a String.charAt() by looking at the type // of the input but that requires holding the mutator lock, so we prefer to use // a flag, so that code generators don't need to do the locking. static constexpr size_t kFlagIsStringCharAt = kNumberOfExpressionPackedBits; static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1; static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits, "Too many packed fields."); }; class HArraySet FINAL : public HTemplateInstruction<3> { public: HArraySet(HInstruction* array, HInstruction* index, HInstruction* value, DataType::Type expected_component_type, uint32_t dex_pc) : HArraySet(array, index, value, expected_component_type, // Make a best guess for side effects now, may be refined during SSA building. ComputeSideEffects(GetComponentType(value->GetType(), expected_component_type)), dex_pc) { } HArraySet(HInstruction* array, HInstruction* index, HInstruction* value, DataType::Type expected_component_type, SideEffects side_effects, uint32_t dex_pc) : HTemplateInstruction(kArraySet, side_effects, dex_pc) { SetPackedField<ExpectedComponentTypeField>(expected_component_type); SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == DataType::Type::kReference); SetPackedFlag<kFlagValueCanBeNull>(true); SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false); SetRawInputAt(0, array); SetRawInputAt(1, index); SetRawInputAt(2, value); } bool IsClonable() const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { // We call a runtime method to throw ArrayStoreException. return NeedsTypeCheck(); } // Can throw ArrayStoreException. bool CanThrow() const OVERRIDE { return NeedsTypeCheck(); } bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE { // TODO: Same as for ArrayGet. return false; } void ClearNeedsTypeCheck() { SetPackedFlag<kFlagNeedsTypeCheck>(false); } void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } void SetStaticTypeOfArrayIsObjectArray() { SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true); } bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); } bool StaticTypeOfArrayIsObjectArray() const { return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(); } HInstruction* GetArray() const { return InputAt(0); } HInstruction* GetIndex() const { return InputAt(1); } HInstruction* GetValue() const { return InputAt(2); } DataType::Type GetComponentType() const { return GetComponentType(GetValue()->GetType(), GetRawExpectedComponentType()); } static DataType::Type GetComponentType(DataType::Type value_type, DataType::Type expected_component_type) { // The Dex format does not type floating point index operations. Since the // `expected_component_type` comes from SSA building and can therefore not // be correct, we also check what is the value type. If it is a floating // point type, we must use that type. return ((value_type == DataType::Type::kFloat32) || (value_type == DataType::Type::kFloat64)) ? value_type : expected_component_type; } DataType::Type GetRawExpectedComponentType() const { return GetPackedField<ExpectedComponentTypeField>(); } static SideEffects ComputeSideEffects(DataType::Type type) { return SideEffects::ArrayWriteOfType(type).Union(SideEffectsForArchRuntimeCalls(type)); } static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type value_type) { return (value_type == DataType::Type::kReference) ? SideEffects::CanTriggerGC() : SideEffects::None(); } DECLARE_INSTRUCTION(ArraySet); protected: DEFAULT_COPY_CONSTRUCTOR(ArraySet); private: static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits; static constexpr size_t kFieldExpectedComponentTypeSize = MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); static constexpr size_t kFlagNeedsTypeCheck = kFieldExpectedComponentType + kFieldExpectedComponentTypeSize; static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1; // Cached information for the reference_type_info_ so that codegen // does not need to inspect the static type. static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1; static constexpr size_t kNumberOfArraySetPackedBits = kFlagStaticTypeOfArrayIsObjectArray + 1; static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using ExpectedComponentTypeField = BitField<DataType::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>; }; class HArrayLength FINAL : public HExpression<1> { public: HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false) : HExpression(kArrayLength, DataType::Type::kInt32, SideEffects::None(), dex_pc) { SetPackedFlag<kFlagIsStringLength>(is_string_length); // Note that arrays do not change length, so the instruction does not // depend on any write. SetRawInputAt(0, array); } bool IsClonable() const OVERRIDE { return true; } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { return obj == InputAt(0); } bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); } DECLARE_INSTRUCTION(ArrayLength); protected: DEFAULT_COPY_CONSTRUCTOR(ArrayLength); private: // We treat a String as an array, creating the HArrayLength from String.length() // or String.isEmpty() intrinsic in the instruction simplifier. We can always // determine whether a particular HArrayLength is actually a String.length() by // looking at the type of the input but that requires holding the mutator lock, so // we prefer to use a flag, so that code generators don't need to do the locking. static constexpr size_t kFlagIsStringLength = kNumberOfExpressionPackedBits; static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1; static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits, "Too many packed fields."); }; class HBoundsCheck FINAL : public HExpression<2> { public: // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException` // constructor. HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc, bool is_string_char_at = false) : HExpression(kBoundsCheck, index->GetType(), SideEffects::CanTriggerGC(), dex_pc) { DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(index->GetType())); SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at); SetRawInputAt(0, index); SetRawInputAt(1, length); } bool IsClonable() const OVERRIDE { return true; } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); } HInstruction* GetIndex() const { return InputAt(0); } DECLARE_INSTRUCTION(BoundsCheck); protected: DEFAULT_COPY_CONSTRUCTOR(BoundsCheck); private: static constexpr size_t kFlagIsStringCharAt = kNumberOfExpressionPackedBits; }; class HSuspendCheck FINAL : public HTemplateInstruction<0> { public: explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(kSuspendCheck, SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) { } bool IsClonable() const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return true; } void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; } SlowPathCode* GetSlowPath() const { return slow_path_; } DECLARE_INSTRUCTION(SuspendCheck); protected: DEFAULT_COPY_CONSTRUCTOR(SuspendCheck); private: // Only used for code generation, in order to share the same slow path between back edges // of a same loop. SlowPathCode* slow_path_; }; // Pseudo-instruction which provides the native debugger with mapping information. // It ensures that we can generate line number and local variables at this point. class HNativeDebugInfo : public HTemplateInstruction<0> { public: explicit HNativeDebugInfo(uint32_t dex_pc) : HTemplateInstruction<0>(kNativeDebugInfo, SideEffects::None(), dex_pc) { } bool NeedsEnvironment() const OVERRIDE { return true; } DECLARE_INSTRUCTION(NativeDebugInfo); protected: DEFAULT_COPY_CONSTRUCTOR(NativeDebugInfo); }; /** * Instruction to load a Class object. */ class HLoadClass FINAL : public HInstruction { public: // Determines how to load the Class. enum class LoadKind { // We cannot load this class. See HSharpening::SharpenLoadClass. kInvalid = -1, // Use the Class* from the method's own ArtMethod*. kReferrersClass, // Use PC-relative boot image Class* address that will be known at link time. // Used for boot image classes referenced by boot image code. kBootImageLinkTimePcRelative, // Use a known boot image Class* address, embedded in the code by the codegen. // Used for boot image classes referenced by apps in AOT- and JIT-compiled code. kBootImageAddress, // Use a PC-relative load from a boot image ClassTable mmapped into the .bss // of the oat file. kBootImageClassTable, // Load from an entry in the .bss section using a PC-relative load. // Used for classes outside boot image when .bss is accessible with a PC-relative load. kBssEntry, // Load from the root table associated with the JIT compiled method. kJitTableAddress, // Load using a simple runtime call. This is the fall-back load kind when // the codegen is unable to use another appropriate kind. kRuntimeCall, kLast = kRuntimeCall }; HLoadClass(HCurrentMethod* current_method, dex::TypeIndex type_index, const DexFile& dex_file, Handle<mirror::Class> klass, bool is_referrers_class, uint32_t dex_pc, bool needs_access_check) : HInstruction(kLoadClass, SideEffectsForArchRuntimeCalls(), dex_pc), special_input_(HUserRecord<HInstruction*>(current_method)), type_index_(type_index), dex_file_(dex_file), klass_(klass), loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) { // Referrers class should not need access check. We never inline unverified // methods so we can't possibly end up in this situation. DCHECK(!is_referrers_class || !needs_access_check); SetPackedField<LoadKindField>( is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kRuntimeCall); SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check); SetPackedFlag<kFlagIsInBootImage>(false); SetPackedFlag<kFlagGenerateClInitCheck>(false); } bool IsClonable() const OVERRIDE { return true; } void SetLoadKind(LoadKind load_kind); LoadKind GetLoadKind() const { return GetPackedField<LoadKindField>(); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other) const; size_t ComputeHashCode() const OVERRIDE { return type_index_.index_; } bool CanBeNull() const OVERRIDE { return false; } bool NeedsEnvironment() const OVERRIDE { return CanCallRuntime(); } void SetMustGenerateClinitCheck(bool generate_clinit_check) { // The entrypoint the code generator is going to call does not do // clinit of the class. DCHECK(!NeedsAccessCheck()); SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check); } bool CanCallRuntime() const { return NeedsAccessCheck() || MustGenerateClinitCheck() || GetLoadKind() == LoadKind::kRuntimeCall || GetLoadKind() == LoadKind::kBssEntry; } bool CanThrow() const OVERRIDE { return NeedsAccessCheck() || MustGenerateClinitCheck() || // If the class is in the boot image, the lookup in the runtime call cannot throw. // This keeps CanThrow() consistent between non-PIC (using kBootImageAddress) and // PIC and subsequently avoids a DCE behavior dependency on the PIC option. ((GetLoadKind() == LoadKind::kRuntimeCall || GetLoadKind() == LoadKind::kBssEntry) && !IsInBootImage()); } ReferenceTypeInfo GetLoadedClassRTI() { return loaded_class_rti_; } void SetLoadedClassRTI(ReferenceTypeInfo rti) { // Make sure we only set exact types (the loaded class should never be merged). DCHECK(rti.IsExact()); loaded_class_rti_ = rti; } dex::TypeIndex GetTypeIndex() const { return type_index_; } const DexFile& GetDexFile() const { return dex_file_; } bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return GetLoadKind() == LoadKind::kRuntimeCall; } static SideEffects SideEffectsForArchRuntimeCalls() { return SideEffects::CanTriggerGC(); } bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; } bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); } bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); } bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); } void MarkInBootImage() { SetPackedFlag<kFlagIsInBootImage>(true); } void AddSpecialInput(HInstruction* special_input); using HInstruction::GetInputRecords; // Keep the const version visible. ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL { return ArrayRef<HUserRecord<HInstruction*>>( &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); } DataType::Type GetType() const OVERRIDE { return DataType::Type::kReference; } Handle<mirror::Class> GetClass() const { return klass_; } DECLARE_INSTRUCTION(LoadClass); protected: DEFAULT_COPY_CONSTRUCTOR(LoadClass); private: static constexpr size_t kFlagNeedsAccessCheck = kNumberOfGenericPackedBits; static constexpr size_t kFlagIsInBootImage = kFlagNeedsAccessCheck + 1; // Whether this instruction must generate the initialization check. // Used for code generation. static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1; static constexpr size_t kFieldLoadKind = kFlagGenerateClInitCheck + 1; static constexpr size_t kFieldLoadKindSize = MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast)); static constexpr size_t kNumberOfLoadClassPackedBits = kFieldLoadKind + kFieldLoadKindSize; static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields."); using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>; static bool HasTypeReference(LoadKind load_kind) { return load_kind == LoadKind::kReferrersClass || load_kind == LoadKind::kBootImageLinkTimePcRelative || load_kind == LoadKind::kBootImageClassTable || load_kind == LoadKind::kBssEntry || load_kind == LoadKind::kRuntimeCall; } void SetLoadKindInternal(LoadKind load_kind); // The special input is the HCurrentMethod for kRuntimeCall or kReferrersClass. // For other load kinds it's empty or possibly some architecture-specific instruction // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative. HUserRecord<HInstruction*> special_input_; // A type index and dex file where the class can be accessed. The dex file can be: // - The compiling method's dex file if the class is defined there too. // - The compiling method's dex file if the class is referenced there. // - The dex file where the class is defined. When the load kind can only be // kBssEntry or kRuntimeCall, we cannot emit code for this `HLoadClass`. const dex::TypeIndex type_index_; const DexFile& dex_file_; Handle<mirror::Class> klass_; ReferenceTypeInfo loaded_class_rti_; }; std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs); // Note: defined outside class to see operator<<(., HLoadClass::LoadKind). inline void HLoadClass::SetLoadKind(LoadKind load_kind) { // The load kind should be determined before inserting the instruction to the graph. DCHECK(GetBlock() == nullptr); DCHECK(GetEnvironment() == nullptr); SetPackedField<LoadKindField>(load_kind); if (load_kind != LoadKind::kRuntimeCall && load_kind != LoadKind::kReferrersClass) { special_input_ = HUserRecord<HInstruction*>(nullptr); } if (!NeedsEnvironment()) { SetSideEffects(SideEffects::None()); } } // Note: defined outside class to see operator<<(., HLoadClass::LoadKind). inline void HLoadClass::AddSpecialInput(HInstruction* special_input) { // The special input is used for PC-relative loads on some architectures, // including literal pool loads, which are PC-relative too. DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || GetLoadKind() == LoadKind::kBootImageAddress || GetLoadKind() == LoadKind::kBootImageClassTable || GetLoadKind() == LoadKind::kBssEntry) << GetLoadKind(); DCHECK(special_input_.GetInstruction() == nullptr); special_input_ = HUserRecord<HInstruction*>(special_input); special_input->AddUseAt(this, 0); } class HLoadString FINAL : public HInstruction { public: // Determines how to load the String. enum class LoadKind { // Use PC-relative boot image String* address that will be known at link time. // Used for boot image strings referenced by boot image code. kBootImageLinkTimePcRelative, // Use a known boot image String* address, embedded in the code by the codegen. // Used for boot image strings referenced by apps in AOT- and JIT-compiled code. kBootImageAddress, // Use a PC-relative load from a boot image InternTable mmapped into the .bss // of the oat file. kBootImageInternTable, // Load from an entry in the .bss section using a PC-relative load. // Used for strings outside boot image when .bss is accessible with a PC-relative load. kBssEntry, // Load from the root table associated with the JIT compiled method. kJitTableAddress, // Load using a simple runtime call. This is the fall-back load kind when // the codegen is unable to use another appropriate kind. kRuntimeCall, kLast = kRuntimeCall, }; HLoadString(HCurrentMethod* current_method, dex::StringIndex string_index, const DexFile& dex_file, uint32_t dex_pc) : HInstruction(kLoadString, SideEffectsForArchRuntimeCalls(), dex_pc), special_input_(HUserRecord<HInstruction*>(current_method)), string_index_(string_index), dex_file_(dex_file) { SetPackedField<LoadKindField>(LoadKind::kRuntimeCall); } bool IsClonable() const OVERRIDE { return true; } void SetLoadKind(LoadKind load_kind); LoadKind GetLoadKind() const { return GetPackedField<LoadKindField>(); } const DexFile& GetDexFile() const { return dex_file_; } dex::StringIndex GetStringIndex() const { return string_index_; } Handle<mirror::String> GetString() const { return string_; } void SetString(Handle<mirror::String> str) { string_ = str; } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other) const OVERRIDE; size_t ComputeHashCode() const OVERRIDE { return string_index_.index_; } // Will call the runtime if we need to load the string through // the dex cache and the string is not guaranteed to be there yet. bool NeedsEnvironment() const OVERRIDE { LoadKind load_kind = GetLoadKind(); if (load_kind == LoadKind::kBootImageLinkTimePcRelative || load_kind == LoadKind::kBootImageAddress || load_kind == LoadKind::kBootImageInternTable || load_kind == LoadKind::kJitTableAddress) { return false; } return true; } bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return GetLoadKind() == LoadKind::kRuntimeCall; } bool CanBeNull() const OVERRIDE { return false; } bool CanThrow() const OVERRIDE { return NeedsEnvironment(); } static SideEffects SideEffectsForArchRuntimeCalls() { return SideEffects::CanTriggerGC(); } void AddSpecialInput(HInstruction* special_input); using HInstruction::GetInputRecords; // Keep the const version visible. ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL { return ArrayRef<HUserRecord<HInstruction*>>( &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); } DataType::Type GetType() const OVERRIDE { return DataType::Type::kReference; } DECLARE_INSTRUCTION(LoadString); protected: DEFAULT_COPY_CONSTRUCTOR(LoadString); private: static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits; static constexpr size_t kFieldLoadKindSize = MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast)); static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize; static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>; void SetLoadKindInternal(LoadKind load_kind); // The special input is the HCurrentMethod for kRuntimeCall. // For other load kinds it's empty or possibly some architecture-specific instruction // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative. HUserRecord<HInstruction*> special_input_; dex::StringIndex string_index_; const DexFile& dex_file_; Handle<mirror::String> string_; }; std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs); // Note: defined outside class to see operator<<(., HLoadString::LoadKind). inline void HLoadString::SetLoadKind(LoadKind load_kind) { // The load kind should be determined before inserting the instruction to the graph. DCHECK(GetBlock() == nullptr); DCHECK(GetEnvironment() == nullptr); DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall); SetPackedField<LoadKindField>(load_kind); if (load_kind != LoadKind::kRuntimeCall) { special_input_ = HUserRecord<HInstruction*>(nullptr); } if (!NeedsEnvironment()) { SetSideEffects(SideEffects::None()); } } // Note: defined outside class to see operator<<(., HLoadString::LoadKind). inline void HLoadString::AddSpecialInput(HInstruction* special_input) { // The special input is used for PC-relative loads on some architectures, // including literal pool loads, which are PC-relative too. DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || GetLoadKind() == LoadKind::kBootImageAddress || GetLoadKind() == LoadKind::kBootImageInternTable || GetLoadKind() == LoadKind::kBssEntry) << GetLoadKind(); // HLoadString::GetInputRecords() returns an empty array at this point, // so use the GetInputRecords() from the base class to set the input record. DCHECK(special_input_.GetInstruction() == nullptr); special_input_ = HUserRecord<HInstruction*>(special_input); special_input->AddUseAt(this, 0); } /** * Performs an initialization check on its Class object input. */ class HClinitCheck FINAL : public HExpression<1> { public: HClinitCheck(HLoadClass* constant, uint32_t dex_pc) : HExpression( kClinitCheck, DataType::Type::kReference, SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays. dex_pc) { SetRawInputAt(0, constant); } bool IsClonable() const OVERRIDE { return true; } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { // May call runtime to initialize the class. return true; } bool CanThrow() const OVERRIDE { return true; } HLoadClass* GetLoadClass() const { DCHECK(InputAt(0)->IsLoadClass()); return InputAt(0)->AsLoadClass(); } DECLARE_INSTRUCTION(ClinitCheck); protected: DEFAULT_COPY_CONSTRUCTOR(ClinitCheck); }; class HStaticFieldGet FINAL : public HExpression<1> { public: HStaticFieldGet(HInstruction* cls, ArtField* field, DataType::Type field_type, MemberOffset field_offset, bool is_volatile, uint32_t field_idx, uint16_t declaring_class_def_index, const DexFile& dex_file, uint32_t dex_pc) : HExpression(kStaticFieldGet, field_type, SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc), field_info_(field, field_offset, field_type, is_volatile, field_idx, declaring_class_def_index, dex_file) { SetRawInputAt(0, cls); } bool IsClonable() const OVERRIDE { return true; } bool CanBeMoved() const OVERRIDE { return !IsVolatile(); } bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { const HStaticFieldGet* other_get = other->AsStaticFieldGet(); return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); } size_t ComputeHashCode() const OVERRIDE { return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); } const FieldInfo& GetFieldInfo() const { return field_info_; } MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } bool IsVolatile() const { return field_info_.IsVolatile(); } void SetType(DataType::Type new_type) { DCHECK(DataType::IsIntegralType(GetType())); DCHECK(DataType::IsIntegralType(new_type)); DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type)); SetPackedField<TypeField>(new_type); } DECLARE_INSTRUCTION(StaticFieldGet); protected: DEFAULT_COPY_CONSTRUCTOR(StaticFieldGet); private: const FieldInfo field_info_; }; class HStaticFieldSet FINAL : public HTemplateInstruction<2> { public: HStaticFieldSet(HInstruction* cls, HInstruction* value, ArtField* field, DataType::Type field_type, MemberOffset field_offset, bool is_volatile, uint32_t field_idx, uint16_t declaring_class_def_index, const DexFile& dex_file, uint32_t dex_pc) : HTemplateInstruction(kStaticFieldSet, SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc), field_info_(field, field_offset, field_type, is_volatile, field_idx, declaring_class_def_index, dex_file) { SetPackedFlag<kFlagValueCanBeNull>(true); SetRawInputAt(0, cls); SetRawInputAt(1, value); } bool IsClonable() const OVERRIDE { return true; } const FieldInfo& GetFieldInfo() const { return field_info_; } MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } bool IsVolatile() const { return field_info_.IsVolatile(); } HInstruction* GetValue() const { return InputAt(1); } bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } DECLARE_INSTRUCTION(StaticFieldSet); protected: DEFAULT_COPY_CONSTRUCTOR(StaticFieldSet); private: static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits; static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1; static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); const FieldInfo field_info_; }; class HUnresolvedInstanceFieldGet FINAL : public HExpression<1> { public: HUnresolvedInstanceFieldGet(HInstruction* obj, DataType::Type field_type, uint32_t field_index, uint32_t dex_pc) : HExpression(kUnresolvedInstanceFieldGet, field_type, SideEffects::AllExceptGCDependency(), dex_pc), field_index_(field_index) { SetRawInputAt(0, obj); } bool IsClonable() const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } DataType::Type GetFieldType() const { return GetType(); } uint32_t GetFieldIndex() const { return field_index_; } DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet); protected: DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldGet); private: const uint32_t field_index_; }; class HUnresolvedInstanceFieldSet FINAL : public HTemplateInstruction<2> { public: HUnresolvedInstanceFieldSet(HInstruction* obj, HInstruction* value, DataType::Type field_type, uint32_t field_index, uint32_t dex_pc) : HTemplateInstruction(kUnresolvedInstanceFieldSet, SideEffects::AllExceptGCDependency(), dex_pc), field_index_(field_index) { SetPackedField<FieldTypeField>(field_type); DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType())); SetRawInputAt(0, obj); SetRawInputAt(1, value); } bool IsClonable() const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); } uint32_t GetFieldIndex() const { return field_index_; } DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet); protected: DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldSet); private: static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits; static constexpr size_t kFieldFieldTypeSize = MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits = kFieldFieldType + kFieldFieldTypeSize; static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits, "Too many packed fields."); using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>; const uint32_t field_index_; }; class HUnresolvedStaticFieldGet FINAL : public HExpression<0> { public: HUnresolvedStaticFieldGet(DataType::Type field_type, uint32_t field_index, uint32_t dex_pc) : HExpression(kUnresolvedStaticFieldGet, field_type, SideEffects::AllExceptGCDependency(), dex_pc), field_index_(field_index) { } bool IsClonable() const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } DataType::Type GetFieldType() const { return GetType(); } uint32_t GetFieldIndex() const { return field_index_; } DECLARE_INSTRUCTION(UnresolvedStaticFieldGet); protected: DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldGet); private: const uint32_t field_index_; }; class HUnresolvedStaticFieldSet FINAL : public HTemplateInstruction<1> { public: HUnresolvedStaticFieldSet(HInstruction* value, DataType::Type field_type, uint32_t field_index, uint32_t dex_pc) : HTemplateInstruction(kUnresolvedStaticFieldSet, SideEffects::AllExceptGCDependency(), dex_pc), field_index_(field_index) { SetPackedField<FieldTypeField>(field_type); DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType())); SetRawInputAt(0, value); } bool IsClonable() const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); } uint32_t GetFieldIndex() const { return field_index_; } DECLARE_INSTRUCTION(UnresolvedStaticFieldSet); protected: DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldSet); private: static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits; static constexpr size_t kFieldFieldTypeSize = MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits = kFieldFieldType + kFieldFieldTypeSize; static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits, "Too many packed fields."); using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>; const uint32_t field_index_; }; // Implement the move-exception DEX instruction. class HLoadException FINAL : public HExpression<0> { public: explicit HLoadException(uint32_t dex_pc = kNoDexPc) : HExpression(kLoadException, DataType::Type::kReference, SideEffects::None(), dex_pc) { } bool CanBeNull() const OVERRIDE { return false; } DECLARE_INSTRUCTION(LoadException); protected: DEFAULT_COPY_CONSTRUCTOR(LoadException); }; // Implicit part of move-exception which clears thread-local exception storage. // Must not be removed because the runtime expects the TLS to get cleared. class HClearException FINAL : public HTemplateInstruction<0> { public: explicit HClearException(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(kClearException, SideEffects::AllWrites(), dex_pc) { } DECLARE_INSTRUCTION(ClearException); protected: DEFAULT_COPY_CONSTRUCTOR(ClearException); }; class HThrow FINAL : public HTemplateInstruction<1> { public: HThrow(HInstruction* exception, uint32_t dex_pc) : HTemplateInstruction(kThrow, SideEffects::CanTriggerGC(), dex_pc) { SetRawInputAt(0, exception); } bool IsControlFlow() const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } bool AlwaysThrows() const OVERRIDE { return true; } DECLARE_INSTRUCTION(Throw); protected: DEFAULT_COPY_CONSTRUCTOR(Throw); }; /** * Implementation strategies for the code generator of a HInstanceOf * or `HCheckCast`. */ enum class TypeCheckKind { kUnresolvedCheck, // Check against an unresolved type. kExactCheck, // Can do a single class compare. kClassHierarchyCheck, // Can just walk the super class chain. kAbstractClassCheck, // Can just walk the super class chain, starting one up. kInterfaceCheck, // No optimization yet when checking against an interface. kArrayObjectCheck, // Can just check if the array is not primitive. kArrayCheck, // No optimization yet when checking against a generic array. kLast = kArrayCheck }; std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs); class HInstanceOf FINAL : public HExpression<2> { public: HInstanceOf(HInstruction* object, HLoadClass* target_class, TypeCheckKind check_kind, uint32_t dex_pc) : HExpression(kInstanceOf, DataType::Type::kBool, SideEffectsForArchRuntimeCalls(check_kind), dex_pc) { SetPackedField<TypeCheckKindField>(check_kind); SetPackedFlag<kFlagMustDoNullCheck>(true); SetRawInputAt(0, object); SetRawInputAt(1, target_class); } HLoadClass* GetTargetClass() const { HInstruction* load_class = InputAt(1); DCHECK(load_class->IsLoadClass()); return load_class->AsLoadClass(); } bool IsClonable() const OVERRIDE { return true; } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return CanCallRuntime(GetTypeCheckKind()); } // Used only in code generation. bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); } void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); } TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); } bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; } static bool CanCallRuntime(TypeCheckKind check_kind) { // Mips currently does runtime calls for any other checks. return check_kind != TypeCheckKind::kExactCheck; } static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) { return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None(); } DECLARE_INSTRUCTION(InstanceOf); protected: DEFAULT_COPY_CONSTRUCTOR(InstanceOf); private: static constexpr size_t kFieldTypeCheckKind = kNumberOfExpressionPackedBits; static constexpr size_t kFieldTypeCheckKindSize = MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast)); static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize; static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagMustDoNullCheck + 1; static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>; }; class HBoundType FINAL : public HExpression<1> { public: explicit HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc) : HExpression(kBoundType, DataType::Type::kReference, SideEffects::None(), dex_pc), upper_bound_(ReferenceTypeInfo::CreateInvalid()) { SetPackedFlag<kFlagUpperCanBeNull>(true); SetPackedFlag<kFlagCanBeNull>(true); DCHECK_EQ(input->GetType(), DataType::Type::kReference); SetRawInputAt(0, input); } bool IsClonable() const OVERRIDE { return true; } // {Get,Set}Upper* should only be used in reference type propagation. const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; } bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); } void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null); void SetCanBeNull(bool can_be_null) { DCHECK(GetUpperCanBeNull() || !can_be_null); SetPackedFlag<kFlagCanBeNull>(can_be_null); } bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); } DECLARE_INSTRUCTION(BoundType); protected: DEFAULT_COPY_CONSTRUCTOR(BoundType); private: // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this // is false then CanBeNull() cannot be true). static constexpr size_t kFlagUpperCanBeNull = kNumberOfExpressionPackedBits; static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1; static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1; static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); // Encodes the most upper class that this instruction can have. In other words // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()). // It is used to bound the type in cases like: // if (x instanceof ClassX) { // // uper_bound_ will be ClassX // } ReferenceTypeInfo upper_bound_; }; class HCheckCast FINAL : public HTemplateInstruction<2> { public: HCheckCast(HInstruction* object, HLoadClass* target_class, TypeCheckKind check_kind, uint32_t dex_pc) : HTemplateInstruction(kCheckCast, SideEffects::CanTriggerGC(), dex_pc) { SetPackedField<TypeCheckKindField>(check_kind); SetPackedFlag<kFlagMustDoNullCheck>(true); SetRawInputAt(0, object); SetRawInputAt(1, target_class); } HLoadClass* GetTargetClass() const { HInstruction* load_class = InputAt(1); DCHECK(load_class->IsLoadClass()); return load_class->AsLoadClass(); } bool IsClonable() const OVERRIDE { return true; } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { // Instruction may throw a CheckCastError. return true; } bool CanThrow() const OVERRIDE { return true; } bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); } void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); } TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); } bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; } DECLARE_INSTRUCTION(CheckCast); protected: DEFAULT_COPY_CONSTRUCTOR(CheckCast); private: static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits; static constexpr size_t kFieldTypeCheckKindSize = MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast)); static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize; static constexpr size_t kNumberOfCheckCastPackedBits = kFlagMustDoNullCheck + 1; static_assert(kNumberOfCheckCastPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>; }; /** * @brief Memory barrier types (see "The JSR-133 Cookbook for Compiler Writers"). * @details We define the combined barrier types that are actually required * by the Java Memory Model, rather than using exactly the terminology from * the JSR-133 cookbook. These should, in many cases, be replaced by acquire/release * primitives. Note that the JSR-133 cookbook generally does not deal with * store atomicity issues, and the recipes there are not always entirely sufficient. * The current recipe is as follows: * -# Use AnyStore ~= (LoadStore | StoreStore) ~= release barrier before volatile store. * -# Use AnyAny barrier after volatile store. (StoreLoad is as expensive.) * -# Use LoadAny barrier ~= (LoadLoad | LoadStore) ~= acquire barrier after each volatile load. * -# Use StoreStore barrier after all stores but before return from any constructor whose * class has final fields. * -# Use NTStoreStore to order non-temporal stores with respect to all later * store-to-memory instructions. Only generated together with non-temporal stores. */ enum MemBarrierKind { kAnyStore, kLoadAny, kStoreStore, kAnyAny, kNTStoreStore, kLastBarrierKind = kNTStoreStore }; std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind); class HMemoryBarrier FINAL : public HTemplateInstruction<0> { public: explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc) : HTemplateInstruction( kMemoryBarrier, SideEffects::AllWritesAndReads(), // Assume write/read on all fields/arrays. dex_pc) { SetPackedField<BarrierKindField>(barrier_kind); } bool IsClonable() const OVERRIDE { return true; } MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); } DECLARE_INSTRUCTION(MemoryBarrier); protected: DEFAULT_COPY_CONSTRUCTOR(MemoryBarrier); private: static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits; static constexpr size_t kFieldBarrierKindSize = MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind)); static constexpr size_t kNumberOfMemoryBarrierPackedBits = kFieldBarrierKind + kFieldBarrierKindSize; static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>; }; // A constructor fence orders all prior stores to fields that could be accessed via a final field of // the specified object(s), with respect to any subsequent store that might "publish" // (i.e. make visible) the specified object to another thread. // // JLS 17.5.1 "Semantics of final fields" states that a freeze action happens // for all final fields (that were set) at the end of the invoked constructor. // // The constructor fence models the freeze actions for the final fields of an object // being constructed (semantically at the end of the constructor). Constructor fences // have a per-object affinity; two separate objects being constructed get two separate // constructor fences. // // (Note: that if calling a super-constructor or forwarding to another constructor, // the freezes would happen at the end of *that* constructor being invoked). // // The memory model guarantees that when the object being constructed is "published" after // constructor completion (i.e. escapes the current thread via a store), then any final field // writes must be observable on other threads (once they observe that publication). // // Further, anything written before the freeze, and read by dereferencing through the final field, // must also be visible (so final object field could itself have an object with non-final fields; // yet the freeze must also extend to them). // // Constructor example: // // class HasFinal { // final int field; Optimizing IR for <init>()V: // HasFinal() { // field = 123; HInstanceFieldSet(this, HasFinal.field, 123) // // freeze(this.field); HConstructorFence(this) // } HReturn // } // // HConstructorFence can serve double duty as a fence for new-instance/new-array allocations of // already-initialized classes; in that case the allocation must act as a "default-initializer" // of the object which effectively writes the class pointer "final field". // // For example, we can model default-initialiation as roughly the equivalent of the following: // // class Object { // private final Class header; // } // // Java code: Optimizing IR: // // T new_instance<T>() { // Object obj = allocate_memory(T.class.size); obj = HInvoke(art_quick_alloc_object, T) // obj.header = T.class; // header write is done by above call. // // freeze(obj.header) HConstructorFence(obj) // return (T)obj; // } // // See also: // * CompilerDriver::RequiresConstructorBarrier // * QuasiAtomic::ThreadFenceForConstructor // class HConstructorFence FINAL : public HVariableInputSizeInstruction { // A fence has variable inputs because the inputs can be removed // after prepare_for_register_allocation phase. // (TODO: In the future a fence could freeze multiple objects // after merging two fences together.) public: // `fence_object` is the reference that needs to be protected for correct publication. // // It makes sense in the following situations: // * <init> constructors, it's the "this" parameter (i.e. HParameterValue, s.t. IsThis() == true). // * new-instance-like instructions, it's the return value (i.e. HNewInstance). // // After construction the `fence_object` becomes the 0th input. // This is not an input in a real sense, but just a convenient place to stash the information // about the associated object. HConstructorFence(HInstruction* fence_object, uint32_t dex_pc, ArenaAllocator* allocator) // We strongly suspect there is not a more accurate way to describe the fine-grained reordering // constraints described in the class header. We claim that these SideEffects constraints // enforce a superset of the real constraints. // // The ordering described above is conservatively modeled with SideEffects as follows: // // * To prevent reordering of the publication stores: // ----> "Reads of objects" is the initial SideEffect. // * For every primitive final field store in the constructor: // ----> Union that field's type as a read (e.g. "Read of T") into the SideEffect. // * If there are any stores to reference final fields in the constructor: // ----> Use a more conservative "AllReads" SideEffect because any stores to any references // that are reachable from `fence_object` also need to be prevented for reordering // (and we do not want to do alias analysis to figure out what those stores are). // // In the implementation, this initially starts out as an "all reads" side effect; this is an // even more conservative approach than the one described above, and prevents all of the // above reordering without analyzing any of the instructions in the constructor. // // If in a later phase we discover that there are no writes to reference final fields, // we can refine the side effect to a smaller set of type reads (see above constraints). : HVariableInputSizeInstruction(kConstructorFence, SideEffects::AllReads(), dex_pc, allocator, /* number_of_inputs */ 1, kArenaAllocConstructorFenceInputs) { DCHECK(fence_object != nullptr); SetRawInputAt(0, fence_object); } // The object associated with this constructor fence. // // (Note: This will be null after the prepare_for_register_allocation phase, // as all constructor fence inputs are removed there). HInstruction* GetFenceObject() const { return InputAt(0); } // Find all the HConstructorFence uses (`fence_use`) for `this` and: // - Delete `fence_use` from `this`'s use list. // - Delete `this` from `fence_use`'s inputs list. // - If the `fence_use` is dead, remove it from the graph. // // A fence is considered dead once it no longer has any uses // and all of the inputs are dead. // // This must *not* be called during/after prepare_for_register_allocation, // because that removes all the inputs to the fences but the fence is actually // still considered live. // // Returns how many HConstructorFence instructions were removed from graph. static size_t RemoveConstructorFences(HInstruction* instruction); // Combine all inputs of `this` and `other` instruction and remove // `other` from the graph. // // Inputs are unique after the merge. // // Requirement: `this` must not be the same as `other. void Merge(HConstructorFence* other); // Check if this constructor fence is protecting // an HNewInstance or HNewArray that is also the immediate // predecessor of `this`. // // If `ignore_inputs` is true, then the immediate predecessor doesn't need // to be one of the inputs of `this`. // // Returns the associated HNewArray or HNewInstance, // or null otherwise. HInstruction* GetAssociatedAllocation(bool ignore_inputs = false); DECLARE_INSTRUCTION(ConstructorFence); protected: DEFAULT_COPY_CONSTRUCTOR(ConstructorFence); }; class HMonitorOperation FINAL : public HTemplateInstruction<1> { public: enum class OperationKind { kEnter, kExit, kLast = kExit }; HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc) : HTemplateInstruction( kMonitorOperation, SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays. dex_pc) { SetPackedField<OperationKindField>(kind); SetRawInputAt(0, object); } // Instruction may go into runtime, so we need an environment. bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { // Verifier guarantees that monitor-exit cannot throw. // This is important because it allows the HGraphBuilder to remove // a dead throw-catch loop generated for `synchronized` blocks/methods. return IsEnter(); } OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); } bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; } DECLARE_INSTRUCTION(MonitorOperation); protected: DEFAULT_COPY_CONSTRUCTOR(MonitorOperation); private: static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits; static constexpr size_t kFieldOperationKindSize = MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast)); static constexpr size_t kNumberOfMonitorOperationPackedBits = kFieldOperationKind + kFieldOperationKindSize; static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits, "Too many packed fields."); using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>; }; class HSelect FINAL : public HExpression<3> { public: HSelect(HInstruction* condition, HInstruction* true_value, HInstruction* false_value, uint32_t dex_pc) : HExpression(kSelect, HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) { DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType())); // First input must be `true_value` or `false_value` to allow codegens to // use the SameAsFirstInput allocation policy. We make it `false_value`, so // that architectures which implement HSelect as a conditional move also // will not need to invert the condition. SetRawInputAt(0, false_value); SetRawInputAt(1, true_value); SetRawInputAt(2, condition); } bool IsClonable() const OVERRIDE { return true; } HInstruction* GetFalseValue() const { return InputAt(0); } HInstruction* GetTrueValue() const { return InputAt(1); } HInstruction* GetCondition() const { return InputAt(2); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool CanBeNull() const OVERRIDE { return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull(); } DECLARE_INSTRUCTION(Select); protected: DEFAULT_COPY_CONSTRUCTOR(Select); }; class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> { public: MoveOperands(Location source, Location destination, DataType::Type type, HInstruction* instruction) : source_(source), destination_(destination), type_(type), instruction_(instruction) {} Location GetSource() const { return source_; } Location GetDestination() const { return destination_; } void SetSource(Location value) { source_ = value; } void SetDestination(Location value) { destination_ = value; } // The parallel move resolver marks moves as "in-progress" by clearing the // destination (but not the source). Location MarkPending() { DCHECK(!IsPending()); Location dest = destination_; destination_ = Location::NoLocation(); return dest; } void ClearPending(Location dest) { DCHECK(IsPending()); destination_ = dest; } bool IsPending() const { DCHECK(source_.IsValid() || destination_.IsInvalid()); return destination_.IsInvalid() && source_.IsValid(); } // True if this blocks a move from the given location. bool Blocks(Location loc) const { return !IsEliminated() && source_.OverlapsWith(loc); } // A move is redundant if it's been eliminated, if its source and // destination are the same, or if its destination is unneeded. bool IsRedundant() const { return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_); } // We clear both operands to indicate move that's been eliminated. void Eliminate() { source_ = destination_ = Location::NoLocation(); } bool IsEliminated() const { DCHECK(!source_.IsInvalid() || destination_.IsInvalid()); return source_.IsInvalid(); } DataType::Type GetType() const { return type_; } bool Is64BitMove() const { return DataType::Is64BitType(type_); } HInstruction* GetInstruction() const { return instruction_; } private: Location source_; Location destination_; // The type this move is for. DataType::Type type_; // The instruction this move is assocatied with. Null when this move is // for moving an input in the expected locations of user (including a phi user). // This is only used in debug mode, to ensure we do not connect interval siblings // in the same parallel move. HInstruction* instruction_; }; std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs); static constexpr size_t kDefaultNumberOfMoves = 4; class HParallelMove FINAL : public HTemplateInstruction<0> { public: explicit HParallelMove(ArenaAllocator* allocator, uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(kParallelMove, SideEffects::None(), dex_pc), moves_(allocator->Adapter(kArenaAllocMoveOperands)) { moves_.reserve(kDefaultNumberOfMoves); } void AddMove(Location source, Location destination, DataType::Type type, HInstruction* instruction) { DCHECK(source.IsValid()); DCHECK(destination.IsValid()); if (kIsDebugBuild) { if (instruction != nullptr) { for (const MoveOperands& move : moves_) { if (move.GetInstruction() == instruction) { // Special case the situation where the move is for the spill slot // of the instruction. if ((GetPrevious() == instruction) || ((GetPrevious() == nullptr) && instruction->IsPhi() && instruction->GetBlock() == GetBlock())) { DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind()) << "Doing parallel moves for the same instruction."; } else { DCHECK(false) << "Doing parallel moves for the same instruction."; } } } } for (const MoveOperands& move : moves_) { DCHECK(!destination.OverlapsWith(move.GetDestination())) << "Overlapped destination for two moves in a parallel move: " << move.GetSource() << " ==> " << move.GetDestination() << " and " << source << " ==> " << destination; } } moves_.emplace_back(source, destination, type, instruction); } MoveOperands* MoveOperandsAt(size_t index) { return &moves_[index]; } size_t NumMoves() const { return moves_.size(); } DECLARE_INSTRUCTION(ParallelMove); protected: DEFAULT_COPY_CONSTRUCTOR(ParallelMove); private: ArenaVector<MoveOperands> moves_; }; // This instruction computes an intermediate address pointing in the 'middle' of an object. The // result pointer cannot be handled by GC, so extra care is taken to make sure that this value is // never used across anything that can trigger GC. // The result of this instruction is not a pointer in the sense of `DataType::Type::kreference`. // So we represent it by the type `DataType::Type::kInt`. class HIntermediateAddress FINAL : public HExpression<2> { public: HIntermediateAddress(HInstruction* base_address, HInstruction* offset, uint32_t dex_pc) : HExpression(kIntermediateAddress, DataType::Type::kInt32, SideEffects::DependsOnGC(), dex_pc) { DCHECK_EQ(DataType::Size(DataType::Type::kInt32), DataType::Size(DataType::Type::kReference)) << "kPrimInt and kPrimNot have different sizes."; SetRawInputAt(0, base_address); SetRawInputAt(1, offset); } bool IsClonable() const OVERRIDE { return true; } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool IsActualObject() const OVERRIDE { return false; } HInstruction* GetBaseAddress() const { return InputAt(0); } HInstruction* GetOffset() const { return InputAt(1); } DECLARE_INSTRUCTION(IntermediateAddress); protected: DEFAULT_COPY_CONSTRUCTOR(IntermediateAddress); }; } // namespace art #include "nodes_vector.h" #if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64) #include "nodes_shared.h" #endif #ifdef ART_ENABLE_CODEGEN_mips #include "nodes_mips.h" #endif #ifdef ART_ENABLE_CODEGEN_x86 #include "nodes_x86.h" #endif namespace art { class OptimizingCompilerStats; class HGraphVisitor : public ValueObject { public: explicit HGraphVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr) : stats_(stats), graph_(graph) {} virtual ~HGraphVisitor() {} virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {} virtual void VisitBasicBlock(HBasicBlock* block); // Visit the graph following basic block insertion order. void VisitInsertionOrder(); // Visit the graph following dominator tree reverse post-order. void VisitReversePostOrder(); HGraph* GetGraph() const { return graph_; } // Visit functions for instruction classes. #define DECLARE_VISIT_INSTRUCTION(name, super) \ virtual void Visit##name(H##name* instr) { VisitInstruction(instr); } FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) #undef DECLARE_VISIT_INSTRUCTION protected: OptimizingCompilerStats* stats_; private: HGraph* const graph_; DISALLOW_COPY_AND_ASSIGN(HGraphVisitor); }; class HGraphDelegateVisitor : public HGraphVisitor { public: explicit HGraphDelegateVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr) : HGraphVisitor(graph, stats) {} virtual ~HGraphDelegateVisitor() {} // Visit functions that delegate to to super class. #define DECLARE_VISIT_INSTRUCTION(name, super) \ void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); } FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) #undef DECLARE_VISIT_INSTRUCTION private: DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor); }; // Create a clone of the instruction, insert it into the graph; replace the old one with a new // and remove the old instruction. HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr); // Create a clone for each clonable instructions/phis and replace the original with the clone. // // Used for testing individual instruction cloner. class CloneAndReplaceInstructionVisitor : public HGraphDelegateVisitor { public: explicit CloneAndReplaceInstructionVisitor(HGraph* graph) : HGraphDelegateVisitor(graph), instr_replaced_by_clones_count_(0) {} void VisitInstruction(HInstruction* instruction) OVERRIDE { if (instruction->IsClonable()) { ReplaceInstrOrPhiByClone(instruction); instr_replaced_by_clones_count_++; } } size_t GetInstrReplacedByClonesCount() const { return instr_replaced_by_clones_count_; } private: size_t instr_replaced_by_clones_count_; DISALLOW_COPY_AND_ASSIGN(CloneAndReplaceInstructionVisitor); }; // Iterator over the blocks that art part of the loop. Includes blocks part // of an inner loop. The order in which the blocks are iterated is on their // block id. class HBlocksInLoopIterator : public ValueObject { public: explicit HBlocksInLoopIterator(const HLoopInformation& info) : blocks_in_loop_(info.GetBlocks()), blocks_(info.GetHeader()->GetGraph()->GetBlocks()), index_(0) { if (!blocks_in_loop_.IsBitSet(index_)) { Advance(); } } bool Done() const { return index_ == blocks_.size(); } HBasicBlock* Current() const { return blocks_[index_]; } void Advance() { ++index_; for (size_t e = blocks_.size(); index_ < e; ++index_) { if (blocks_in_loop_.IsBitSet(index_)) { break; } } } private: const BitVector& blocks_in_loop_; const ArenaVector<HBasicBlock*>& blocks_; size_t index_; DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator); }; // Iterator over the blocks that art part of the loop. Includes blocks part // of an inner loop. The order in which the blocks are iterated is reverse // post order. class HBlocksInLoopReversePostOrderIterator : public ValueObject { public: explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info) : blocks_in_loop_(info.GetBlocks()), blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()), index_(0) { if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) { Advance(); } } bool Done() const { return index_ == blocks_.size(); } HBasicBlock* Current() const { return blocks_[index_]; } void Advance() { ++index_; for (size_t e = blocks_.size(); index_ < e; ++index_) { if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) { break; } } } private: const BitVector& blocks_in_loop_; const ArenaVector<HBasicBlock*>& blocks_; size_t index_; DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator); }; // Returns int64_t value of a properly typed constant. inline int64_t Int64FromConstant(HConstant* constant) { if (constant->IsIntConstant()) { return constant->AsIntConstant()->GetValue(); } else if (constant->IsLongConstant()) { return constant->AsLongConstant()->GetValue(); } else { DCHECK(constant->IsNullConstant()) << constant->DebugName(); return 0; } } // Returns true iff instruction is an integral constant (and sets value on success). inline bool IsInt64AndGet(HInstruction* instruction, /*out*/ int64_t* value) { if (instruction->IsIntConstant()) { *value = instruction->AsIntConstant()->GetValue(); return true; } else if (instruction->IsLongConstant()) { *value = instruction->AsLongConstant()->GetValue(); return true; } else if (instruction->IsNullConstant()) { *value = 0; return true; } return false; } // Returns true iff instruction is the given integral constant. inline bool IsInt64Value(HInstruction* instruction, int64_t value) { int64_t val = 0; return IsInt64AndGet(instruction, &val) && val == value; } // Returns true iff instruction is a zero bit pattern. inline bool IsZeroBitPattern(HInstruction* instruction) { return instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern(); } #define INSTRUCTION_TYPE_CHECK(type, super) \ inline bool HInstruction::Is##type() const { return GetKind() == k##type; } \ inline const H##type* HInstruction::As##type() const { \ return Is##type() ? down_cast<const H##type*>(this) : nullptr; \ } \ inline H##type* HInstruction::As##type() { \ return Is##type() ? static_cast<H##type*>(this) : nullptr; \ } FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK) #undef INSTRUCTION_TYPE_CHECK // Create space in `blocks` for adding `number_of_new_blocks` entries // starting at location `at`. Blocks after `at` are moved accordingly. inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks, size_t number_of_new_blocks, size_t after) { DCHECK_LT(after, blocks->size()); size_t old_size = blocks->size(); size_t new_size = old_size + number_of_new_blocks; blocks->resize(new_size); std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end()); } /* * Hunt "under the hood" of array lengths (leading to array references), * null checks (also leading to array references), and new arrays * (leading to the actual length). This makes it more likely related * instructions become actually comparable. */ inline HInstruction* HuntForDeclaration(HInstruction* instruction) { while (instruction->IsArrayLength() || instruction->IsNullCheck() || instruction->IsNewArray()) { instruction = instruction->IsNewArray() ? instruction->AsNewArray()->GetLength() : instruction->InputAt(0); } return instruction; } void RemoveEnvironmentUses(HInstruction* instruction); bool HasEnvironmentUsedByOthers(HInstruction* instruction); void ResetEnvironmentInputRecords(HInstruction* instruction); } // namespace art #endif // ART_COMPILER_OPTIMIZING_NODES_H_