/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "intrinsics_x86.h" #include <limits> #include "arch/x86/instruction_set_features_x86.h" #include "art_method.h" #include "base/bit_utils.h" #include "code_generator_x86.h" #include "entrypoints/quick/quick_entrypoints.h" #include "heap_poisoning.h" #include "intrinsics.h" #include "intrinsics_utils.h" #include "lock_word.h" #include "mirror/array-inl.h" #include "mirror/object_array-inl.h" #include "mirror/reference.h" #include "mirror/string.h" #include "scoped_thread_state_change-inl.h" #include "thread-current-inl.h" #include "utils/x86/assembler_x86.h" #include "utils/x86/constants_x86.h" namespace art { namespace x86 { static constexpr int kDoubleNaNHigh = 0x7FF80000; static constexpr int kDoubleNaNLow = 0x00000000; static constexpr int64_t kDoubleNaN = INT64_C(0x7FF8000000000000); static constexpr int32_t kFloatNaN = INT32_C(0x7FC00000); IntrinsicLocationsBuilderX86::IntrinsicLocationsBuilderX86(CodeGeneratorX86* codegen) : allocator_(codegen->GetGraph()->GetAllocator()), codegen_(codegen) { } X86Assembler* IntrinsicCodeGeneratorX86::GetAssembler() { return down_cast<X86Assembler*>(codegen_->GetAssembler()); } ArenaAllocator* IntrinsicCodeGeneratorX86::GetAllocator() { return codegen_->GetGraph()->GetAllocator(); } bool IntrinsicLocationsBuilderX86::TryDispatch(HInvoke* invoke) { Dispatch(invoke); LocationSummary* res = invoke->GetLocations(); if (res == nullptr) { return false; } return res->Intrinsified(); } static void MoveArguments(HInvoke* invoke, CodeGeneratorX86* codegen) { InvokeDexCallingConventionVisitorX86 calling_convention_visitor; IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor); } using IntrinsicSlowPathX86 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorX86>; // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast<X86Assembler*>(codegen->GetAssembler())-> // NOLINT // Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers. class ReadBarrierSystemArrayCopySlowPathX86 : public SlowPathCode { public: explicit ReadBarrierSystemArrayCopySlowPathX86(HInstruction* instruction) : SlowPathCode(instruction) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); LocationSummary* locations = instruction_->GetLocations(); DCHECK(locations->CanCall()); DCHECK(instruction_->IsInvokeStaticOrDirect()) << "Unexpected instruction in read barrier arraycopy slow path: " << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy); int32_t element_size = DataType::Size(DataType::Type::kReference); uint32_t offset = mirror::Array::DataOffset(element_size).Uint32Value(); Register src = locations->InAt(0).AsRegister<Register>(); Location src_pos = locations->InAt(1); Register dest = locations->InAt(2).AsRegister<Register>(); Location dest_pos = locations->InAt(3); Location length = locations->InAt(4); Location temp1_loc = locations->GetTemp(0); Register temp1 = temp1_loc.AsRegister<Register>(); Register temp2 = locations->GetTemp(1).AsRegister<Register>(); Register temp3 = locations->GetTemp(2).AsRegister<Register>(); __ Bind(GetEntryLabel()); // In this code path, registers `temp1`, `temp2`, and `temp3` // (resp.) are not used for the base source address, the base // destination address, and the end source address (resp.), as in // other SystemArrayCopy intrinsic code paths. Instead they are // (resp.) used for: // - the loop index (`i`); // - the source index (`src_index`) and the loaded (source) // reference (`value`); and // - the destination index (`dest_index`). // i = 0 __ xorl(temp1, temp1); NearLabel loop; __ Bind(&loop); // value = src_array[i + src_pos] if (src_pos.IsConstant()) { int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); int32_t adjusted_offset = offset + constant * element_size; __ movl(temp2, Address(src, temp1, ScaleFactor::TIMES_4, adjusted_offset)); } else { __ leal(temp2, Address(src_pos.AsRegister<Register>(), temp1, ScaleFactor::TIMES_1, 0)); __ movl(temp2, Address(src, temp2, ScaleFactor::TIMES_4, offset)); } __ MaybeUnpoisonHeapReference(temp2); // TODO: Inline the mark bit check before calling the runtime? // value = ReadBarrier::Mark(value) // No need to save live registers; it's taken care of by the // entrypoint. Also, there is no need to update the stack mask, // as this runtime call will not trigger a garbage collection. // (See ReadBarrierMarkSlowPathX86::EmitNativeCode for more // explanations.) DCHECK_NE(temp2, ESP); DCHECK(0 <= temp2 && temp2 < kNumberOfCpuRegisters) << temp2; int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86PointerSize>(temp2); // This runtime call does not require a stack map. x86_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); __ MaybePoisonHeapReference(temp2); // dest_array[i + dest_pos] = value if (dest_pos.IsConstant()) { int32_t constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); int32_t adjusted_offset = offset + constant * element_size; __ movl(Address(dest, temp1, ScaleFactor::TIMES_4, adjusted_offset), temp2); } else { __ leal(temp3, Address(dest_pos.AsRegister<Register>(), temp1, ScaleFactor::TIMES_1, 0)); __ movl(Address(dest, temp3, ScaleFactor::TIMES_4, offset), temp2); } // ++i __ addl(temp1, Immediate(1)); // if (i != length) goto loop x86_codegen->GenerateIntCompare(temp1_loc, length); __ j(kNotEqual, &loop); __ jmp(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ReadBarrierSystemArrayCopySlowPathX86"; } private: DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathX86); }; #undef __ #define __ assembler-> static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is64bit) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); if (is64bit) { locations->AddTemp(Location::RequiresFpuRegister()); } } static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is64bit) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); if (is64bit) { locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); } } static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86Assembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); if (is64bit) { // Need to use the temporary. XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); __ movsd(temp, input.AsFpuRegister<XmmRegister>()); __ movd(output.AsRegisterPairLow<Register>(), temp); __ psrlq(temp, Immediate(32)); __ movd(output.AsRegisterPairHigh<Register>(), temp); } else { __ movd(output.AsRegister<Register>(), input.AsFpuRegister<XmmRegister>()); } } static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86Assembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); if (is64bit) { // Need to use the temporary. XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); __ movd(temp1, input.AsRegisterPairLow<Register>()); __ movd(temp2, input.AsRegisterPairHigh<Register>()); __ punpckldq(temp1, temp2); __ movsd(output.AsFpuRegister<XmmRegister>(), temp1); } else { __ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<Register>()); } } void IntrinsicLocationsBuilderX86::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke, /* is64bit */ true); } void IntrinsicLocationsBuilderX86::VisitDoubleLongBitsToDouble(HInvoke* invoke) { CreateIntToFPLocations(allocator_, invoke, /* is64bit */ true); } void IntrinsicCodeGeneratorX86::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } void IntrinsicCodeGeneratorX86::VisitDoubleLongBitsToDouble(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitFloatFloatToRawIntBits(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke, /* is64bit */ false); } void IntrinsicLocationsBuilderX86::VisitFloatIntBitsToFloat(HInvoke* invoke) { CreateIntToFPLocations(allocator_, invoke, /* is64bit */ false); } void IntrinsicCodeGeneratorX86::VisitFloatFloatToRawIntBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } void IntrinsicCodeGeneratorX86::VisitFloatIntBitsToFloat(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } static void CreateLongToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); } static void CreateLongToLongLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } static void GenReverseBytes(LocationSummary* locations, DataType::Type size, X86Assembler* assembler) { Register out = locations->Out().AsRegister<Register>(); switch (size) { case DataType::Type::kInt16: // TODO: Can be done with an xchg of 8b registers. This is straight from Quick. __ bswapl(out); __ sarl(out, Immediate(16)); break; case DataType::Type::kInt32: __ bswapl(out); break; default: LOG(FATAL) << "Unexpected size for reverse-bytes: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86::VisitIntegerReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitIntegerReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitLongReverseBytes(HInvoke* invoke) { CreateLongToLongLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitLongReverseBytes(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); Location input = locations->InAt(0); Register input_lo = input.AsRegisterPairLow<Register>(); Register input_hi = input.AsRegisterPairHigh<Register>(); Location output = locations->Out(); Register output_lo = output.AsRegisterPairLow<Register>(); Register output_hi = output.AsRegisterPairHigh<Register>(); X86Assembler* assembler = GetAssembler(); // Assign the inputs to the outputs, mixing low/high. __ movl(output_lo, input_hi); __ movl(output_hi, input_lo); __ bswapl(output_lo); __ bswapl(output_hi); } void IntrinsicLocationsBuilderX86::VisitShortReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitShortReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); } // TODO: Consider Quick's way of doing Double abs through integer operations, as the immediate we // need is 64b. static void CreateFloatToFloat(ArenaAllocator* allocator, HInvoke* invoke) { // TODO: Enable memory operations when the assembler supports them. LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); HInvokeStaticOrDirect* static_or_direct = invoke->AsInvokeStaticOrDirect(); DCHECK(static_or_direct != nullptr); if (static_or_direct->HasSpecialInput() && invoke->InputAt(static_or_direct->GetSpecialInputIndex())->IsX86ComputeBaseMethodAddress()) { // We need addressibility for the constant area. locations->SetInAt(1, Location::RequiresRegister()); // We need a temporary to hold the constant. locations->AddTemp(Location::RequiresFpuRegister()); } } static void MathAbsFP(HInvoke* invoke, bool is64bit, X86Assembler* assembler, CodeGeneratorX86* codegen) { LocationSummary* locations = invoke->GetLocations(); Location output = locations->Out(); DCHECK(output.IsFpuRegister()); if (locations->GetInputCount() == 2 && locations->InAt(1).IsValid()) { HX86ComputeBaseMethodAddress* method_address = invoke->InputAt(1)->AsX86ComputeBaseMethodAddress(); DCHECK(locations->InAt(1).IsRegister()); // We also have a constant area pointer. Register constant_area = locations->InAt(1).AsRegister<Register>(); XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); if (is64bit) { __ movsd(temp, codegen->LiteralInt64Address( INT64_C(0x7FFFFFFFFFFFFFFF), method_address, constant_area)); __ andpd(output.AsFpuRegister<XmmRegister>(), temp); } else { __ movss(temp, codegen->LiteralInt32Address( INT32_C(0x7FFFFFFF), method_address, constant_area)); __ andps(output.AsFpuRegister<XmmRegister>(), temp); } } else { // Create the right constant on an aligned stack. if (is64bit) { __ subl(ESP, Immediate(8)); __ pushl(Immediate(0x7FFFFFFF)); __ pushl(Immediate(0xFFFFFFFF)); __ andpd(output.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); } else { __ subl(ESP, Immediate(12)); __ pushl(Immediate(0x7FFFFFFF)); __ andps(output.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); } __ addl(ESP, Immediate(16)); } } void IntrinsicLocationsBuilderX86::VisitMathAbsDouble(HInvoke* invoke) { CreateFloatToFloat(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAbsDouble(HInvoke* invoke) { MathAbsFP(invoke, /* is64bit */ true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86::VisitMathAbsFloat(HInvoke* invoke) { CreateFloatToFloat(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAbsFloat(HInvoke* invoke) { MathAbsFP(invoke, /* is64bit */ false, GetAssembler(), codegen_); } static void CreateAbsIntLocation(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RegisterLocation(EAX)); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RegisterLocation(EDX)); } static void GenAbsInteger(LocationSummary* locations, X86Assembler* assembler) { Location output = locations->Out(); Register out = output.AsRegister<Register>(); DCHECK_EQ(out, EAX); Register temp = locations->GetTemp(0).AsRegister<Register>(); DCHECK_EQ(temp, EDX); // Sign extend EAX into EDX. __ cdq(); // XOR EAX with sign. __ xorl(EAX, EDX); // Subtract out sign to correct. __ subl(EAX, EDX); // The result is in EAX. } static void CreateAbsLongLocation(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); locations->AddTemp(Location::RequiresRegister()); } static void GenAbsLong(LocationSummary* locations, X86Assembler* assembler) { Location input = locations->InAt(0); Register input_lo = input.AsRegisterPairLow<Register>(); Register input_hi = input.AsRegisterPairHigh<Register>(); Location output = locations->Out(); Register output_lo = output.AsRegisterPairLow<Register>(); Register output_hi = output.AsRegisterPairHigh<Register>(); Register temp = locations->GetTemp(0).AsRegister<Register>(); // Compute the sign into the temporary. __ movl(temp, input_hi); __ sarl(temp, Immediate(31)); // Store the sign into the output. __ movl(output_lo, temp); __ movl(output_hi, temp); // XOR the input to the output. __ xorl(output_lo, input_lo); __ xorl(output_hi, input_hi); // Subtract the sign. __ subl(output_lo, temp); __ sbbl(output_hi, temp); } void IntrinsicLocationsBuilderX86::VisitMathAbsInt(HInvoke* invoke) { CreateAbsIntLocation(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAbsInt(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMathAbsLong(HInvoke* invoke) { CreateAbsLongLocation(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAbsLong(HInvoke* invoke) { GenAbsLong(invoke->GetLocations(), GetAssembler()); } static void GenMinMaxFP(HInvoke* invoke, bool is_min, bool is_double, X86Assembler* assembler, CodeGeneratorX86* codegen) { LocationSummary* locations = invoke->GetLocations(); Location op1_loc = locations->InAt(0); Location op2_loc = locations->InAt(1); Location out_loc = locations->Out(); XmmRegister out = out_loc.AsFpuRegister<XmmRegister>(); // Shortcut for same input locations. if (op1_loc.Equals(op2_loc)) { DCHECK(out_loc.Equals(op1_loc)); return; } // (out := op1) // out <=? op2 // if Nan jmp Nan_label // if out is min jmp done // if op2 is min jmp op2_label // handle -0/+0 // jmp done // Nan_label: // out := NaN // op2_label: // out := op2 // done: // // This removes one jmp, but needs to copy one input (op1) to out. // // TODO: This is straight from Quick (except literal pool). Make NaN an out-of-line slowpath? XmmRegister op2 = op2_loc.AsFpuRegister<XmmRegister>(); NearLabel nan, done, op2_label; if (is_double) { __ ucomisd(out, op2); } else { __ ucomiss(out, op2); } __ j(Condition::kParityEven, &nan); __ j(is_min ? Condition::kAbove : Condition::kBelow, &op2_label); __ j(is_min ? Condition::kBelow : Condition::kAbove, &done); // Handle 0.0/-0.0. if (is_min) { if (is_double) { __ orpd(out, op2); } else { __ orps(out, op2); } } else { if (is_double) { __ andpd(out, op2); } else { __ andps(out, op2); } } __ jmp(&done); // NaN handling. __ Bind(&nan); // Do we have a constant area pointer? if (locations->GetInputCount() == 3 && locations->InAt(2).IsValid()) { HX86ComputeBaseMethodAddress* method_address = invoke->InputAt(2)->AsX86ComputeBaseMethodAddress(); DCHECK(locations->InAt(2).IsRegister()); Register constant_area = locations->InAt(2).AsRegister<Register>(); if (is_double) { __ movsd(out, codegen->LiteralInt64Address(kDoubleNaN, method_address, constant_area)); } else { __ movss(out, codegen->LiteralInt32Address(kFloatNaN, method_address, constant_area)); } } else { if (is_double) { __ pushl(Immediate(kDoubleNaNHigh)); __ pushl(Immediate(kDoubleNaNLow)); __ movsd(out, Address(ESP, 0)); __ addl(ESP, Immediate(8)); } else { __ pushl(Immediate(kFloatNaN)); __ movss(out, Address(ESP, 0)); __ addl(ESP, Immediate(4)); } } __ jmp(&done); // out := op2; __ Bind(&op2_label); if (is_double) { __ movsd(out, op2); } else { __ movss(out, op2); } // Done. __ Bind(&done); } static void CreateFPFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); // The following is sub-optimal, but all we can do for now. It would be fine to also accept // the second input to be the output (we can simply swap inputs). locations->SetOut(Location::SameAsFirstInput()); HInvokeStaticOrDirect* static_or_direct = invoke->AsInvokeStaticOrDirect(); DCHECK(static_or_direct != nullptr); if (static_or_direct->HasSpecialInput() && invoke->InputAt(static_or_direct->GetSpecialInputIndex())->IsX86ComputeBaseMethodAddress()) { locations->SetInAt(2, Location::RequiresRegister()); } } void IntrinsicLocationsBuilderX86::VisitMathMinDoubleDouble(HInvoke* invoke) { CreateFPFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMinDoubleDouble(HInvoke* invoke) { GenMinMaxFP(invoke, /* is_min */ true, /* is_double */ true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86::VisitMathMinFloatFloat(HInvoke* invoke) { CreateFPFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMinFloatFloat(HInvoke* invoke) { GenMinMaxFP(invoke, /* is_min */ true, /* is_double */ false, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86::VisitMathMaxDoubleDouble(HInvoke* invoke) { CreateFPFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMaxDoubleDouble(HInvoke* invoke) { GenMinMaxFP(invoke, /* is_min */ false, /* is_double */ true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86::VisitMathMaxFloatFloat(HInvoke* invoke) { CreateFPFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMaxFloatFloat(HInvoke* invoke) { GenMinMaxFP(invoke, /* is_min */ false, /* is_double */ false, GetAssembler(), codegen_); } static void GenMinMax(LocationSummary* locations, bool is_min, bool is_long, X86Assembler* assembler) { Location op1_loc = locations->InAt(0); Location op2_loc = locations->InAt(1); // Shortcut for same input locations. if (op1_loc.Equals(op2_loc)) { // Can return immediately, as op1_loc == out_loc. // Note: if we ever support separate registers, e.g., output into memory, we need to check for // a copy here. DCHECK(locations->Out().Equals(op1_loc)); return; } if (is_long) { // Need to perform a subtract to get the sign right. // op1 is already in the same location as the output. Location output = locations->Out(); Register output_lo = output.AsRegisterPairLow<Register>(); Register output_hi = output.AsRegisterPairHigh<Register>(); Register op2_lo = op2_loc.AsRegisterPairLow<Register>(); Register op2_hi = op2_loc.AsRegisterPairHigh<Register>(); // Spare register to compute the subtraction to set condition code. Register temp = locations->GetTemp(0).AsRegister<Register>(); // Subtract off op2_low. __ movl(temp, output_lo); __ subl(temp, op2_lo); // Now use the same tempo and the borrow to finish the subtraction of op2_hi. __ movl(temp, output_hi); __ sbbl(temp, op2_hi); // Now the condition code is correct. Condition cond = is_min ? Condition::kGreaterEqual : Condition::kLess; __ cmovl(cond, output_lo, op2_lo); __ cmovl(cond, output_hi, op2_hi); } else { Register out = locations->Out().AsRegister<Register>(); Register op2 = op2_loc.AsRegister<Register>(); // (out := op1) // out <=? op2 // if out is min jmp done // out := op2 // done: __ cmpl(out, op2); Condition cond = is_min ? Condition::kGreater : Condition::kLess; __ cmovl(cond, out, op2); } } static void CreateIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } static void CreateLongLongToLongLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); // Register to use to perform a long subtract to set cc. locations->AddTemp(Location::RequiresRegister()); } void IntrinsicLocationsBuilderX86::VisitMathMinIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMinIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ false, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMathMinLongLong(HInvoke* invoke) { CreateLongLongToLongLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMinLongLong(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ true, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMathMaxIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMaxIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ false, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMathMaxLongLong(HInvoke* invoke) { CreateLongLongToLongLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMaxLongLong(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ true, GetAssembler()); } static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); } void IntrinsicLocationsBuilderX86::VisitMathSqrt(HInvoke* invoke) { CreateFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathSqrt(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); GetAssembler()->sqrtsd(out, in); } static void InvokeOutOfLineIntrinsic(CodeGeneratorX86* codegen, HInvoke* invoke) { MoveArguments(invoke, codegen); DCHECK(invoke->IsInvokeStaticOrDirect()); codegen->GenerateStaticOrDirectCall(invoke->AsInvokeStaticOrDirect(), Location::RegisterLocation(EAX)); // Copy the result back to the expected output. Location out = invoke->GetLocations()->Out(); if (out.IsValid()) { DCHECK(out.IsRegister()); codegen->MoveFromReturnRegister(out, invoke->GetType()); } } static void CreateSSE41FPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke, CodeGeneratorX86* codegen) { // Do we have instruction support? if (codegen->GetInstructionSetFeatures().HasSSE4_1()) { CreateFPToFPLocations(allocator, invoke); return; } // We have to fall back to a call to the intrinsic. LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); // Needs to be EAX for the invoke. locations->AddTemp(Location::RegisterLocation(EAX)); } static void GenSSE41FPToFPIntrinsic(CodeGeneratorX86* codegen, HInvoke* invoke, X86Assembler* assembler, int round_mode) { LocationSummary* locations = invoke->GetLocations(); if (locations->WillCall()) { InvokeOutOfLineIntrinsic(codegen, invoke); } else { XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); __ roundsd(out, in, Immediate(round_mode)); } } void IntrinsicLocationsBuilderX86::VisitMathCeil(HInvoke* invoke) { CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); } void IntrinsicCodeGeneratorX86::VisitMathCeil(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 2); } void IntrinsicLocationsBuilderX86::VisitMathFloor(HInvoke* invoke) { CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); } void IntrinsicCodeGeneratorX86::VisitMathFloor(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 1); } void IntrinsicLocationsBuilderX86::VisitMathRint(HInvoke* invoke) { CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); } void IntrinsicCodeGeneratorX86::VisitMathRint(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 0); } void IntrinsicLocationsBuilderX86::VisitMathRoundFloat(HInvoke* invoke) { // Do we have instruction support? if (codegen_->GetInstructionSetFeatures().HasSSE4_1()) { HInvokeStaticOrDirect* static_or_direct = invoke->AsInvokeStaticOrDirect(); DCHECK(static_or_direct != nullptr); LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); if (static_or_direct->HasSpecialInput() && invoke->InputAt( static_or_direct->GetSpecialInputIndex())->IsX86ComputeBaseMethodAddress()) { locations->SetInAt(1, Location::RequiresRegister()); } locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); return; } // We have to fall back to a call to the intrinsic. LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::RegisterLocation(EAX)); // Needs to be EAX for the invoke. locations->AddTemp(Location::RegisterLocation(EAX)); } void IntrinsicCodeGeneratorX86::VisitMathRoundFloat(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); if (locations->WillCall()) { // TODO: can we reach this? InvokeOutOfLineIntrinsic(codegen_, invoke); return; } XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); Register out = locations->Out().AsRegister<Register>(); NearLabel skip_incr, done; X86Assembler* assembler = GetAssembler(); // Since no direct x86 rounding instruction matches the required semantics, // this intrinsic is implemented as follows: // result = floor(in); // if (in - result >= 0.5f) // result = result + 1.0f; __ movss(t2, in); __ roundss(t1, in, Immediate(1)); __ subss(t2, t1); if (locations->GetInputCount() == 2 && locations->InAt(1).IsValid()) { // Direct constant area available. HX86ComputeBaseMethodAddress* method_address = invoke->InputAt(1)->AsX86ComputeBaseMethodAddress(); Register constant_area = locations->InAt(1).AsRegister<Register>(); __ comiss(t2, codegen_->LiteralInt32Address(bit_cast<int32_t, float>(0.5f), method_address, constant_area)); __ j(kBelow, &skip_incr); __ addss(t1, codegen_->LiteralInt32Address(bit_cast<int32_t, float>(1.0f), method_address, constant_area)); __ Bind(&skip_incr); } else { // No constant area: go through stack. __ pushl(Immediate(bit_cast<int32_t, float>(0.5f))); __ pushl(Immediate(bit_cast<int32_t, float>(1.0f))); __ comiss(t2, Address(ESP, 4)); __ j(kBelow, &skip_incr); __ addss(t1, Address(ESP, 0)); __ Bind(&skip_incr); __ addl(ESP, Immediate(8)); } // Final conversion to an integer. Unfortunately this also does not have a // direct x86 instruction, since NaN should map to 0 and large positive // values need to be clipped to the extreme value. __ movl(out, Immediate(kPrimIntMax)); __ cvtsi2ss(t2, out); __ comiss(t1, t2); __ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered __ movl(out, Immediate(0)); // does not change flags __ j(kUnordered, &done); // NaN mapped to 0 (just moved in out) __ cvttss2si(out, t1); __ Bind(&done); } static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); } static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86* codegen, QuickEntrypointEnum entry) { LocationSummary* locations = invoke->GetLocations(); DCHECK(locations->WillCall()); DCHECK(invoke->IsInvokeStaticOrDirect()); X86Assembler* assembler = codegen->GetAssembler(); // We need some place to pass the parameters. __ subl(ESP, Immediate(16)); __ cfi().AdjustCFAOffset(16); // Pass the parameters at the bottom of the stack. __ movsd(Address(ESP, 0), XMM0); // If we have a second parameter, pass it next. if (invoke->GetNumberOfArguments() == 2) { __ movsd(Address(ESP, 8), XMM1); } // Now do the actual call. codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); // Extract the return value from the FP stack. __ fstpl(Address(ESP, 0)); __ movsd(XMM0, Address(ESP, 0)); // And clean up the stack. __ addl(ESP, Immediate(16)); __ cfi().AdjustCFAOffset(-16); } void IntrinsicLocationsBuilderX86::VisitMathCos(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathCos(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCos); } void IntrinsicLocationsBuilderX86::VisitMathSin(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathSin(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickSin); } void IntrinsicLocationsBuilderX86::VisitMathAcos(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAcos(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAcos); } void IntrinsicLocationsBuilderX86::VisitMathAsin(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAsin(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAsin); } void IntrinsicLocationsBuilderX86::VisitMathAtan(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAtan(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAtan); } void IntrinsicLocationsBuilderX86::VisitMathCbrt(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathCbrt(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCbrt); } void IntrinsicLocationsBuilderX86::VisitMathCosh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathCosh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCosh); } void IntrinsicLocationsBuilderX86::VisitMathExp(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathExp(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickExp); } void IntrinsicLocationsBuilderX86::VisitMathExpm1(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathExpm1(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickExpm1); } void IntrinsicLocationsBuilderX86::VisitMathLog(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathLog(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickLog); } void IntrinsicLocationsBuilderX86::VisitMathLog10(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathLog10(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickLog10); } void IntrinsicLocationsBuilderX86::VisitMathSinh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathSinh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickSinh); } void IntrinsicLocationsBuilderX86::VisitMathTan(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathTan(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickTan); } void IntrinsicLocationsBuilderX86::VisitMathTanh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathTanh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickTanh); } static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); } void IntrinsicLocationsBuilderX86::VisitMathAtan2(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAtan2(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAtan2); } void IntrinsicLocationsBuilderX86::VisitMathPow(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathPow(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickPow); } void IntrinsicLocationsBuilderX86::VisitMathHypot(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathHypot(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickHypot); } void IntrinsicLocationsBuilderX86::VisitMathNextAfter(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathNextAfter(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickNextAfter); } void IntrinsicLocationsBuilderX86::VisitSystemArrayCopyChar(HInvoke* invoke) { // We need at least two of the positions or length to be an integer constant, // or else we won't have enough free registers. HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); int num_constants = ((src_pos != nullptr) ? 1 : 0) + ((dest_pos != nullptr) ? 1 : 0) + ((length != nullptr) ? 1 : 0); if (num_constants < 2) { // Not enough free registers. return; } // As long as we are checking, we might as well check to see if the src and dest // positions are >= 0. if ((src_pos != nullptr && src_pos->GetValue() < 0) || (dest_pos != nullptr && dest_pos->GetValue() < 0)) { // We will have to fail anyways. return; } // And since we are already checking, check the length too. if (length != nullptr) { int32_t len = length->GetValue(); if (len < 0) { // Just call as normal. return; } } // Okay, it is safe to generate inline code. LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); // arraycopy(Object src, int srcPos, Object dest, int destPos, int length). locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3))); locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4))); // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. locations->AddTemp(Location::RegisterLocation(ESI)); locations->AddTemp(Location::RegisterLocation(EDI)); locations->AddTemp(Location::RegisterLocation(ECX)); } static void CheckPosition(X86Assembler* assembler, Location pos, Register input, Location length, SlowPathCode* slow_path, Register temp, bool length_is_input_length = false) { // Where is the length in the Array? const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); if (pos.IsConstant()) { int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); if (pos_const == 0) { if (!length_is_input_length) { // Check that length(input) >= length. if (length.IsConstant()) { __ cmpl(Address(input, length_offset), Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmpl(Address(input, length_offset), length.AsRegister<Register>()); } __ j(kLess, slow_path->GetEntryLabel()); } } else { // Check that length(input) >= pos. __ movl(temp, Address(input, length_offset)); __ subl(temp, Immediate(pos_const)); __ j(kLess, slow_path->GetEntryLabel()); // Check that (length(input) - pos) >= length. if (length.IsConstant()) { __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmpl(temp, length.AsRegister<Register>()); } __ j(kLess, slow_path->GetEntryLabel()); } } else if (length_is_input_length) { // The only way the copy can succeed is if pos is zero. Register pos_reg = pos.AsRegister<Register>(); __ testl(pos_reg, pos_reg); __ j(kNotEqual, slow_path->GetEntryLabel()); } else { // Check that pos >= 0. Register pos_reg = pos.AsRegister<Register>(); __ testl(pos_reg, pos_reg); __ j(kLess, slow_path->GetEntryLabel()); // Check that pos <= length(input). __ cmpl(Address(input, length_offset), pos_reg); __ j(kLess, slow_path->GetEntryLabel()); // Check that (length(input) - pos) >= length. __ movl(temp, Address(input, length_offset)); __ subl(temp, pos_reg); if (length.IsConstant()) { __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmpl(temp, length.AsRegister<Register>()); } __ j(kLess, slow_path->GetEntryLabel()); } } void IntrinsicCodeGeneratorX86::VisitSystemArrayCopyChar(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register src = locations->InAt(0).AsRegister<Register>(); Location srcPos = locations->InAt(1); Register dest = locations->InAt(2).AsRegister<Register>(); Location destPos = locations->InAt(3); Location length = locations->InAt(4); // Temporaries that we need for MOVSW. Register src_base = locations->GetTemp(0).AsRegister<Register>(); DCHECK_EQ(src_base, ESI); Register dest_base = locations->GetTemp(1).AsRegister<Register>(); DCHECK_EQ(dest_base, EDI); Register count = locations->GetTemp(2).AsRegister<Register>(); DCHECK_EQ(count, ECX); SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); codegen_->AddSlowPath(slow_path); // Bail out if the source and destination are the same (to handle overlap). __ cmpl(src, dest); __ j(kEqual, slow_path->GetEntryLabel()); // Bail out if the source is null. __ testl(src, src); __ j(kEqual, slow_path->GetEntryLabel()); // Bail out if the destination is null. __ testl(dest, dest); __ j(kEqual, slow_path->GetEntryLabel()); // If the length is negative, bail out. // We have already checked in the LocationsBuilder for the constant case. if (!length.IsConstant()) { __ cmpl(length.AsRegister<Register>(), length.AsRegister<Register>()); __ j(kLess, slow_path->GetEntryLabel()); } // We need the count in ECX. if (length.IsConstant()) { __ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ movl(count, length.AsRegister<Register>()); } // Validity checks: source. Use src_base as a temporary register. CheckPosition(assembler, srcPos, src, Location::RegisterLocation(count), slow_path, src_base); // Validity checks: dest. Use src_base as a temporary register. CheckPosition(assembler, destPos, dest, Location::RegisterLocation(count), slow_path, src_base); // Okay, everything checks out. Finally time to do the copy. // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = DataType::Size(DataType::Type::kUint16); DCHECK_EQ(char_size, 2u); const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); if (srcPos.IsConstant()) { int32_t srcPos_const = srcPos.GetConstant()->AsIntConstant()->GetValue(); __ leal(src_base, Address(src, char_size * srcPos_const + data_offset)); } else { __ leal(src_base, Address(src, srcPos.AsRegister<Register>(), ScaleFactor::TIMES_2, data_offset)); } if (destPos.IsConstant()) { int32_t destPos_const = destPos.GetConstant()->AsIntConstant()->GetValue(); __ leal(dest_base, Address(dest, char_size * destPos_const + data_offset)); } else { __ leal(dest_base, Address(dest, destPos.AsRegister<Register>(), ScaleFactor::TIMES_2, data_offset)); } // Do the move. __ rep_movsw(); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86::VisitStringCompareTo(HInvoke* invoke) { // The inputs plus one temp. LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetOut(Location::RegisterLocation(EAX)); } void IntrinsicCodeGeneratorX86::VisitStringCompareTo(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); Register argument = locations->InAt(1).AsRegister<Register>(); __ testl(argument, argument); SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86::VisitStringEquals(HInvoke* invoke) { if (kEmitCompilerReadBarrier && !StringEqualsOptimizations(invoke).GetArgumentIsString() && !StringEqualsOptimizations(invoke).GetNoReadBarrierForStringClass()) { // No support for this odd case (String class is moveable, not in the boot image). return; } LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); // Request temporary registers, ECX and EDI needed for repe_cmpsl instruction. locations->AddTemp(Location::RegisterLocation(ECX)); locations->AddTemp(Location::RegisterLocation(EDI)); // Set output, ESI needed for repe_cmpsl instruction anyways. locations->SetOut(Location::RegisterLocation(ESI), Location::kOutputOverlap); } void IntrinsicCodeGeneratorX86::VisitStringEquals(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register str = locations->InAt(0).AsRegister<Register>(); Register arg = locations->InAt(1).AsRegister<Register>(); Register ecx = locations->GetTemp(0).AsRegister<Register>(); Register edi = locations->GetTemp(1).AsRegister<Register>(); Register esi = locations->Out().AsRegister<Register>(); NearLabel end, return_true, return_false; // Get offsets of count, value, and class fields within a string object. const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); StringEqualsOptimizations optimizations(invoke); if (!optimizations.GetArgumentNotNull()) { // Check if input is null, return false if it is. __ testl(arg, arg); __ j(kEqual, &return_false); } if (!optimizations.GetArgumentIsString()) { // Instanceof check for the argument by comparing class fields. // All string objects must have the same type since String cannot be subclassed. // Receiver must be a string object, so its class field is equal to all strings' class fields. // If the argument is a string object, its class field must be equal to receiver's class field. __ movl(ecx, Address(str, class_offset)); __ cmpl(ecx, Address(arg, class_offset)); __ j(kNotEqual, &return_false); } // Reference equality check, return true if same reference. __ cmpl(str, arg); __ j(kEqual, &return_true); // Load length and compression flag of receiver string. __ movl(ecx, Address(str, count_offset)); // Check if lengths and compression flags are equal, return false if they're not. // Two identical strings will always have same compression style since // compression style is decided on alloc. __ cmpl(ecx, Address(arg, count_offset)); __ j(kNotEqual, &return_false); // Return true if strings are empty. Even with string compression `count == 0` means empty. static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ jecxz(&return_true); if (mirror::kUseStringCompression) { NearLabel string_uncompressed; // Extract length and differentiate between both compressed or both uncompressed. // Different compression style is cut above. __ shrl(ecx, Immediate(1)); __ j(kCarrySet, &string_uncompressed); // Divide string length by 2, rounding up, and continue as if uncompressed. __ addl(ecx, Immediate(1)); __ shrl(ecx, Immediate(1)); __ Bind(&string_uncompressed); } // Load starting addresses of string values into ESI/EDI as required for repe_cmpsl instruction. __ leal(esi, Address(str, value_offset)); __ leal(edi, Address(arg, value_offset)); // Divide string length by 2 to compare characters 2 at a time and adjust for lengths not // divisible by 2. __ addl(ecx, Immediate(1)); __ shrl(ecx, Immediate(1)); // Assertions that must hold in order to compare strings 2 characters (uncompressed) // or 4 characters (compressed) at a time. DCHECK_ALIGNED(value_offset, 4); static_assert(IsAligned<4>(kObjectAlignment), "String of odd length is not zero padded"); // Loop to compare strings two characters at a time starting at the beginning of the string. __ repe_cmpsl(); // If strings are not equal, zero flag will be cleared. __ j(kNotEqual, &return_false); // Return true and exit the function. // If loop does not result in returning false, we return true. __ Bind(&return_true); __ movl(esi, Immediate(1)); __ jmp(&end); // Return false and exit the function. __ Bind(&return_false); __ xorl(esi, esi); __ Bind(&end); } static void CreateStringIndexOfLocations(HInvoke* invoke, ArenaAllocator* allocator, bool start_at_zero) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); // The data needs to be in EDI for scasw. So request that the string is there, anyways. locations->SetInAt(0, Location::RegisterLocation(EDI)); // If we look for a constant char, we'll still have to copy it into EAX. So just request the // allocator to do that, anyways. We can still do the constant check by checking the parameter // of the instruction explicitly. // Note: This works as we don't clobber EAX anywhere. locations->SetInAt(1, Location::RegisterLocation(EAX)); if (!start_at_zero) { locations->SetInAt(2, Location::RequiresRegister()); // The starting index. } // As we clobber EDI during execution anyways, also use it as the output. locations->SetOut(Location::SameAsFirstInput()); // repne scasw uses ECX as the counter. locations->AddTemp(Location::RegisterLocation(ECX)); // Need another temporary to be able to compute the result. locations->AddTemp(Location::RequiresRegister()); if (mirror::kUseStringCompression) { // Need another temporary to be able to save unflagged string length. locations->AddTemp(Location::RequiresRegister()); } } static void GenerateStringIndexOf(HInvoke* invoke, X86Assembler* assembler, CodeGeneratorX86* codegen, bool start_at_zero) { LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); Register string_obj = locations->InAt(0).AsRegister<Register>(); Register search_value = locations->InAt(1).AsRegister<Register>(); Register counter = locations->GetTemp(0).AsRegister<Register>(); Register string_length = locations->GetTemp(1).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); // Only used when string compression feature is on. Register string_length_flagged; // Check our assumptions for registers. DCHECK_EQ(string_obj, EDI); DCHECK_EQ(search_value, EAX); DCHECK_EQ(counter, ECX); DCHECK_EQ(out, EDI); // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, // or directly dispatch for a large constant, or omit slow-path for a small constant or a char. SlowPathCode* slow_path = nullptr; HInstruction* code_point = invoke->InputAt(1); if (code_point->IsIntConstant()) { if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) > std::numeric_limits<uint16_t>::max()) { // Always needs the slow-path. We could directly dispatch to it, but this case should be // rare, so for simplicity just put the full slow-path down and branch unconditionally. slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); codegen->AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); return; } } else if (code_point->GetType() != DataType::Type::kUint16) { __ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max())); slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); codegen->AddSlowPath(slow_path); __ j(kAbove, slow_path->GetEntryLabel()); } // From here down, we know that we are looking for a char that fits in 16 bits. // Location of reference to data array within the String object. int32_t value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count within the String object. int32_t count_offset = mirror::String::CountOffset().Int32Value(); // Load the count field of the string containing the length and compression flag. __ movl(string_length, Address(string_obj, count_offset)); // Do a zero-length check. Even with string compression `count == 0` means empty. static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); // TODO: Support jecxz. NearLabel not_found_label; __ testl(string_length, string_length); __ j(kEqual, ¬_found_label); if (mirror::kUseStringCompression) { string_length_flagged = locations->GetTemp(2).AsRegister<Register>(); __ movl(string_length_flagged, string_length); // Extract the length and shift out the least significant bit used as compression flag. __ shrl(string_length, Immediate(1)); } if (start_at_zero) { // Number of chars to scan is the same as the string length. __ movl(counter, string_length); // Move to the start of the string. __ addl(string_obj, Immediate(value_offset)); } else { Register start_index = locations->InAt(2).AsRegister<Register>(); // Do a start_index check. __ cmpl(start_index, string_length); __ j(kGreaterEqual, ¬_found_label); // Ensure we have a start index >= 0; __ xorl(counter, counter); __ cmpl(start_index, Immediate(0)); __ cmovl(kGreater, counter, start_index); if (mirror::kUseStringCompression) { NearLabel modify_counter, offset_uncompressed_label; __ testl(string_length_flagged, Immediate(1)); __ j(kNotZero, &offset_uncompressed_label); // Move to the start of the string: string_obj + value_offset + start_index. __ leal(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_1, value_offset)); __ jmp(&modify_counter); // Move to the start of the string: string_obj + value_offset + 2 * start_index. __ Bind(&offset_uncompressed_label); __ leal(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); // Now update ecx (the repne scasw work counter). We have string.length - start_index left to // compare. __ Bind(&modify_counter); } else { __ leal(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); } __ negl(counter); __ leal(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0)); } if (mirror::kUseStringCompression) { NearLabel uncompressed_string_comparison; NearLabel comparison_done; __ testl(string_length_flagged, Immediate(1)); __ j(kNotZero, &uncompressed_string_comparison); // Check if EAX (search_value) is ASCII. __ cmpl(search_value, Immediate(127)); __ j(kGreater, ¬_found_label); // Comparing byte-per-byte. __ repne_scasb(); __ jmp(&comparison_done); // Everything is set up for repne scasw: // * Comparison address in EDI. // * Counter in ECX. __ Bind(&uncompressed_string_comparison); __ repne_scasw(); __ Bind(&comparison_done); } else { __ repne_scasw(); } // Did we find a match? __ j(kNotEqual, ¬_found_label); // Yes, we matched. Compute the index of the result. __ subl(string_length, counter); __ leal(out, Address(string_length, -1)); NearLabel done; __ jmp(&done); // Failed to match; return -1. __ Bind(¬_found_label); __ movl(out, Immediate(-1)); // And join up at the end. __ Bind(&done); if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderX86::VisitStringIndexOf(HInvoke* invoke) { CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero */ true); } void IntrinsicCodeGeneratorX86::VisitStringIndexOf(HInvoke* invoke) { GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero */ true); } void IntrinsicLocationsBuilderX86::VisitStringIndexOfAfter(HInvoke* invoke) { CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero */ false); } void IntrinsicCodeGeneratorX86::VisitStringIndexOfAfter(HInvoke* invoke) { GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero */ false); } void IntrinsicLocationsBuilderX86::VisitStringNewStringFromBytes(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3))); locations->SetOut(Location::RegisterLocation(EAX)); } void IntrinsicCodeGeneratorX86::VisitStringNewStringFromBytes(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register byte_array = locations->InAt(0).AsRegister<Register>(); __ testl(byte_array, byte_array); SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc()); CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>(); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86::VisitStringNewStringFromChars(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetOut(Location::RegisterLocation(EAX)); } void IntrinsicCodeGeneratorX86::VisitStringNewStringFromChars(HInvoke* invoke) { // No need to emit code checking whether `locations->InAt(2)` is a null // pointer, as callers of the native method // // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) // // all include a null check on `data` before calling that method. codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc()); CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>(); } void IntrinsicLocationsBuilderX86::VisitStringNewStringFromString(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetOut(Location::RegisterLocation(EAX)); } void IntrinsicCodeGeneratorX86::VisitStringNewStringFromString(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register string_to_copy = locations->InAt(0).AsRegister<Register>(); __ testl(string_to_copy, string_to_copy); SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc()); CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>(); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86::VisitStringGetCharsNoCheck(HInvoke* invoke) { // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); // Place srcEnd in ECX to save a move below. locations->SetInAt(2, Location::RegisterLocation(ECX)); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. // We don't have enough registers to also grab ECX, so handle below. locations->AddTemp(Location::RegisterLocation(ESI)); locations->AddTemp(Location::RegisterLocation(EDI)); } void IntrinsicCodeGeneratorX86::VisitStringGetCharsNoCheck(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); size_t char_component_size = DataType::Size(DataType::Type::kUint16); // Location of data in char array buffer. const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value(); // Location of char array data in string. const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); Register obj = locations->InAt(0).AsRegister<Register>(); Location srcBegin = locations->InAt(1); int srcBegin_value = srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0; Register srcEnd = locations->InAt(2).AsRegister<Register>(); Register dst = locations->InAt(3).AsRegister<Register>(); Register dstBegin = locations->InAt(4).AsRegister<Register>(); // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = DataType::Size(DataType::Type::kUint16); DCHECK_EQ(char_size, 2u); // Compute the number of chars (words) to move. // Save ECX, since we don't know if it will be used later. __ pushl(ECX); int stack_adjust = kX86WordSize; __ cfi().AdjustCFAOffset(stack_adjust); DCHECK_EQ(srcEnd, ECX); if (srcBegin.IsConstant()) { __ subl(ECX, Immediate(srcBegin_value)); } else { DCHECK(srcBegin.IsRegister()); __ subl(ECX, srcBegin.AsRegister<Register>()); } NearLabel done; if (mirror::kUseStringCompression) { // Location of count in string const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); const size_t c_char_size = DataType::Size(DataType::Type::kInt8); DCHECK_EQ(c_char_size, 1u); __ pushl(EAX); __ cfi().AdjustCFAOffset(stack_adjust); NearLabel copy_loop, copy_uncompressed; __ testl(Address(obj, count_offset), Immediate(1)); static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ j(kNotZero, ©_uncompressed); // Compute the address of the source string by adding the number of chars from // the source beginning to the value offset of a string. __ leal(ESI, CodeGeneratorX86::ArrayAddress(obj, srcBegin, TIMES_1, value_offset)); // Start the loop to copy String's value to Array of Char. __ leal(EDI, Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); __ Bind(©_loop); __ jecxz(&done); // Use EAX temporary (convert byte from ESI to word). // TODO: Use LODSB/STOSW (not supported by X86Assembler) with AH initialized to 0. __ movzxb(EAX, Address(ESI, 0)); __ movw(Address(EDI, 0), EAX); __ leal(EDI, Address(EDI, char_size)); __ leal(ESI, Address(ESI, c_char_size)); // TODO: Add support for LOOP to X86Assembler. __ subl(ECX, Immediate(1)); __ jmp(©_loop); __ Bind(©_uncompressed); } // Do the copy for uncompressed string. // Compute the address of the destination buffer. __ leal(EDI, Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); __ leal(ESI, CodeGeneratorX86::ArrayAddress(obj, srcBegin, TIMES_2, value_offset)); __ rep_movsw(); __ Bind(&done); if (mirror::kUseStringCompression) { // Restore EAX. __ popl(EAX); __ cfi().AdjustCFAOffset(-stack_adjust); } // Restore ECX. __ popl(ECX); __ cfi().AdjustCFAOffset(-stack_adjust); } static void GenPeek(LocationSummary* locations, DataType::Type size, X86Assembler* assembler) { Register address = locations->InAt(0).AsRegisterPairLow<Register>(); Location out_loc = locations->Out(); // x86 allows unaligned access. We do not have to check the input or use specific instructions // to avoid a SIGBUS. switch (size) { case DataType::Type::kInt8: __ movsxb(out_loc.AsRegister<Register>(), Address(address, 0)); break; case DataType::Type::kInt16: __ movsxw(out_loc.AsRegister<Register>(), Address(address, 0)); break; case DataType::Type::kInt32: __ movl(out_loc.AsRegister<Register>(), Address(address, 0)); break; case DataType::Type::kInt64: __ movl(out_loc.AsRegisterPairLow<Register>(), Address(address, 0)); __ movl(out_loc.AsRegisterPairHigh<Register>(), Address(address, 4)); break; default: LOG(FATAL) << "Type not recognized for peek: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86::VisitMemoryPeekByte(HInvoke* invoke) { CreateLongToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPeekByte(HInvoke* invoke) { GenPeek(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMemoryPeekIntNative(HInvoke* invoke) { CreateLongToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPeekIntNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMemoryPeekLongNative(HInvoke* invoke) { CreateLongToLongLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPeekLongNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMemoryPeekShortNative(HInvoke* invoke) { CreateLongToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPeekShortNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); } static void CreateLongIntToVoidLocations(ArenaAllocator* allocator, DataType::Type size, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); HInstruction* value = invoke->InputAt(1); if (size == DataType::Type::kInt8) { locations->SetInAt(1, Location::ByteRegisterOrConstant(EDX, value)); } else { locations->SetInAt(1, Location::RegisterOrConstant(value)); } } static void GenPoke(LocationSummary* locations, DataType::Type size, X86Assembler* assembler) { Register address = locations->InAt(0).AsRegisterPairLow<Register>(); Location value_loc = locations->InAt(1); // x86 allows unaligned access. We do not have to check the input or use specific instructions // to avoid a SIGBUS. switch (size) { case DataType::Type::kInt8: if (value_loc.IsConstant()) { __ movb(Address(address, 0), Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue())); } else { __ movb(Address(address, 0), value_loc.AsRegister<ByteRegister>()); } break; case DataType::Type::kInt16: if (value_loc.IsConstant()) { __ movw(Address(address, 0), Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue())); } else { __ movw(Address(address, 0), value_loc.AsRegister<Register>()); } break; case DataType::Type::kInt32: if (value_loc.IsConstant()) { __ movl(Address(address, 0), Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue())); } else { __ movl(Address(address, 0), value_loc.AsRegister<Register>()); } break; case DataType::Type::kInt64: if (value_loc.IsConstant()) { int64_t value = value_loc.GetConstant()->AsLongConstant()->GetValue(); __ movl(Address(address, 0), Immediate(Low32Bits(value))); __ movl(Address(address, 4), Immediate(High32Bits(value))); } else { __ movl(Address(address, 0), value_loc.AsRegisterPairLow<Register>()); __ movl(Address(address, 4), value_loc.AsRegisterPairHigh<Register>()); } break; default: LOG(FATAL) << "Type not recognized for poke: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86::VisitMemoryPokeByte(HInvoke* invoke) { CreateLongIntToVoidLocations(allocator_, DataType::Type::kInt8, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPokeByte(HInvoke* invoke) { GenPoke(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMemoryPokeIntNative(HInvoke* invoke) { CreateLongIntToVoidLocations(allocator_, DataType::Type::kInt32, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPokeIntNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMemoryPokeLongNative(HInvoke* invoke) { CreateLongIntToVoidLocations(allocator_, DataType::Type::kInt64, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPokeLongNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMemoryPokeShortNative(HInvoke* invoke) { CreateLongIntToVoidLocations(allocator_, DataType::Type::kInt16, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPokeShortNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitThreadCurrentThread(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorX86::VisitThreadCurrentThread(HInvoke* invoke) { Register out = invoke->GetLocations()->Out().AsRegister<Register>(); GetAssembler()->fs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86PointerSize>())); } static void GenUnsafeGet(HInvoke* invoke, DataType::Type type, bool is_volatile, CodeGeneratorX86* codegen) { X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler()); LocationSummary* locations = invoke->GetLocations(); Location base_loc = locations->InAt(1); Register base = base_loc.AsRegister<Register>(); Location offset_loc = locations->InAt(2); Register offset = offset_loc.AsRegisterPairLow<Register>(); Location output_loc = locations->Out(); switch (type) { case DataType::Type::kInt32: { Register output = output_loc.AsRegister<Register>(); __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); break; } case DataType::Type::kReference: { Register output = output_loc.AsRegister<Register>(); if (kEmitCompilerReadBarrier) { if (kUseBakerReadBarrier) { Address src(base, offset, ScaleFactor::TIMES_1, 0); codegen->GenerateReferenceLoadWithBakerReadBarrier( invoke, output_loc, base, src, /* needs_null_check */ false); } else { __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); codegen->GenerateReadBarrierSlow( invoke, output_loc, output_loc, base_loc, 0U, offset_loc); } } else { __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); __ MaybeUnpoisonHeapReference(output); } break; } case DataType::Type::kInt64: { Register output_lo = output_loc.AsRegisterPairLow<Register>(); Register output_hi = output_loc.AsRegisterPairHigh<Register>(); if (is_volatile) { // Need to use a XMM to read atomically. XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); __ movsd(temp, Address(base, offset, ScaleFactor::TIMES_1, 0)); __ movd(output_lo, temp); __ psrlq(temp, Immediate(32)); __ movd(output_hi, temp); } else { __ movl(output_lo, Address(base, offset, ScaleFactor::TIMES_1, 0)); __ movl(output_hi, Address(base, offset, ScaleFactor::TIMES_1, 4)); } } break; default: LOG(FATAL) << "Unsupported op size " << type; UNREACHABLE(); } } static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke, DataType::Type type, bool is_volatile) { bool can_call = kEmitCompilerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); LocationSummary* locations = new (allocator) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); if (can_call && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); if (type == DataType::Type::kInt64) { if (is_volatile) { // Need to use XMM to read volatile. locations->AddTemp(Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } else { locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } } else { locations->SetOut(Location::RequiresRegister(), (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap)); } } void IntrinsicLocationsBuilderX86::VisitUnsafeGet(HInvoke* invoke) { CreateIntIntIntToIntLocations( allocator_, invoke, DataType::Type::kInt32, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafeGetVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32, /* is_volatile */ true); } void IntrinsicLocationsBuilderX86::VisitUnsafeGetLong(HInvoke* invoke) { CreateIntIntIntToIntLocations( allocator_, invoke, DataType::Type::kInt64, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafeGetLongVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64, /* is_volatile */ true); } void IntrinsicLocationsBuilderX86::VisitUnsafeGetObject(HInvoke* invoke) { CreateIntIntIntToIntLocations( allocator_, invoke, DataType::Type::kReference, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations( allocator_, invoke, DataType::Type::kReference, /* is_volatile */ true); } void IntrinsicCodeGeneratorX86::VisitUnsafeGet(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafeGetVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafeGetLong(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafeGetLongVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafeGetObject(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ true, codegen_); } static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* allocator, DataType::Type type, HInvoke* invoke, bool is_volatile) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); if (type == DataType::Type::kReference) { // Need temp registers for card-marking. locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. // Ensure the value is in a byte register. locations->AddTemp(Location::RegisterLocation(ECX)); } else if (type == DataType::Type::kInt64 && is_volatile) { locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); } } void IntrinsicLocationsBuilderX86::VisitUnsafePut(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( allocator_, DataType::Type::kInt32, invoke, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafePutOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( allocator_, DataType::Type::kInt32, invoke, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafePutVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( allocator_, DataType::Type::kInt32, invoke, /* is_volatile */ true); } void IntrinsicLocationsBuilderX86::VisitUnsafePutObject(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( allocator_, DataType::Type::kReference, invoke, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafePutObjectOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( allocator_, DataType::Type::kReference, invoke, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafePutObjectVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( allocator_, DataType::Type::kReference, invoke, /* is_volatile */ true); } void IntrinsicLocationsBuilderX86::VisitUnsafePutLong(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( allocator_, DataType::Type::kInt64, invoke, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafePutLongOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( allocator_, DataType::Type::kInt64, invoke, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafePutLongVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( allocator_, DataType::Type::kInt64, invoke, /* is_volatile */ true); } // We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86 // memory model. static void GenUnsafePut(LocationSummary* locations, DataType::Type type, bool is_volatile, CodeGeneratorX86* codegen) { X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler()); Register base = locations->InAt(1).AsRegister<Register>(); Register offset = locations->InAt(2).AsRegisterPairLow<Register>(); Location value_loc = locations->InAt(3); if (type == DataType::Type::kInt64) { Register value_lo = value_loc.AsRegisterPairLow<Register>(); Register value_hi = value_loc.AsRegisterPairHigh<Register>(); if (is_volatile) { XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); __ movd(temp1, value_lo); __ movd(temp2, value_hi); __ punpckldq(temp1, temp2); __ movsd(Address(base, offset, ScaleFactor::TIMES_1, 0), temp1); } else { __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value_lo); __ movl(Address(base, offset, ScaleFactor::TIMES_1, 4), value_hi); } } else if (kPoisonHeapReferences && type == DataType::Type::kReference) { Register temp = locations->GetTemp(0).AsRegister<Register>(); __ movl(temp, value_loc.AsRegister<Register>()); __ PoisonHeapReference(temp); __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp); } else { __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value_loc.AsRegister<Register>()); } if (is_volatile) { codegen->MemoryFence(); } if (type == DataType::Type::kReference) { bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(locations->GetTemp(0).AsRegister<Register>(), locations->GetTemp(1).AsRegister<Register>(), base, value_loc.AsRegister<Register>(), value_can_be_null); } } void IntrinsicCodeGeneratorX86::VisitUnsafePut(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutObject(HInvoke* invoke) { GenUnsafePut( invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutObjectOrdered(HInvoke* invoke) { GenUnsafePut( invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutObjectVolatile(HInvoke* invoke) { GenUnsafePut( invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutLong(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutLongOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutLongVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ true, codegen_); } static void CreateIntIntIntIntIntToInt(ArenaAllocator* allocator, DataType::Type type, HInvoke* invoke) { bool can_call = kEmitCompilerReadBarrier && kUseBakerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject); LocationSummary* locations = new (allocator) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); // Offset is a long, but in 32 bit mode, we only need the low word. // Can we update the invoke here to remove a TypeConvert to Long? locations->SetInAt(2, Location::RequiresRegister()); // Expected value must be in EAX or EDX:EAX. // For long, new value must be in ECX:EBX. if (type == DataType::Type::kInt64) { locations->SetInAt(3, Location::RegisterPairLocation(EAX, EDX)); locations->SetInAt(4, Location::RegisterPairLocation(EBX, ECX)); } else { locations->SetInAt(3, Location::RegisterLocation(EAX)); locations->SetInAt(4, Location::RequiresRegister()); } // Force a byte register for the output. locations->SetOut(Location::RegisterLocation(EAX)); if (type == DataType::Type::kReference) { // Need temporary registers for card-marking, and possibly for // (Baker) read barrier. locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. // Need a byte register for marking. locations->AddTemp(Location::RegisterLocation(ECX)); } } void IntrinsicLocationsBuilderX86::VisitUnsafeCASInt(HInvoke* invoke) { CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt32, invoke); } void IntrinsicLocationsBuilderX86::VisitUnsafeCASLong(HInvoke* invoke) { CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt64, invoke); } void IntrinsicLocationsBuilderX86::VisitUnsafeCASObject(HInvoke* invoke) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { return; } CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kReference, invoke); } static void GenCAS(DataType::Type type, HInvoke* invoke, CodeGeneratorX86* codegen) { X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler()); LocationSummary* locations = invoke->GetLocations(); Register base = locations->InAt(1).AsRegister<Register>(); Register offset = locations->InAt(2).AsRegisterPairLow<Register>(); Location out = locations->Out(); DCHECK_EQ(out.AsRegister<Register>(), EAX); // The address of the field within the holding object. Address field_addr(base, offset, ScaleFactor::TIMES_1, 0); if (type == DataType::Type::kReference) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); Location temp1_loc = locations->GetTemp(0); Register temp1 = temp1_loc.AsRegister<Register>(); Register temp2 = locations->GetTemp(1).AsRegister<Register>(); Register expected = locations->InAt(3).AsRegister<Register>(); // Ensure `expected` is in EAX (required by the CMPXCHG instruction). DCHECK_EQ(expected, EAX); Register value = locations->InAt(4).AsRegister<Register>(); // Mark card for object assuming new value is stored. bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(temp1, temp2, base, value, value_can_be_null); if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // Need to make sure the reference stored in the field is a to-space // one before attempting the CAS or the CAS could fail incorrectly. codegen->GenerateReferenceLoadWithBakerReadBarrier( invoke, temp1_loc, // Unused, used only as a "temporary" within the read barrier. base, field_addr, /* needs_null_check */ false, /* always_update_field */ true, &temp2); } bool base_equals_value = (base == value); if (kPoisonHeapReferences) { if (base_equals_value) { // If `base` and `value` are the same register location, move // `value` to a temporary register. This way, poisoning // `value` won't invalidate `base`. value = temp1; __ movl(value, base); } // Check that the register allocator did not assign the location // of `expected` (EAX) to `value` nor to `base`, so that heap // poisoning (when enabled) works as intended below. // - If `value` were equal to `expected`, both references would // be poisoned twice, meaning they would not be poisoned at // all, as heap poisoning uses address negation. // - If `base` were equal to `expected`, poisoning `expected` // would invalidate `base`. DCHECK_NE(value, expected); DCHECK_NE(base, expected); __ PoisonHeapReference(expected); __ PoisonHeapReference(value); } __ LockCmpxchgl(field_addr, value); // LOCK CMPXCHG has full barrier semantics, and we don't need // scheduling barriers at this time. // Convert ZF into the Boolean result. __ setb(kZero, out.AsRegister<Register>()); __ movzxb(out.AsRegister<Register>(), out.AsRegister<ByteRegister>()); // If heap poisoning is enabled, we need to unpoison the values // that were poisoned earlier. if (kPoisonHeapReferences) { if (base_equals_value) { // `value` has been moved to a temporary register, no need to // unpoison it. } else { // Ensure `value` is different from `out`, so that unpoisoning // the former does not invalidate the latter. DCHECK_NE(value, out.AsRegister<Register>()); __ UnpoisonHeapReference(value); } // Do not unpoison the reference contained in register // `expected`, as it is the same as register `out` (EAX). } } else { if (type == DataType::Type::kInt32) { // Ensure the expected value is in EAX (required by the CMPXCHG // instruction). DCHECK_EQ(locations->InAt(3).AsRegister<Register>(), EAX); __ LockCmpxchgl(field_addr, locations->InAt(4).AsRegister<Register>()); } else if (type == DataType::Type::kInt64) { // Ensure the expected value is in EAX:EDX and that the new // value is in EBX:ECX (required by the CMPXCHG8B instruction). DCHECK_EQ(locations->InAt(3).AsRegisterPairLow<Register>(), EAX); DCHECK_EQ(locations->InAt(3).AsRegisterPairHigh<Register>(), EDX); DCHECK_EQ(locations->InAt(4).AsRegisterPairLow<Register>(), EBX); DCHECK_EQ(locations->InAt(4).AsRegisterPairHigh<Register>(), ECX); __ LockCmpxchg8b(field_addr); } else { LOG(FATAL) << "Unexpected CAS type " << type; } // LOCK CMPXCHG/LOCK CMPXCHG8B have full barrier semantics, and we // don't need scheduling barriers at this time. // Convert ZF into the Boolean result. __ setb(kZero, out.AsRegister<Register>()); __ movzxb(out.AsRegister<Register>(), out.AsRegister<ByteRegister>()); } } void IntrinsicCodeGeneratorX86::VisitUnsafeCASInt(HInvoke* invoke) { GenCAS(DataType::Type::kInt32, invoke, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafeCASLong(HInvoke* invoke) { GenCAS(DataType::Type::kInt64, invoke, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafeCASObject(HInvoke* invoke) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); GenCAS(DataType::Type::kReference, invoke, codegen_); } void IntrinsicLocationsBuilderX86::VisitIntegerReverse(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); } static void SwapBits(Register reg, Register temp, int32_t shift, int32_t mask, X86Assembler* assembler) { Immediate imm_shift(shift); Immediate imm_mask(mask); __ movl(temp, reg); __ shrl(reg, imm_shift); __ andl(temp, imm_mask); __ andl(reg, imm_mask); __ shll(temp, imm_shift); __ orl(reg, temp); } void IntrinsicCodeGeneratorX86::VisitIntegerReverse(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register reg = locations->InAt(0).AsRegister<Register>(); Register temp = locations->GetTemp(0).AsRegister<Register>(); /* * Use one bswap instruction to reverse byte order first and then use 3 rounds of * swapping bits to reverse bits in a number x. Using bswap to save instructions * compared to generic luni implementation which has 5 rounds of swapping bits. * x = bswap x * x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555; * x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333; * x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F; */ __ bswapl(reg); SwapBits(reg, temp, 1, 0x55555555, assembler); SwapBits(reg, temp, 2, 0x33333333, assembler); SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler); } void IntrinsicLocationsBuilderX86::VisitLongReverse(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorX86::VisitLongReverse(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register reg_low = locations->InAt(0).AsRegisterPairLow<Register>(); Register reg_high = locations->InAt(0).AsRegisterPairHigh<Register>(); Register temp = locations->GetTemp(0).AsRegister<Register>(); // We want to swap high/low, then bswap each one, and then do the same // as a 32 bit reverse. // Exchange high and low. __ movl(temp, reg_low); __ movl(reg_low, reg_high); __ movl(reg_high, temp); // bit-reverse low __ bswapl(reg_low); SwapBits(reg_low, temp, 1, 0x55555555, assembler); SwapBits(reg_low, temp, 2, 0x33333333, assembler); SwapBits(reg_low, temp, 4, 0x0f0f0f0f, assembler); // bit-reverse high __ bswapl(reg_high); SwapBits(reg_high, temp, 1, 0x55555555, assembler); SwapBits(reg_high, temp, 2, 0x33333333, assembler); SwapBits(reg_high, temp, 4, 0x0f0f0f0f, assembler); } static void CreateBitCountLocations( ArenaAllocator* allocator, CodeGeneratorX86* codegen, HInvoke* invoke, bool is_long) { if (!codegen->GetInstructionSetFeatures().HasPopCnt()) { // Do nothing if there is no popcnt support. This results in generating // a call for the intrinsic rather than direct code. return; } LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); if (is_long) { locations->AddTemp(Location::RequiresRegister()); } locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister()); } static void GenBitCount(X86Assembler* assembler, CodeGeneratorX86* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); Register out = locations->Out().AsRegister<Register>(); if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); int32_t result = is_long ? POPCOUNT(static_cast<uint64_t>(value)) : POPCOUNT(static_cast<uint32_t>(value)); codegen->Load32BitValue(out, result); return; } // Handle the non-constant cases. if (!is_long) { if (src.IsRegister()) { __ popcntl(out, src.AsRegister<Register>()); } else { DCHECK(src.IsStackSlot()); __ popcntl(out, Address(ESP, src.GetStackIndex())); } } else { // The 64-bit case needs to worry about two parts. Register temp = locations->GetTemp(0).AsRegister<Register>(); if (src.IsRegisterPair()) { __ popcntl(temp, src.AsRegisterPairLow<Register>()); __ popcntl(out, src.AsRegisterPairHigh<Register>()); } else { DCHECK(src.IsDoubleStackSlot()); __ popcntl(temp, Address(ESP, src.GetStackIndex())); __ popcntl(out, Address(ESP, src.GetHighStackIndex(kX86WordSize))); } __ addl(out, temp); } } void IntrinsicLocationsBuilderX86::VisitIntegerBitCount(HInvoke* invoke) { CreateBitCountLocations(allocator_, codegen_, invoke, /* is_long */ false); } void IntrinsicCodeGeneratorX86::VisitIntegerBitCount(HInvoke* invoke) { GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ false); } void IntrinsicLocationsBuilderX86::VisitLongBitCount(HInvoke* invoke) { CreateBitCountLocations(allocator_, codegen_, invoke, /* is_long */ true); } void IntrinsicCodeGeneratorX86::VisitLongBitCount(HInvoke* invoke) { GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ true); } static void CreateLeadingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is_long) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); if (is_long) { locations->SetInAt(0, Location::RequiresRegister()); } else { locations->SetInAt(0, Location::Any()); } locations->SetOut(Location::RequiresRegister()); } static void GenLeadingZeros(X86Assembler* assembler, CodeGeneratorX86* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); Register out = locations->Out().AsRegister<Register>(); if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); if (value == 0) { value = is_long ? 64 : 32; } else { value = is_long ? CLZ(static_cast<uint64_t>(value)) : CLZ(static_cast<uint32_t>(value)); } codegen->Load32BitValue(out, value); return; } // Handle the non-constant cases. if (!is_long) { if (src.IsRegister()) { __ bsrl(out, src.AsRegister<Register>()); } else { DCHECK(src.IsStackSlot()); __ bsrl(out, Address(ESP, src.GetStackIndex())); } // BSR sets ZF if the input was zero, and the output is undefined. NearLabel all_zeroes, done; __ j(kEqual, &all_zeroes); // Correct the result from BSR to get the final CLZ result. __ xorl(out, Immediate(31)); __ jmp(&done); // Fix the zero case with the expected result. __ Bind(&all_zeroes); __ movl(out, Immediate(32)); __ Bind(&done); return; } // 64 bit case needs to worry about both parts of the register. DCHECK(src.IsRegisterPair()); Register src_lo = src.AsRegisterPairLow<Register>(); Register src_hi = src.AsRegisterPairHigh<Register>(); NearLabel handle_low, done, all_zeroes; // Is the high word zero? __ testl(src_hi, src_hi); __ j(kEqual, &handle_low); // High word is not zero. We know that the BSR result is defined in this case. __ bsrl(out, src_hi); // Correct the result from BSR to get the final CLZ result. __ xorl(out, Immediate(31)); __ jmp(&done); // High word was zero. We have to compute the low word count and add 32. __ Bind(&handle_low); __ bsrl(out, src_lo); __ j(kEqual, &all_zeroes); // We had a valid result. Use an XOR to both correct the result and add 32. __ xorl(out, Immediate(63)); __ jmp(&done); // All zero case. __ Bind(&all_zeroes); __ movl(out, Immediate(64)); __ Bind(&done); } void IntrinsicLocationsBuilderX86::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { CreateLeadingZeroLocations(allocator_, invoke, /* is_long */ false); } void IntrinsicCodeGeneratorX86::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false); } void IntrinsicLocationsBuilderX86::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { CreateLeadingZeroLocations(allocator_, invoke, /* is_long */ true); } void IntrinsicCodeGeneratorX86::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true); } static void CreateTrailingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is_long) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); if (is_long) { locations->SetInAt(0, Location::RequiresRegister()); } else { locations->SetInAt(0, Location::Any()); } locations->SetOut(Location::RequiresRegister()); } static void GenTrailingZeros(X86Assembler* assembler, CodeGeneratorX86* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); Register out = locations->Out().AsRegister<Register>(); if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); if (value == 0) { value = is_long ? 64 : 32; } else { value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value)); } codegen->Load32BitValue(out, value); return; } // Handle the non-constant cases. if (!is_long) { if (src.IsRegister()) { __ bsfl(out, src.AsRegister<Register>()); } else { DCHECK(src.IsStackSlot()); __ bsfl(out, Address(ESP, src.GetStackIndex())); } // BSF sets ZF if the input was zero, and the output is undefined. NearLabel done; __ j(kNotEqual, &done); // Fix the zero case with the expected result. __ movl(out, Immediate(32)); __ Bind(&done); return; } // 64 bit case needs to worry about both parts of the register. DCHECK(src.IsRegisterPair()); Register src_lo = src.AsRegisterPairLow<Register>(); Register src_hi = src.AsRegisterPairHigh<Register>(); NearLabel done, all_zeroes; // If the low word is zero, then ZF will be set. If not, we have the answer. __ bsfl(out, src_lo); __ j(kNotEqual, &done); // Low word was zero. We have to compute the high word count and add 32. __ bsfl(out, src_hi); __ j(kEqual, &all_zeroes); // We had a valid result. Add 32 to account for the low word being zero. __ addl(out, Immediate(32)); __ jmp(&done); // All zero case. __ Bind(&all_zeroes); __ movl(out, Immediate(64)); __ Bind(&done); } void IntrinsicLocationsBuilderX86::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { CreateTrailingZeroLocations(allocator_, invoke, /* is_long */ false); } void IntrinsicCodeGeneratorX86::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false); } void IntrinsicLocationsBuilderX86::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { CreateTrailingZeroLocations(allocator_, invoke, /* is_long */ true); } void IntrinsicCodeGeneratorX86::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true); } static bool IsSameInput(HInstruction* instruction, size_t input0, size_t input1) { return instruction->InputAt(input0) == instruction->InputAt(input1); } // Compute base address for the System.arraycopy intrinsic in `base`. static void GenSystemArrayCopyBaseAddress(X86Assembler* assembler, DataType::Type type, const Register& array, const Location& pos, const Register& base) { // This routine is only used by the SystemArrayCopy intrinsic at the // moment. We can allow DataType::Type::kReference as `type` to implement // the SystemArrayCopyChar intrinsic. DCHECK_EQ(type, DataType::Type::kReference); const int32_t element_size = DataType::Size(type); const ScaleFactor scale_factor = static_cast<ScaleFactor>(DataType::SizeShift(type)); const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value(); if (pos.IsConstant()) { int32_t constant = pos.GetConstant()->AsIntConstant()->GetValue(); __ leal(base, Address(array, element_size * constant + data_offset)); } else { __ leal(base, Address(array, pos.AsRegister<Register>(), scale_factor, data_offset)); } } // Compute end source address for the System.arraycopy intrinsic in `end`. static void GenSystemArrayCopyEndAddress(X86Assembler* assembler, DataType::Type type, const Location& copy_length, const Register& base, const Register& end) { // This routine is only used by the SystemArrayCopy intrinsic at the // moment. We can allow DataType::Type::kReference as `type` to implement // the SystemArrayCopyChar intrinsic. DCHECK_EQ(type, DataType::Type::kReference); const int32_t element_size = DataType::Size(type); const ScaleFactor scale_factor = static_cast<ScaleFactor>(DataType::SizeShift(type)); if (copy_length.IsConstant()) { int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue(); __ leal(end, Address(base, element_size * constant)); } else { __ leal(end, Address(base, copy_length.AsRegister<Register>(), scale_factor, 0)); } } void IntrinsicLocationsBuilderX86::VisitSystemArrayCopy(HInvoke* invoke) { // The only read barrier implementation supporting the // SystemArrayCopy intrinsic is the Baker-style read barriers. if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { return; } CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke); if (invoke->GetLocations() != nullptr) { // Need a byte register for marking. invoke->GetLocations()->SetTempAt(1, Location::RegisterLocation(ECX)); static constexpr size_t kSrc = 0; static constexpr size_t kSrcPos = 1; static constexpr size_t kDest = 2; static constexpr size_t kDestPos = 3; static constexpr size_t kLength = 4; if (!invoke->InputAt(kSrcPos)->IsIntConstant() && !invoke->InputAt(kDestPos)->IsIntConstant() && !invoke->InputAt(kLength)->IsIntConstant()) { if (!IsSameInput(invoke, kSrcPos, kDestPos) && !IsSameInput(invoke, kSrcPos, kLength) && !IsSameInput(invoke, kDestPos, kLength) && !IsSameInput(invoke, kSrc, kDest)) { // Not enough registers, make the length also take a stack slot. invoke->GetLocations()->SetInAt(kLength, Location::Any()); } } } } void IntrinsicCodeGeneratorX86::VisitSystemArrayCopy(HInvoke* invoke) { // The only read barrier implementation supporting the // SystemArrayCopy intrinsic is the Baker-style read barriers. DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); Register src = locations->InAt(0).AsRegister<Register>(); Location src_pos = locations->InAt(1); Register dest = locations->InAt(2).AsRegister<Register>(); Location dest_pos = locations->InAt(3); Location length_arg = locations->InAt(4); Location length = length_arg; Location temp1_loc = locations->GetTemp(0); Register temp1 = temp1_loc.AsRegister<Register>(); Location temp2_loc = locations->GetTemp(1); Register temp2 = temp2_loc.AsRegister<Register>(); SlowPathCode* intrinsic_slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); codegen_->AddSlowPath(intrinsic_slow_path); NearLabel conditions_on_positions_validated; SystemArrayCopyOptimizations optimizations(invoke); // If source and destination are the same, we go to slow path if we need to do // forward copying. if (src_pos.IsConstant()) { int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); if (dest_pos.IsConstant()) { int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); if (optimizations.GetDestinationIsSource()) { // Checked when building locations. DCHECK_GE(src_pos_constant, dest_pos_constant); } else if (src_pos_constant < dest_pos_constant) { __ cmpl(src, dest); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); } } else { if (!optimizations.GetDestinationIsSource()) { __ cmpl(src, dest); __ j(kNotEqual, &conditions_on_positions_validated); } __ cmpl(dest_pos.AsRegister<Register>(), Immediate(src_pos_constant)); __ j(kGreater, intrinsic_slow_path->GetEntryLabel()); } } else { if (!optimizations.GetDestinationIsSource()) { __ cmpl(src, dest); __ j(kNotEqual, &conditions_on_positions_validated); } if (dest_pos.IsConstant()) { int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); __ cmpl(src_pos.AsRegister<Register>(), Immediate(dest_pos_constant)); __ j(kLess, intrinsic_slow_path->GetEntryLabel()); } else { __ cmpl(src_pos.AsRegister<Register>(), dest_pos.AsRegister<Register>()); __ j(kLess, intrinsic_slow_path->GetEntryLabel()); } } __ Bind(&conditions_on_positions_validated); if (!optimizations.GetSourceIsNotNull()) { // Bail out if the source is null. __ testl(src, src); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); } if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) { // Bail out if the destination is null. __ testl(dest, dest); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); } Location temp3_loc = locations->GetTemp(2); Register temp3 = temp3_loc.AsRegister<Register>(); if (length.IsStackSlot()) { __ movl(temp3, Address(ESP, length.GetStackIndex())); length = Location::RegisterLocation(temp3); } // If the length is negative, bail out. // We have already checked in the LocationsBuilder for the constant case. if (!length.IsConstant() && !optimizations.GetCountIsSourceLength() && !optimizations.GetCountIsDestinationLength()) { __ testl(length.AsRegister<Register>(), length.AsRegister<Register>()); __ j(kLess, intrinsic_slow_path->GetEntryLabel()); } // Validity checks: source. CheckPosition(assembler, src_pos, src, length, intrinsic_slow_path, temp1, optimizations.GetCountIsSourceLength()); // Validity checks: dest. CheckPosition(assembler, dest_pos, dest, length, intrinsic_slow_path, temp1, optimizations.GetCountIsDestinationLength()); if (!optimizations.GetDoesNotNeedTypeCheck()) { // Check whether all elements of the source array are assignable to the component // type of the destination array. We do two checks: the classes are the same, // or the destination is Object[]. If none of these checks succeed, we go to the // slow path. if (!optimizations.GetSourceIsNonPrimitiveArray()) { if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // /* HeapReference<Class> */ temp1 = src->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, src, class_offset, /* needs_null_check */ false); // Bail out if the source is not a non primitive array. // /* HeapReference<Class> */ temp1 = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, temp1, component_offset, /* needs_null_check */ false); __ testl(temp1, temp1); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); // If heap poisoning is enabled, `temp1` has been unpoisoned // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. } else { // /* HeapReference<Class> */ temp1 = src->klass_ __ movl(temp1, Address(src, class_offset)); __ MaybeUnpoisonHeapReference(temp1); // Bail out if the source is not a non primitive array. // /* HeapReference<Class> */ temp1 = temp1->component_type_ __ movl(temp1, Address(temp1, component_offset)); __ testl(temp1, temp1); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(temp1); } __ cmpw(Address(temp1, primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); } if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { if (length.Equals(Location::RegisterLocation(temp3))) { // When Baker read barriers are enabled, register `temp3`, // which in the present case contains the `length` parameter, // will be overwritten below. Make the `length` location // reference the original stack location; it will be moved // back to `temp3` later if necessary. DCHECK(length_arg.IsStackSlot()); length = length_arg; } // /* HeapReference<Class> */ temp1 = dest->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, dest, class_offset, /* needs_null_check */ false); if (!optimizations.GetDestinationIsNonPrimitiveArray()) { // Bail out if the destination is not a non primitive array. // // Register `temp1` is not trashed by the read barrier emitted // by GenerateFieldLoadWithBakerReadBarrier below, as that // method produces a call to a ReadBarrierMarkRegX entry point, // which saves all potentially live registers, including // temporaries such a `temp1`. // /* HeapReference<Class> */ temp2 = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp2_loc, temp1, component_offset, /* needs_null_check */ false); __ testl(temp2, temp2); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); // If heap poisoning is enabled, `temp2` has been unpoisoned // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. __ cmpw(Address(temp2, primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); } // For the same reason given earlier, `temp1` is not trashed by the // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below. // /* HeapReference<Class> */ temp2 = src->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp2_loc, src, class_offset, /* needs_null_check */ false); // Note: if heap poisoning is on, we are comparing two unpoisoned references here. __ cmpl(temp1, temp2); if (optimizations.GetDestinationIsTypedObjectArray()) { NearLabel do_copy; __ j(kEqual, &do_copy); // /* HeapReference<Class> */ temp1 = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, temp1, component_offset, /* needs_null_check */ false); // We do not need to emit a read barrier for the following // heap reference load, as `temp1` is only used in a // comparison with null below, and this reference is not // kept afterwards. __ cmpl(Address(temp1, super_offset), Immediate(0)); __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); __ Bind(&do_copy); } else { __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); } } else { // Non read barrier code. // /* HeapReference<Class> */ temp1 = dest->klass_ __ movl(temp1, Address(dest, class_offset)); if (!optimizations.GetDestinationIsNonPrimitiveArray()) { __ MaybeUnpoisonHeapReference(temp1); // Bail out if the destination is not a non primitive array. // /* HeapReference<Class> */ temp2 = temp1->component_type_ __ movl(temp2, Address(temp1, component_offset)); __ testl(temp2, temp2); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(temp2); __ cmpw(Address(temp2, primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); // Re-poison the heap reference to make the compare instruction below // compare two poisoned references. __ PoisonHeapReference(temp1); } // Note: if heap poisoning is on, we are comparing two poisoned references here. __ cmpl(temp1, Address(src, class_offset)); if (optimizations.GetDestinationIsTypedObjectArray()) { NearLabel do_copy; __ j(kEqual, &do_copy); __ MaybeUnpoisonHeapReference(temp1); // /* HeapReference<Class> */ temp1 = temp1->component_type_ __ movl(temp1, Address(temp1, component_offset)); __ MaybeUnpoisonHeapReference(temp1); __ cmpl(Address(temp1, super_offset), Immediate(0)); __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); __ Bind(&do_copy); } else { __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); } } } else if (!optimizations.GetSourceIsNonPrimitiveArray()) { DCHECK(optimizations.GetDestinationIsNonPrimitiveArray()); // Bail out if the source is not a non primitive array. if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // /* HeapReference<Class> */ temp1 = src->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, src, class_offset, /* needs_null_check */ false); // /* HeapReference<Class> */ temp1 = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, temp1, component_offset, /* needs_null_check */ false); __ testl(temp1, temp1); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); // If heap poisoning is enabled, `temp1` has been unpoisoned // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. } else { // /* HeapReference<Class> */ temp1 = src->klass_ __ movl(temp1, Address(src, class_offset)); __ MaybeUnpoisonHeapReference(temp1); // /* HeapReference<Class> */ temp1 = temp1->component_type_ __ movl(temp1, Address(temp1, component_offset)); __ testl(temp1, temp1); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(temp1); } __ cmpw(Address(temp1, primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); } const DataType::Type type = DataType::Type::kReference; const int32_t element_size = DataType::Size(type); // Compute the base source address in `temp1`. GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1); if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // If it is needed (in the case of the fast-path loop), the base // destination address is computed later, as `temp2` is used for // intermediate computations. // Compute the end source address in `temp3`. if (length.IsStackSlot()) { // Location `length` is again pointing at a stack slot, as // register `temp3` (which was containing the length parameter // earlier) has been overwritten; restore it now DCHECK(length.Equals(length_arg)); __ movl(temp3, Address(ESP, length.GetStackIndex())); length = Location::RegisterLocation(temp3); } GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3); // SystemArrayCopy implementation for Baker read barriers (see // also CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier): // // if (src_ptr != end_ptr) { // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState(); // lfence; // Load fence or artificial data dependency to prevent load-load reordering // bool is_gray = (rb_state == ReadBarrier::GrayState()); // if (is_gray) { // // Slow-path copy. // for (size_t i = 0; i != length; ++i) { // dest_array[dest_pos + i] = // MaybePoison(ReadBarrier::Mark(MaybeUnpoison(src_array[src_pos + i]))); // } // } else { // // Fast-path copy. // do { // *dest_ptr++ = *src_ptr++; // } while (src_ptr != end_ptr) // } // } NearLabel loop, done; // Don't enter copy loop if `length == 0`. __ cmpl(temp1, temp3); __ j(kEqual, &done); // Given the numeric representation, it's enough to check the low bit of the rb_state. static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte; constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte; constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position); // if (rb_state == ReadBarrier::GrayState()) // goto slow_path; // At this point, just do the "if" and make sure that flags are preserved until the branch. __ testb(Address(src, monitor_offset + gray_byte_position), Immediate(test_value)); // Load fence to prevent load-load reordering. // Note that this is a no-op, thanks to the x86 memory model. codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // Slow path used to copy array when `src` is gray. SlowPathCode* read_barrier_slow_path = new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathX86(invoke); codegen_->AddSlowPath(read_barrier_slow_path); // We have done the "if" of the gray bit check above, now branch based on the flags. __ j(kNotZero, read_barrier_slow_path->GetEntryLabel()); // Fast-path copy. // Compute the base destination address in `temp2`. GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2); // Iterate over the arrays and do a raw copy of the objects. We don't need to // poison/unpoison. __ Bind(&loop); __ pushl(Address(temp1, 0)); __ cfi().AdjustCFAOffset(4); __ popl(Address(temp2, 0)); __ cfi().AdjustCFAOffset(-4); __ addl(temp1, Immediate(element_size)); __ addl(temp2, Immediate(element_size)); __ cmpl(temp1, temp3); __ j(kNotEqual, &loop); __ Bind(read_barrier_slow_path->GetExitLabel()); __ Bind(&done); } else { // Non read barrier code. // Compute the base destination address in `temp2`. GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2); // Compute the end source address in `temp3`. GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3); // Iterate over the arrays and do a raw copy of the objects. We don't need to // poison/unpoison. NearLabel loop, done; __ cmpl(temp1, temp3); __ j(kEqual, &done); __ Bind(&loop); __ pushl(Address(temp1, 0)); __ cfi().AdjustCFAOffset(4); __ popl(Address(temp2, 0)); __ cfi().AdjustCFAOffset(-4); __ addl(temp1, Immediate(element_size)); __ addl(temp2, Immediate(element_size)); __ cmpl(temp1, temp3); __ j(kNotEqual, &loop); __ Bind(&done); } // We only need one card marking on the destination array. codegen_->MarkGCCard(temp1, temp2, dest, Register(kNoRegister), /* value_can_be_null */ false); __ Bind(intrinsic_slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86::VisitIntegerValueOf(HInvoke* invoke) { InvokeRuntimeCallingConvention calling_convention; IntrinsicVisitor::ComputeIntegerValueOfLocations( invoke, codegen_, Location::RegisterLocation(EAX), Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void IntrinsicCodeGeneratorX86::VisitIntegerValueOf(HInvoke* invoke) { IntrinsicVisitor::IntegerValueOfInfo info = IntrinsicVisitor::ComputeIntegerValueOfInfo(); LocationSummary* locations = invoke->GetLocations(); X86Assembler* assembler = GetAssembler(); Register out = locations->Out().AsRegister<Register>(); InvokeRuntimeCallingConvention calling_convention; if (invoke->InputAt(0)->IsConstant()) { int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue(); if (value >= info.low && value <= info.high) { // Just embed the j.l.Integer in the code. ScopedObjectAccess soa(Thread::Current()); mirror::Object* boxed = info.cache->Get(value + (-info.low)); DCHECK(boxed != nullptr && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(boxed)); uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(boxed)); __ movl(out, Immediate(address)); } else { // Allocate and initialize a new j.l.Integer. // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the // JIT object table. uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer)); __ movl(calling_convention.GetRegisterAt(0), Immediate(address)); codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); __ movl(Address(out, info.value_offset), Immediate(value)); } } else { Register in = locations->InAt(0).AsRegister<Register>(); // Check bounds of our cache. __ leal(out, Address(in, -info.low)); __ cmpl(out, Immediate(info.high - info.low + 1)); NearLabel allocate, done; __ j(kAboveEqual, &allocate); // If the value is within the bounds, load the j.l.Integer directly from the array. uint32_t data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.cache)); __ movl(out, Address(out, TIMES_4, data_offset + address)); __ MaybeUnpoisonHeapReference(out); __ jmp(&done); __ Bind(&allocate); // Otherwise allocate and initialize a new j.l.Integer. address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer)); __ movl(calling_convention.GetRegisterAt(0), Immediate(address)); codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); __ movl(Address(out, info.value_offset), in); __ Bind(&done); } } void IntrinsicLocationsBuilderX86::VisitThreadInterrupted(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorX86::VisitThreadInterrupted(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); Register out = invoke->GetLocations()->Out().AsRegister<Register>(); Address address = Address::Absolute(Thread::InterruptedOffset<kX86PointerSize>().Int32Value()); NearLabel done; __ fs()->movl(out, address); __ testl(out, out); __ j(kEqual, &done); __ fs()->movl(address, Immediate(0)); codegen_->MemoryFence(); __ Bind(&done); } void IntrinsicLocationsBuilderX86::VisitReachabilityFence(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); } void IntrinsicCodeGeneratorX86::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { } UNIMPLEMENTED_INTRINSIC(X86, MathRoundDouble) UNIMPLEMENTED_INTRINSIC(X86, ReferenceGetReferent) UNIMPLEMENTED_INTRINSIC(X86, FloatIsInfinite) UNIMPLEMENTED_INTRINSIC(X86, DoubleIsInfinite) UNIMPLEMENTED_INTRINSIC(X86, IntegerHighestOneBit) UNIMPLEMENTED_INTRINSIC(X86, LongHighestOneBit) UNIMPLEMENTED_INTRINSIC(X86, IntegerLowestOneBit) UNIMPLEMENTED_INTRINSIC(X86, LongLowestOneBit) UNIMPLEMENTED_INTRINSIC(X86, StringStringIndexOf); UNIMPLEMENTED_INTRINSIC(X86, StringStringIndexOfAfter); UNIMPLEMENTED_INTRINSIC(X86, StringBufferAppend); UNIMPLEMENTED_INTRINSIC(X86, StringBufferLength); UNIMPLEMENTED_INTRINSIC(X86, StringBufferToString); UNIMPLEMENTED_INTRINSIC(X86, StringBuilderAppend); UNIMPLEMENTED_INTRINSIC(X86, StringBuilderLength); UNIMPLEMENTED_INTRINSIC(X86, StringBuilderToString); // 1.8. UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndAddInt) UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndAddLong) UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetInt) UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetLong) UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetObject) UNREACHABLE_INTRINSICS(X86) #undef __ } // namespace x86 } // namespace art