/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "intrinsics_mips.h" #include "arch/mips/instruction_set_features_mips.h" #include "art_method.h" #include "code_generator_mips.h" #include "entrypoints/quick/quick_entrypoints.h" #include "heap_poisoning.h" #include "intrinsics.h" #include "mirror/array-inl.h" #include "mirror/object_array-inl.h" #include "mirror/string.h" #include "scoped_thread_state_change-inl.h" #include "thread.h" #include "utils/mips/assembler_mips.h" #include "utils/mips/constants_mips.h" namespace art { namespace mips { IntrinsicLocationsBuilderMIPS::IntrinsicLocationsBuilderMIPS(CodeGeneratorMIPS* codegen) : codegen_(codegen), allocator_(codegen->GetGraph()->GetAllocator()) { } MipsAssembler* IntrinsicCodeGeneratorMIPS::GetAssembler() { return reinterpret_cast<MipsAssembler*>(codegen_->GetAssembler()); } ArenaAllocator* IntrinsicCodeGeneratorMIPS::GetAllocator() { return codegen_->GetGraph()->GetAllocator(); } inline bool IntrinsicCodeGeneratorMIPS::IsR2OrNewer() const { return codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2(); } inline bool IntrinsicCodeGeneratorMIPS::IsR6() const { return codegen_->GetInstructionSetFeatures().IsR6(); } inline bool IntrinsicCodeGeneratorMIPS::Is32BitFPU() const { return codegen_->GetInstructionSetFeatures().Is32BitFloatingPoint(); } #define __ codegen->GetAssembler()-> static void MoveFromReturnRegister(Location trg, DataType::Type type, CodeGeneratorMIPS* codegen) { if (!trg.IsValid()) { DCHECK_EQ(type, DataType::Type::kVoid); return; } DCHECK_NE(type, DataType::Type::kVoid); if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) { Register trg_reg = trg.AsRegister<Register>(); if (trg_reg != V0) { __ Move(V0, trg_reg); } } else { FRegister trg_reg = trg.AsFpuRegister<FRegister>(); if (trg_reg != F0) { if (type == DataType::Type::kFloat32) { __ MovS(F0, trg_reg); } else { __ MovD(F0, trg_reg); } } } } static void MoveArguments(HInvoke* invoke, CodeGeneratorMIPS* codegen) { InvokeDexCallingConventionVisitorMIPS calling_convention_visitor; IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor); } // Slow-path for fallback (calling the managed code to handle the // intrinsic) in an intrinsified call. This will copy the arguments // into the positions for a regular call. // // Note: The actual parameters are required to be in the locations // given by the invoke's location summary. If an intrinsic // modifies those locations before a slowpath call, they must be // restored! class IntrinsicSlowPathMIPS : public SlowPathCodeMIPS { public: explicit IntrinsicSlowPathMIPS(HInvoke* invoke) : SlowPathCodeMIPS(invoke), invoke_(invoke) { } void EmitNativeCode(CodeGenerator* codegen_in) OVERRIDE { CodeGeneratorMIPS* codegen = down_cast<CodeGeneratorMIPS*>(codegen_in); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, invoke_->GetLocations()); MoveArguments(invoke_, codegen); if (invoke_->IsInvokeStaticOrDirect()) { codegen->GenerateStaticOrDirectCall( invoke_->AsInvokeStaticOrDirect(), Location::RegisterLocation(A0), this); } else { codegen->GenerateVirtualCall( invoke_->AsInvokeVirtual(), Location::RegisterLocation(A0), this); } // Copy the result back to the expected output. Location out = invoke_->GetLocations()->Out(); if (out.IsValid()) { DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory. DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg())); MoveFromReturnRegister(out, invoke_->GetType(), codegen); } RestoreLiveRegisters(codegen, invoke_->GetLocations()); __ B(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "IntrinsicSlowPathMIPS"; } private: // The instruction where this slow path is happening. HInvoke* const invoke_; DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathMIPS); }; #undef __ bool IntrinsicLocationsBuilderMIPS::TryDispatch(HInvoke* invoke) { Dispatch(invoke); LocationSummary* res = invoke->GetLocations(); return res != nullptr && res->Intrinsified(); } #define __ assembler-> static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); } static void MoveFPToInt(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) { FRegister in = locations->InAt(0).AsFpuRegister<FRegister>(); if (is64bit) { Register out_lo = locations->Out().AsRegisterPairLow<Register>(); Register out_hi = locations->Out().AsRegisterPairHigh<Register>(); __ Mfc1(out_lo, in); __ MoveFromFpuHigh(out_hi, in); } else { Register out = locations->Out().AsRegister<Register>(); __ Mfc1(out, in); } } // long java.lang.Double.doubleToRawLongBits(double) void IntrinsicLocationsBuilderMIPS::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } // int java.lang.Float.floatToRawIntBits(float) void IntrinsicLocationsBuilderMIPS::VisitFloatFloatToRawIntBits(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitFloatFloatToRawIntBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); } static void MoveIntToFP(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) { FRegister out = locations->Out().AsFpuRegister<FRegister>(); if (is64bit) { Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); __ Mtc1(in_lo, out); __ MoveToFpuHigh(in_hi, out); } else { Register in = locations->InAt(0).AsRegister<Register>(); __ Mtc1(in, out); } } // double java.lang.Double.longBitsToDouble(long) void IntrinsicLocationsBuilderMIPS::VisitDoubleLongBitsToDouble(HInvoke* invoke) { CreateIntToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitDoubleLongBitsToDouble(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } // float java.lang.Float.intBitsToFloat(int) void IntrinsicLocationsBuilderMIPS::VisitFloatIntBitsToFloat(HInvoke* invoke) { CreateIntToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitFloatIntBitsToFloat(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke, Location::OutputOverlap overlaps = Location::kNoOutputOverlap) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), overlaps); } static void GenReverse(LocationSummary* locations, DataType::Type type, bool isR2OrNewer, bool isR6, bool reverseBits, MipsAssembler* assembler) { DCHECK(type == DataType::Type::kInt16 || type == DataType::Type::kInt32 || type == DataType::Type::kInt64); DCHECK(type != DataType::Type::kInt16 || !reverseBits); if (type == DataType::Type::kInt16) { Register in = locations->InAt(0).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); if (isR2OrNewer) { __ Wsbh(out, in); __ Seh(out, out); } else { __ Sll(TMP, in, 24); __ Sra(TMP, TMP, 16); __ Sll(out, in, 16); __ Srl(out, out, 24); __ Or(out, out, TMP); } } else if (type == DataType::Type::kInt32) { Register in = locations->InAt(0).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); if (isR2OrNewer) { __ Rotr(out, in, 16); __ Wsbh(out, out); } else { // MIPS32r1 // __ Rotr(out, in, 16); __ Sll(TMP, in, 16); __ Srl(out, in, 16); __ Or(out, out, TMP); // __ Wsbh(out, out); __ LoadConst32(AT, 0x00FF00FF); __ And(TMP, out, AT); __ Sll(TMP, TMP, 8); __ Srl(out, out, 8); __ And(out, out, AT); __ Or(out, out, TMP); } if (reverseBits) { if (isR6) { __ Bitswap(out, out); } else { __ LoadConst32(AT, 0x0F0F0F0F); __ And(TMP, out, AT); __ Sll(TMP, TMP, 4); __ Srl(out, out, 4); __ And(out, out, AT); __ Or(out, TMP, out); __ LoadConst32(AT, 0x33333333); __ And(TMP, out, AT); __ Sll(TMP, TMP, 2); __ Srl(out, out, 2); __ And(out, out, AT); __ Or(out, TMP, out); __ LoadConst32(AT, 0x55555555); __ And(TMP, out, AT); __ Sll(TMP, TMP, 1); __ Srl(out, out, 1); __ And(out, out, AT); __ Or(out, TMP, out); } } } else if (type == DataType::Type::kInt64) { Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); Register out_lo = locations->Out().AsRegisterPairLow<Register>(); Register out_hi = locations->Out().AsRegisterPairHigh<Register>(); if (isR2OrNewer) { __ Rotr(AT, in_hi, 16); __ Rotr(TMP, in_lo, 16); __ Wsbh(out_lo, AT); __ Wsbh(out_hi, TMP); } else { // When calling CreateIntToIntLocations() we promised that the // use of the out_lo/out_hi wouldn't overlap with the use of // in_lo/in_hi. Be very careful not to write to out_lo/out_hi // until we're completely done reading from in_lo/in_hi. // __ Rotr(TMP, in_lo, 16); __ Sll(TMP, in_lo, 16); __ Srl(AT, in_lo, 16); __ Or(TMP, TMP, AT); // Hold in TMP until it's safe // to write to out_hi. // __ Rotr(out_lo, in_hi, 16); __ Sll(AT, in_hi, 16); __ Srl(out_lo, in_hi, 16); // Here we are finally done reading // from in_lo/in_hi so it's okay to // write to out_lo/out_hi. __ Or(out_lo, out_lo, AT); // __ Wsbh(out_hi, out_hi); __ LoadConst32(AT, 0x00FF00FF); __ And(out_hi, TMP, AT); __ Sll(out_hi, out_hi, 8); __ Srl(TMP, TMP, 8); __ And(TMP, TMP, AT); __ Or(out_hi, out_hi, TMP); // __ Wsbh(out_lo, out_lo); __ And(TMP, out_lo, AT); // AT already holds the correct mask value __ Sll(TMP, TMP, 8); __ Srl(out_lo, out_lo, 8); __ And(out_lo, out_lo, AT); __ Or(out_lo, out_lo, TMP); } if (reverseBits) { if (isR6) { __ Bitswap(out_hi, out_hi); __ Bitswap(out_lo, out_lo); } else { __ LoadConst32(AT, 0x0F0F0F0F); __ And(TMP, out_hi, AT); __ Sll(TMP, TMP, 4); __ Srl(out_hi, out_hi, 4); __ And(out_hi, out_hi, AT); __ Or(out_hi, TMP, out_hi); __ And(TMP, out_lo, AT); __ Sll(TMP, TMP, 4); __ Srl(out_lo, out_lo, 4); __ And(out_lo, out_lo, AT); __ Or(out_lo, TMP, out_lo); __ LoadConst32(AT, 0x33333333); __ And(TMP, out_hi, AT); __ Sll(TMP, TMP, 2); __ Srl(out_hi, out_hi, 2); __ And(out_hi, out_hi, AT); __ Or(out_hi, TMP, out_hi); __ And(TMP, out_lo, AT); __ Sll(TMP, TMP, 2); __ Srl(out_lo, out_lo, 2); __ And(out_lo, out_lo, AT); __ Or(out_lo, TMP, out_lo); __ LoadConst32(AT, 0x55555555); __ And(TMP, out_hi, AT); __ Sll(TMP, TMP, 1); __ Srl(out_hi, out_hi, 1); __ And(out_hi, out_hi, AT); __ Or(out_hi, TMP, out_hi); __ And(TMP, out_lo, AT); __ Sll(TMP, TMP, 1); __ Srl(out_lo, out_lo, 1); __ And(out_lo, out_lo, AT); __ Or(out_lo, TMP, out_lo); } } } } // int java.lang.Integer.reverseBytes(int) void IntrinsicLocationsBuilderMIPS::VisitIntegerReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitIntegerReverseBytes(HInvoke* invoke) { GenReverse(invoke->GetLocations(), DataType::Type::kInt32, IsR2OrNewer(), IsR6(), /* reverseBits */ false, GetAssembler()); } // long java.lang.Long.reverseBytes(long) void IntrinsicLocationsBuilderMIPS::VisitLongReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitLongReverseBytes(HInvoke* invoke) { GenReverse(invoke->GetLocations(), DataType::Type::kInt64, IsR2OrNewer(), IsR6(), /* reverseBits */ false, GetAssembler()); } // short java.lang.Short.reverseBytes(short) void IntrinsicLocationsBuilderMIPS::VisitShortReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitShortReverseBytes(HInvoke* invoke) { GenReverse(invoke->GetLocations(), DataType::Type::kInt16, IsR2OrNewer(), IsR6(), /* reverseBits */ false, GetAssembler()); } static void GenNumberOfLeadingZeroes(LocationSummary* locations, bool is64bit, bool isR6, MipsAssembler* assembler) { Register out = locations->Out().AsRegister<Register>(); if (is64bit) { Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); if (isR6) { __ ClzR6(AT, in_hi); __ ClzR6(TMP, in_lo); __ Seleqz(TMP, TMP, in_hi); } else { __ ClzR2(AT, in_hi); __ ClzR2(TMP, in_lo); __ Movn(TMP, ZERO, in_hi); } __ Addu(out, AT, TMP); } else { Register in = locations->InAt(0).AsRegister<Register>(); if (isR6) { __ ClzR6(out, in); } else { __ ClzR2(out, in); } } } // int java.lang.Integer.numberOfLeadingZeros(int i) void IntrinsicLocationsBuilderMIPS::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit */ false, IsR6(), GetAssembler()); } // int java.lang.Long.numberOfLeadingZeros(long i) void IntrinsicLocationsBuilderMIPS::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit */ true, IsR6(), GetAssembler()); } static void GenNumberOfTrailingZeroes(LocationSummary* locations, bool is64bit, bool isR6, MipsAssembler* assembler) { Register out = locations->Out().AsRegister<Register>(); Register in_lo; Register in; if (is64bit) { Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); in_lo = locations->InAt(0).AsRegisterPairLow<Register>(); // If in_lo is zero then count the number of trailing zeroes in in_hi; // otherwise count the number of trailing zeroes in in_lo. // out = in_lo ? in_lo : in_hi; if (isR6) { __ Seleqz(out, in_hi, in_lo); __ Selnez(TMP, in_lo, in_lo); __ Or(out, out, TMP); } else { __ Movz(out, in_hi, in_lo); __ Movn(out, in_lo, in_lo); } in = out; } else { in = locations->InAt(0).AsRegister<Register>(); // Give in_lo a dummy value to keep the compiler from complaining. // Since we only get here in the 32-bit case, this value will never // be used. in_lo = in; } if (isR6) { // We don't have an instruction to count the number of trailing zeroes. // Start by flipping the bits end-for-end so we can count the number of // leading zeroes instead. __ Rotr(out, in, 16); __ Wsbh(out, out); __ Bitswap(out, out); __ ClzR6(out, out); } else { // Convert trailing zeroes to trailing ones, and bits to their left // to zeroes. __ Addiu(TMP, in, -1); __ Xor(out, TMP, in); __ And(out, out, TMP); // Count number of leading zeroes. __ ClzR2(out, out); // Subtract number of leading zeroes from 32 to get number of trailing ones. // Remember that the trailing ones were formerly trailing zeroes. __ LoadConst32(TMP, 32); __ Subu(out, TMP, out); } if (is64bit) { // If in_lo is zero, then we counted the number of trailing zeroes in in_hi so we must add the // number of trailing zeroes in in_lo (32) to get the correct final count __ LoadConst32(TMP, 32); if (isR6) { __ Seleqz(TMP, TMP, in_lo); } else { __ Movn(TMP, ZERO, in_lo); } __ Addu(out, out, TMP); } } // int java.lang.Integer.numberOfTrailingZeros(int i) void IntrinsicLocationsBuilderMIPS::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap); } void IntrinsicCodeGeneratorMIPS::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit */ false, IsR6(), GetAssembler()); } // int java.lang.Long.numberOfTrailingZeros(long i) void IntrinsicLocationsBuilderMIPS::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap); } void IntrinsicCodeGeneratorMIPS::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit */ true, IsR6(), GetAssembler()); } // int java.lang.Integer.reverse(int) void IntrinsicLocationsBuilderMIPS::VisitIntegerReverse(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitIntegerReverse(HInvoke* invoke) { GenReverse(invoke->GetLocations(), DataType::Type::kInt32, IsR2OrNewer(), IsR6(), /* reverseBits */ true, GetAssembler()); } // long java.lang.Long.reverse(long) void IntrinsicLocationsBuilderMIPS::VisitLongReverse(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitLongReverse(HInvoke* invoke) { GenReverse(invoke->GetLocations(), DataType::Type::kInt64, IsR2OrNewer(), IsR6(), /* reverseBits */ true, GetAssembler()); } static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } static void GenBitCount(LocationSummary* locations, DataType::Type type, bool isR6, MipsAssembler* assembler) { Register out = locations->Out().AsRegister<Register>(); // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel // // A generalization of the best bit counting method to integers of // bit-widths up to 128 (parameterized by type T) is this: // // v = v - ((v >> 1) & (T)~(T)0/3); // temp // v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); // temp // v = (v + (v >> 4)) & (T)~(T)0/255*15; // temp // c = (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * BITS_PER_BYTE; // count // // For comparison, for 32-bit quantities, this algorithm can be executed // using 20 MIPS instructions (the calls to LoadConst32() generate two // machine instructions each for the values being used in this algorithm). // A(n unrolled) loop-based algorithm required 25 instructions. // // For 64-bit quantities, this algorithm gets executed twice, (once // for in_lo, and again for in_hi), but saves a few instructions // because the mask values only have to be loaded once. Using this // algorithm the count for a 64-bit operand can be performed in 29 // instructions compared to a loop-based algorithm which required 47 // instructions. if (type == DataType::Type::kInt32) { Register in = locations->InAt(0).AsRegister<Register>(); __ Srl(TMP, in, 1); __ LoadConst32(AT, 0x55555555); __ And(TMP, TMP, AT); __ Subu(TMP, in, TMP); __ LoadConst32(AT, 0x33333333); __ And(out, TMP, AT); __ Srl(TMP, TMP, 2); __ And(TMP, TMP, AT); __ Addu(TMP, out, TMP); __ Srl(out, TMP, 4); __ Addu(out, out, TMP); __ LoadConst32(AT, 0x0F0F0F0F); __ And(out, out, AT); __ LoadConst32(TMP, 0x01010101); if (isR6) { __ MulR6(out, out, TMP); } else { __ MulR2(out, out, TMP); } __ Srl(out, out, 24); } else { DCHECK_EQ(type, DataType::Type::kInt64); Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); Register tmp_hi = locations->GetTemp(0).AsRegister<Register>(); Register out_hi = locations->GetTemp(1).AsRegister<Register>(); Register tmp_lo = TMP; Register out_lo = out; __ Srl(tmp_lo, in_lo, 1); __ Srl(tmp_hi, in_hi, 1); __ LoadConst32(AT, 0x55555555); __ And(tmp_lo, tmp_lo, AT); __ Subu(tmp_lo, in_lo, tmp_lo); __ And(tmp_hi, tmp_hi, AT); __ Subu(tmp_hi, in_hi, tmp_hi); __ LoadConst32(AT, 0x33333333); __ And(out_lo, tmp_lo, AT); __ Srl(tmp_lo, tmp_lo, 2); __ And(tmp_lo, tmp_lo, AT); __ Addu(tmp_lo, out_lo, tmp_lo); __ And(out_hi, tmp_hi, AT); __ Srl(tmp_hi, tmp_hi, 2); __ And(tmp_hi, tmp_hi, AT); __ Addu(tmp_hi, out_hi, tmp_hi); // Here we deviate from the original algorithm a bit. We've reached // the stage where the bitfields holding the subtotals are large // enough to hold the combined subtotals for both the low word, and // the high word. This means that we can add the subtotals for the // the high, and low words into a single word, and compute the final // result for both the high, and low words using fewer instructions. __ LoadConst32(AT, 0x0F0F0F0F); __ Addu(TMP, tmp_hi, tmp_lo); __ Srl(out, TMP, 4); __ And(out, out, AT); __ And(TMP, TMP, AT); __ Addu(out, out, TMP); __ LoadConst32(AT, 0x01010101); if (isR6) { __ MulR6(out, out, AT); } else { __ MulR2(out, out, AT); } __ Srl(out, out, 24); } } // int java.lang.Integer.bitCount(int) void IntrinsicLocationsBuilderMIPS::VisitIntegerBitCount(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitIntegerBitCount(HInvoke* invoke) { GenBitCount(invoke->GetLocations(), DataType::Type::kInt32, IsR6(), GetAssembler()); } // int java.lang.Long.bitCount(int) void IntrinsicLocationsBuilderMIPS::VisitLongBitCount(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorMIPS::VisitLongBitCount(HInvoke* invoke) { GenBitCount(invoke->GetLocations(), DataType::Type::kInt64, IsR6(), GetAssembler()); } static void MathAbsFP(LocationSummary* locations, bool is64bit, bool isR2OrNewer, bool isR6, MipsAssembler* assembler) { FRegister in = locations->InAt(0).AsFpuRegister<FRegister>(); FRegister out = locations->Out().AsFpuRegister<FRegister>(); // Note, as a "quality of implementation", rather than pure "spec compliance", we require that // Math.abs() clears the sign bit (but changes nothing else) for all numbers, including NaN // (signaling NaN may become quiet though). // // The ABS.fmt instructions (abs.s and abs.d) do exactly that when NAN2008=1 (R6). For this case, // both regular floating point numbers and NAN values are treated alike, only the sign bit is // affected by this instruction. // But when NAN2008=0 (R2 and before), the ABS.fmt instructions can't be used. For this case, any // NaN operand signals invalid operation. This means that other bits (not just sign bit) might be // changed when doing abs(NaN). Because of that, we clear sign bit in a different way. if (isR6) { if (is64bit) { __ AbsD(out, in); } else { __ AbsS(out, in); } } else { if (is64bit) { if (in != out) { __ MovD(out, in); } __ MoveFromFpuHigh(TMP, in); // ins instruction is not available for R1. if (isR2OrNewer) { __ Ins(TMP, ZERO, 31, 1); } else { __ Sll(TMP, TMP, 1); __ Srl(TMP, TMP, 1); } __ MoveToFpuHigh(TMP, out); } else { __ Mfc1(TMP, in); // ins instruction is not available for R1. if (isR2OrNewer) { __ Ins(TMP, ZERO, 31, 1); } else { __ Sll(TMP, TMP, 1); __ Srl(TMP, TMP, 1); } __ Mtc1(TMP, out); } } } // double java.lang.Math.abs(double) void IntrinsicLocationsBuilderMIPS::VisitMathAbsDouble(HInvoke* invoke) { CreateFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathAbsDouble(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), /* is64bit */ true, IsR2OrNewer(), IsR6(), GetAssembler()); } // float java.lang.Math.abs(float) void IntrinsicLocationsBuilderMIPS::VisitMathAbsFloat(HInvoke* invoke) { CreateFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathAbsFloat(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), /* is64bit */ false, IsR2OrNewer(), IsR6(), GetAssembler()); } static void GenAbsInteger(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) { if (is64bit) { Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); Register out_lo = locations->Out().AsRegisterPairLow<Register>(); Register out_hi = locations->Out().AsRegisterPairHigh<Register>(); // The comments in this section show the analogous operations which would // be performed if we had 64-bit registers "in", and "out". // __ Dsra32(AT, in, 31); __ Sra(AT, in_hi, 31); // __ Xor(out, in, AT); __ Xor(TMP, in_lo, AT); __ Xor(out_hi, in_hi, AT); // __ Dsubu(out, out, AT); __ Subu(out_lo, TMP, AT); __ Sltu(TMP, out_lo, TMP); __ Addu(out_hi, out_hi, TMP); } else { Register in = locations->InAt(0).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); __ Sra(AT, in, 31); __ Xor(out, in, AT); __ Subu(out, out, AT); } } // int java.lang.Math.abs(int) void IntrinsicLocationsBuilderMIPS::VisitMathAbsInt(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathAbsInt(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } // long java.lang.Math.abs(long) void IntrinsicLocationsBuilderMIPS::VisitMathAbsLong(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathAbsLong(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } static void GenMinMaxFP(LocationSummary* locations, bool is_min, DataType::Type type, bool is_R6, MipsAssembler* assembler) { FRegister out = locations->Out().AsFpuRegister<FRegister>(); FRegister a = locations->InAt(0).AsFpuRegister<FRegister>(); FRegister b = locations->InAt(1).AsFpuRegister<FRegister>(); if (is_R6) { MipsLabel noNaNs; MipsLabel done; FRegister ftmp = ((out != a) && (out != b)) ? out : FTMP; // When Java computes min/max it prefers a NaN to a number; the // behavior of MIPSR6 is to prefer numbers to NaNs, i.e., if one of // the inputs is a NaN and the other is a valid number, the MIPS // instruction will return the number; Java wants the NaN value // returned. This is why there is extra logic preceding the use of // the MIPS min.fmt/max.fmt instructions. If either a, or b holds a // NaN, return the NaN, otherwise return the min/max. if (type == DataType::Type::kFloat64) { __ CmpUnD(FTMP, a, b); __ Bc1eqz(FTMP, &noNaNs); // One of the inputs is a NaN __ CmpEqD(ftmp, a, a); // If a == a then b is the NaN, otherwise a is the NaN. __ SelD(ftmp, a, b); if (ftmp != out) { __ MovD(out, ftmp); } __ B(&done); __ Bind(&noNaNs); if (is_min) { __ MinD(out, a, b); } else { __ MaxD(out, a, b); } } else { DCHECK_EQ(type, DataType::Type::kFloat32); __ CmpUnS(FTMP, a, b); __ Bc1eqz(FTMP, &noNaNs); // One of the inputs is a NaN __ CmpEqS(ftmp, a, a); // If a == a then b is the NaN, otherwise a is the NaN. __ SelS(ftmp, a, b); if (ftmp != out) { __ MovS(out, ftmp); } __ B(&done); __ Bind(&noNaNs); if (is_min) { __ MinS(out, a, b); } else { __ MaxS(out, a, b); } } __ Bind(&done); } else { MipsLabel ordered; MipsLabel compare; MipsLabel select; MipsLabel done; if (type == DataType::Type::kFloat64) { __ CunD(a, b); } else { DCHECK_EQ(type, DataType::Type::kFloat32); __ CunS(a, b); } __ Bc1f(&ordered); // a or b (or both) is a NaN. Return one, which is a NaN. if (type == DataType::Type::kFloat64) { __ CeqD(b, b); } else { __ CeqS(b, b); } __ B(&select); __ Bind(&ordered); // Neither is a NaN. // a == b? (-0.0 compares equal with +0.0) // If equal, handle zeroes, else compare further. if (type == DataType::Type::kFloat64) { __ CeqD(a, b); } else { __ CeqS(a, b); } __ Bc1f(&compare); // a == b either bit for bit or one is -0.0 and the other is +0.0. if (type == DataType::Type::kFloat64) { __ MoveFromFpuHigh(TMP, a); __ MoveFromFpuHigh(AT, b); } else { __ Mfc1(TMP, a); __ Mfc1(AT, b); } if (is_min) { // -0.0 prevails over +0.0. __ Or(TMP, TMP, AT); } else { // +0.0 prevails over -0.0. __ And(TMP, TMP, AT); } if (type == DataType::Type::kFloat64) { __ Mfc1(AT, a); __ Mtc1(AT, out); __ MoveToFpuHigh(TMP, out); } else { __ Mtc1(TMP, out); } __ B(&done); __ Bind(&compare); if (type == DataType::Type::kFloat64) { if (is_min) { // return (a <= b) ? a : b; __ ColeD(a, b); } else { // return (a >= b) ? a : b; __ ColeD(b, a); // b <= a } } else { if (is_min) { // return (a <= b) ? a : b; __ ColeS(a, b); } else { // return (a >= b) ? a : b; __ ColeS(b, a); // b <= a } } __ Bind(&select); if (type == DataType::Type::kFloat64) { __ MovtD(out, a); __ MovfD(out, b); } else { __ MovtS(out, a); __ MovfS(out, b); } __ Bind(&done); } } static void CreateFPFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kOutputOverlap); } // double java.lang.Math.min(double, double) void IntrinsicLocationsBuilderMIPS::VisitMathMinDoubleDouble(HInvoke* invoke) { CreateFPFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathMinDoubleDouble(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), /* is_min */ true, DataType::Type::kFloat64, IsR6(), GetAssembler()); } // float java.lang.Math.min(float, float) void IntrinsicLocationsBuilderMIPS::VisitMathMinFloatFloat(HInvoke* invoke) { CreateFPFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathMinFloatFloat(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), /* is_min */ true, DataType::Type::kFloat32, IsR6(), GetAssembler()); } // double java.lang.Math.max(double, double) void IntrinsicLocationsBuilderMIPS::VisitMathMaxDoubleDouble(HInvoke* invoke) { CreateFPFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathMaxDoubleDouble(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), /* is_min */ false, DataType::Type::kFloat64, IsR6(), GetAssembler()); } // float java.lang.Math.max(float, float) void IntrinsicLocationsBuilderMIPS::VisitMathMaxFloatFloat(HInvoke* invoke) { CreateFPFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathMaxFloatFloat(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), /* is_min */ false, DataType::Type::kFloat32, IsR6(), GetAssembler()); } static void CreateIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } static void GenMinMax(LocationSummary* locations, bool is_min, DataType::Type type, bool is_R6, MipsAssembler* assembler) { if (is_R6) { // Some architectures, such as ARM and MIPS (prior to r6), have a // conditional move instruction which only changes the target // (output) register if the condition is true (MIPS prior to r6 had // MOVF, MOVT, MOVN, and MOVZ). The SELEQZ and SELNEZ instructions // always change the target (output) register. If the condition is // true the output register gets the contents of the "rs" register; // otherwise, the output register is set to zero. One consequence // of this is that to implement something like "rd = c==0 ? rs : rt" // MIPS64r6 needs to use a pair of SELEQZ/SELNEZ instructions. // After executing this pair of instructions one of the output // registers from the pair will necessarily contain zero. Then the // code ORs the output registers from the SELEQZ/SELNEZ instructions // to get the final result. // // The initial test to see if the output register is same as the // first input register is needed to make sure that value in the // first input register isn't clobbered before we've finished // computing the output value. The logic in the corresponding else // clause performs the same task but makes sure the second input // register isn't clobbered in the event that it's the same register // as the output register; the else clause also handles the case // where the output register is distinct from both the first, and the // second input registers. if (type == DataType::Type::kInt64) { Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>(); Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>(); Register out_lo = locations->Out().AsRegisterPairLow<Register>(); Register out_hi = locations->Out().AsRegisterPairHigh<Register>(); MipsLabel compare_done; if (a_lo == b_lo) { if (out_lo != a_lo) { __ Move(out_lo, a_lo); __ Move(out_hi, a_hi); } } else { __ Slt(TMP, b_hi, a_hi); __ Bne(b_hi, a_hi, &compare_done); __ Sltu(TMP, b_lo, a_lo); __ Bind(&compare_done); if (is_min) { __ Seleqz(AT, a_lo, TMP); __ Selnez(out_lo, b_lo, TMP); // Safe even if out_lo == a_lo/b_lo // because at this point we're // done using a_lo/b_lo. } else { __ Selnez(AT, a_lo, TMP); __ Seleqz(out_lo, b_lo, TMP); // ditto } __ Or(out_lo, out_lo, AT); if (is_min) { __ Seleqz(AT, a_hi, TMP); __ Selnez(out_hi, b_hi, TMP); // ditto but for out_hi & a_hi/b_hi } else { __ Selnez(AT, a_hi, TMP); __ Seleqz(out_hi, b_hi, TMP); // ditto but for out_hi & a_hi/b_hi } __ Or(out_hi, out_hi, AT); } } else { DCHECK_EQ(type, DataType::Type::kInt32); Register a = locations->InAt(0).AsRegister<Register>(); Register b = locations->InAt(1).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); if (a == b) { if (out != a) { __ Move(out, a); } } else { __ Slt(AT, b, a); if (is_min) { __ Seleqz(TMP, a, AT); __ Selnez(AT, b, AT); } else { __ Selnez(TMP, a, AT); __ Seleqz(AT, b, AT); } __ Or(out, TMP, AT); } } } else { if (type == DataType::Type::kInt64) { Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>(); Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>(); Register out_lo = locations->Out().AsRegisterPairLow<Register>(); Register out_hi = locations->Out().AsRegisterPairHigh<Register>(); MipsLabel compare_done; if (a_lo == b_lo) { if (out_lo != a_lo) { __ Move(out_lo, a_lo); __ Move(out_hi, a_hi); } } else { __ Slt(TMP, a_hi, b_hi); __ Bne(a_hi, b_hi, &compare_done); __ Sltu(TMP, a_lo, b_lo); __ Bind(&compare_done); if (is_min) { if (out_lo != a_lo) { __ Movn(out_hi, a_hi, TMP); __ Movn(out_lo, a_lo, TMP); } if (out_lo != b_lo) { __ Movz(out_hi, b_hi, TMP); __ Movz(out_lo, b_lo, TMP); } } else { if (out_lo != a_lo) { __ Movz(out_hi, a_hi, TMP); __ Movz(out_lo, a_lo, TMP); } if (out_lo != b_lo) { __ Movn(out_hi, b_hi, TMP); __ Movn(out_lo, b_lo, TMP); } } } } else { DCHECK_EQ(type, DataType::Type::kInt32); Register a = locations->InAt(0).AsRegister<Register>(); Register b = locations->InAt(1).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); if (a == b) { if (out != a) { __ Move(out, a); } } else { __ Slt(AT, a, b); if (is_min) { if (out != a) { __ Movn(out, a, AT); } if (out != b) { __ Movz(out, b, AT); } } else { if (out != a) { __ Movz(out, a, AT); } if (out != b) { __ Movn(out, b, AT); } } } } } } // int java.lang.Math.min(int, int) void IntrinsicLocationsBuilderMIPS::VisitMathMinIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathMinIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ true, DataType::Type::kInt32, IsR6(), GetAssembler()); } // long java.lang.Math.min(long, long) void IntrinsicLocationsBuilderMIPS::VisitMathMinLongLong(HInvoke* invoke) { CreateIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathMinLongLong(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ true, DataType::Type::kInt64, IsR6(), GetAssembler()); } // int java.lang.Math.max(int, int) void IntrinsicLocationsBuilderMIPS::VisitMathMaxIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathMaxIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ false, DataType::Type::kInt32, IsR6(), GetAssembler()); } // long java.lang.Math.max(long, long) void IntrinsicLocationsBuilderMIPS::VisitMathMaxLongLong(HInvoke* invoke) { CreateIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathMaxLongLong(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ false, DataType::Type::kInt64, IsR6(), GetAssembler()); } // double java.lang.Math.sqrt(double) void IntrinsicLocationsBuilderMIPS::VisitMathSqrt(HInvoke* invoke) { CreateFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathSqrt(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); MipsAssembler* assembler = GetAssembler(); FRegister in = locations->InAt(0).AsFpuRegister<FRegister>(); FRegister out = locations->Out().AsFpuRegister<FRegister>(); __ SqrtD(out, in); } // byte libcore.io.Memory.peekByte(long address) void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekByte(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekByte(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>(); Register out = invoke->GetLocations()->Out().AsRegister<Register>(); __ Lb(out, adr, 0); } // short libcore.io.Memory.peekShort(long address) void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekShortNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekShortNative(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>(); Register out = invoke->GetLocations()->Out().AsRegister<Register>(); if (IsR6()) { __ Lh(out, adr, 0); } else if (IsR2OrNewer()) { // Unlike for words, there are no lhl/lhr instructions to load // unaligned halfwords so the code loads individual bytes, in case // the address isn't halfword-aligned, and assembles them into a // signed halfword. __ Lb(AT, adr, 1); // This byte must be sign-extended. __ Lb(out, adr, 0); // This byte can be either sign-extended, or // zero-extended because the following // instruction overwrites the sign bits. __ Ins(out, AT, 8, 24); } else { __ Lbu(AT, adr, 0); // This byte must be zero-extended. If it's not // the "or" instruction below will destroy the upper // 24 bits of the final result. __ Lb(out, adr, 1); // This byte must be sign-extended. __ Sll(out, out, 8); __ Or(out, out, AT); } } // int libcore.io.Memory.peekInt(long address) void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekIntNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap); } void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekIntNative(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>(); Register out = invoke->GetLocations()->Out().AsRegister<Register>(); if (IsR6()) { __ Lw(out, adr, 0); } else { __ Lwr(out, adr, 0); __ Lwl(out, adr, 3); } } // long libcore.io.Memory.peekLong(long address) void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekLongNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap); } void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekLongNative(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>(); Register out_lo = invoke->GetLocations()->Out().AsRegisterPairLow<Register>(); Register out_hi = invoke->GetLocations()->Out().AsRegisterPairHigh<Register>(); if (IsR6()) { __ Lw(out_lo, adr, 0); __ Lw(out_hi, adr, 4); } else { __ Lwr(out_lo, adr, 0); __ Lwl(out_lo, adr, 3); __ Lwr(out_hi, adr, 4); __ Lwl(out_hi, adr, 7); } } static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); } // void libcore.io.Memory.pokeByte(long address, byte value) void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeByte(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeByte(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>(); Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>(); __ Sb(val, adr, 0); } // void libcore.io.Memory.pokeShort(long address, short value) void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeShortNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeShortNative(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>(); Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>(); if (IsR6()) { __ Sh(val, adr, 0); } else { // Unlike for words, there are no shl/shr instructions to store // unaligned halfwords so the code stores individual bytes, in case // the address isn't halfword-aligned. __ Sb(val, adr, 0); __ Srl(AT, val, 8); __ Sb(AT, adr, 1); } } // void libcore.io.Memory.pokeInt(long address, int value) void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeIntNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeIntNative(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>(); Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>(); if (IsR6()) { __ Sw(val, adr, 0); } else { __ Swr(val, adr, 0); __ Swl(val, adr, 3); } } // void libcore.io.Memory.pokeLong(long address, long value) void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeLongNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeLongNative(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>(); Register val_lo = invoke->GetLocations()->InAt(1).AsRegisterPairLow<Register>(); Register val_hi = invoke->GetLocations()->InAt(1).AsRegisterPairHigh<Register>(); if (IsR6()) { __ Sw(val_lo, adr, 0); __ Sw(val_hi, adr, 4); } else { __ Swr(val_lo, adr, 0); __ Swl(val_lo, adr, 3); __ Swr(val_hi, adr, 4); __ Swl(val_hi, adr, 7); } } // Thread java.lang.Thread.currentThread() void IntrinsicLocationsBuilderMIPS::VisitThreadCurrentThread(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorMIPS::VisitThreadCurrentThread(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); Register out = invoke->GetLocations()->Out().AsRegister<Register>(); __ LoadFromOffset(kLoadWord, out, TR, Thread::PeerOffset<kMipsPointerSize>().Int32Value()); } static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke, DataType::Type type) { bool can_call = kEmitCompilerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); LocationSummary* locations = new (allocator) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); if (can_call && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap)); if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // We need a temporary register for the read barrier marking slow // path in InstructionCodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier. locations->AddTemp(Location::RequiresRegister()); } } // Note that the caller must supply a properly aligned memory address. // If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur). static void GenUnsafeGet(HInvoke* invoke, DataType::Type type, bool is_volatile, bool is_R6, CodeGeneratorMIPS* codegen) { LocationSummary* locations = invoke->GetLocations(); DCHECK((type == DataType::Type::kInt32) || (type == DataType::Type::kInt64) || (type == DataType::Type::kReference)) << type; MipsAssembler* assembler = codegen->GetAssembler(); // Target register. Location trg_loc = locations->Out(); // Object pointer. Location base_loc = locations->InAt(1); Register base = base_loc.AsRegister<Register>(); // The "offset" argument is passed as a "long". Since this code is for // a 32-bit processor, we can only use 32-bit addresses, so we only // need the low 32-bits of offset. Location offset_loc = locations->InAt(2); Register offset_lo = offset_loc.AsRegisterPairLow<Register>(); if (!(kEmitCompilerReadBarrier && kUseBakerReadBarrier && (type == DataType::Type::kReference))) { __ Addu(TMP, base, offset_lo); } switch (type) { case DataType::Type::kInt64: { Register trg_lo = trg_loc.AsRegisterPairLow<Register>(); Register trg_hi = trg_loc.AsRegisterPairHigh<Register>(); CHECK(!is_volatile); // TODO: support atomic 8-byte volatile loads. if (is_R6) { __ Lw(trg_lo, TMP, 0); __ Lw(trg_hi, TMP, 4); } else { __ Lwr(trg_lo, TMP, 0); __ Lwl(trg_lo, TMP, 3); __ Lwr(trg_hi, TMP, 4); __ Lwl(trg_hi, TMP, 7); } break; } case DataType::Type::kInt32: { Register trg = trg_loc.AsRegister<Register>(); if (is_R6) { __ Lw(trg, TMP, 0); } else { __ Lwr(trg, TMP, 0); __ Lwl(trg, TMP, 3); } if (is_volatile) { __ Sync(0); } break; } case DataType::Type::kReference: { Register trg = trg_loc.AsRegister<Register>(); if (kEmitCompilerReadBarrier) { if (kUseBakerReadBarrier) { Location temp = locations->GetTemp(0); codegen->GenerateReferenceLoadWithBakerReadBarrier(invoke, trg_loc, base, /* offset */ 0U, /* index */ offset_loc, TIMES_1, temp, /* needs_null_check */ false); if (is_volatile) { __ Sync(0); } } else { if (is_R6) { __ Lw(trg, TMP, 0); } else { __ Lwr(trg, TMP, 0); __ Lwl(trg, TMP, 3); } if (is_volatile) { __ Sync(0); } codegen->GenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, /* offset */ 0U, /* index */ offset_loc); } } else { if (is_R6) { __ Lw(trg, TMP, 0); } else { __ Lwr(trg, TMP, 0); __ Lwl(trg, TMP, 3); } if (is_volatile) { __ Sync(0); } __ MaybeUnpoisonHeapReference(trg); } break; } default: LOG(FATAL) << "Unexpected type " << type; UNREACHABLE(); } } // int sun.misc.Unsafe.getInt(Object o, long offset) void IntrinsicLocationsBuilderMIPS::VisitUnsafeGet(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32); } void IntrinsicCodeGeneratorMIPS::VisitUnsafeGet(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ false, IsR6(), codegen_); } // int sun.misc.Unsafe.getIntVolatile(Object o, long offset) void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32); } void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ true, IsR6(), codegen_); } // long sun.misc.Unsafe.getLong(Object o, long offset) void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetLong(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64); } void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetLong(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile */ false, IsR6(), codegen_); } // Object sun.misc.Unsafe.getObject(Object o, long offset) void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetObject(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference); } void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetObject(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ false, IsR6(), codegen_); } // Object sun.misc.Unsafe.getObjectVolatile(Object o, long offset) void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference); } void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ true, IsR6(), codegen_); } static void CreateIntIntIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); } // Note that the caller must supply a properly aligned memory address. // If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur). static void GenUnsafePut(LocationSummary* locations, DataType::Type type, bool is_volatile, bool is_ordered, bool is_R6, CodeGeneratorMIPS* codegen) { DCHECK((type == DataType::Type::kInt32) || (type == DataType::Type::kInt64) || (type == DataType::Type::kReference)) << type; MipsAssembler* assembler = codegen->GetAssembler(); // Object pointer. Register base = locations->InAt(1).AsRegister<Register>(); // The "offset" argument is passed as a "long", i.e., it's 64-bits in // size. Since this code is for a 32-bit processor, we can only use // 32-bit addresses, so we only need the low 32-bits of offset. Register offset_lo = locations->InAt(2).AsRegisterPairLow<Register>(); __ Addu(TMP, base, offset_lo); if (is_volatile || is_ordered) { __ Sync(0); } if ((type == DataType::Type::kInt32) || (type == DataType::Type::kReference)) { Register value = locations->InAt(3).AsRegister<Register>(); if (kPoisonHeapReferences && type == DataType::Type::kReference) { __ PoisonHeapReference(AT, value); value = AT; } if (is_R6) { __ Sw(value, TMP, 0); } else { __ Swr(value, TMP, 0); __ Swl(value, TMP, 3); } } else { Register value_lo = locations->InAt(3).AsRegisterPairLow<Register>(); Register value_hi = locations->InAt(3).AsRegisterPairHigh<Register>(); CHECK(!is_volatile); // TODO: support atomic 8-byte volatile stores. if (is_R6) { __ Sw(value_lo, TMP, 0); __ Sw(value_hi, TMP, 4); } else { __ Swr(value_lo, TMP, 0); __ Swl(value_lo, TMP, 3); __ Swr(value_hi, TMP, 4); __ Swl(value_hi, TMP, 7); } } if (is_volatile) { __ Sync(0); } if (type == DataType::Type::kReference) { bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(base, locations->InAt(3).AsRegister<Register>(), value_can_be_null); } } // void sun.misc.Unsafe.putInt(Object o, long offset, int x) void IntrinsicLocationsBuilderMIPS::VisitUnsafePut(HInvoke* invoke) { CreateIntIntIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitUnsafePut(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ false, /* is_ordered */ false, IsR6(), codegen_); } // void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x) void IntrinsicLocationsBuilderMIPS::VisitUnsafePutOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitUnsafePutOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ false, /* is_ordered */ true, IsR6(), codegen_); } // void sun.misc.Unsafe.putIntVolatile(Object o, long offset, int x) void IntrinsicLocationsBuilderMIPS::VisitUnsafePutVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitUnsafePutVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ true, /* is_ordered */ false, IsR6(), codegen_); } // void sun.misc.Unsafe.putObject(Object o, long offset, Object x) void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObject(HInvoke* invoke) { CreateIntIntIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObject(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ false, /* is_ordered */ false, IsR6(), codegen_); } // void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x) void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObjectOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObjectOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ false, /* is_ordered */ true, IsR6(), codegen_); } // void sun.misc.Unsafe.putObjectVolatile(Object o, long offset, Object x) void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObjectVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObjectVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ true, /* is_ordered */ false, IsR6(), codegen_); } // void sun.misc.Unsafe.putLong(Object o, long offset, long x) void IntrinsicLocationsBuilderMIPS::VisitUnsafePutLong(HInvoke* invoke) { CreateIntIntIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitUnsafePutLong(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ false, /* is_ordered */ false, IsR6(), codegen_); } // void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x) void IntrinsicLocationsBuilderMIPS::VisitUnsafePutLongOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitUnsafePutLongOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ false, /* is_ordered */ true, IsR6(), codegen_); } static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* allocator, HInvoke* invoke) { bool can_call = kEmitCompilerReadBarrier && kUseBakerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject); LocationSummary* locations = new (allocator) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); // Temporary register used in CAS by (Baker) read barrier. if (can_call) { locations->AddTemp(Location::RequiresRegister()); } } // Note that the caller must supply a properly aligned memory address. // If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur). static void GenCas(HInvoke* invoke, DataType::Type type, CodeGeneratorMIPS* codegen) { MipsAssembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); bool isR6 = codegen->GetInstructionSetFeatures().IsR6(); Register base = locations->InAt(1).AsRegister<Register>(); Location offset_loc = locations->InAt(2); Register offset_lo = offset_loc.AsRegisterPairLow<Register>(); Register expected = locations->InAt(3).AsRegister<Register>(); Register value = locations->InAt(4).AsRegister<Register>(); Location out_loc = locations->Out(); Register out = out_loc.AsRegister<Register>(); DCHECK_NE(base, out); DCHECK_NE(offset_lo, out); DCHECK_NE(expected, out); if (type == DataType::Type::kReference) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); // Mark card for object assuming new value is stored. Worst case we will mark an unchanged // object and scan the receiver at the next GC for nothing. bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(base, value, value_can_be_null); if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { Location temp = locations->GetTemp(0); // Need to make sure the reference stored in the field is a to-space // one before attempting the CAS or the CAS could fail incorrectly. codegen->GenerateReferenceLoadWithBakerReadBarrier( invoke, out_loc, // Unused, used only as a "temporary" within the read barrier. base, /* offset */ 0u, /* index */ offset_loc, ScaleFactor::TIMES_1, temp, /* needs_null_check */ false, /* always_update_field */ true); } } MipsLabel loop_head, exit_loop; __ Addu(TMP, base, offset_lo); if (kPoisonHeapReferences && type == DataType::Type::kReference) { __ PoisonHeapReference(expected); // Do not poison `value`, if it is the same register as // `expected`, which has just been poisoned. if (value != expected) { __ PoisonHeapReference(value); } } // do { // tmp_value = [tmp_ptr] - expected; // } while (tmp_value == 0 && failure([tmp_ptr] <- r_new_value)); // result = tmp_value != 0; __ Sync(0); __ Bind(&loop_head); if ((type == DataType::Type::kInt32) || (type == DataType::Type::kReference)) { if (isR6) { __ LlR6(out, TMP); } else { __ LlR2(out, TMP); } } else { LOG(FATAL) << "Unsupported op size " << type; UNREACHABLE(); } __ Subu(out, out, expected); // If we didn't get the 'expected' __ Sltiu(out, out, 1); // value, set 'out' to false, and __ Beqz(out, &exit_loop); // return. __ Move(out, value); // Use 'out' for the 'store conditional' instruction. // If we use 'value' directly, we would lose 'value' // in the case that the store fails. Whether the // store succeeds, or fails, it will load the // correct Boolean value into the 'out' register. // This test isn't really necessary. We only support DataType::Type::kInt, // DataType::Type::kReference, and we already verified that we're working on one // of those two types. It's left here in case the code needs to support // other types in the future. if ((type == DataType::Type::kInt32) || (type == DataType::Type::kReference)) { if (isR6) { __ ScR6(out, TMP); } else { __ ScR2(out, TMP); } } __ Beqz(out, &loop_head); // If we couldn't do the read-modify-write // cycle atomically then retry. __ Bind(&exit_loop); __ Sync(0); if (kPoisonHeapReferences && type == DataType::Type::kReference) { __ UnpoisonHeapReference(expected); // Do not unpoison `value`, if it is the same register as // `expected`, which has just been unpoisoned. if (value != expected) { __ UnpoisonHeapReference(value); } } } // boolean sun.misc.Unsafe.compareAndSwapInt(Object o, long offset, int expected, int x) void IntrinsicLocationsBuilderMIPS::VisitUnsafeCASInt(HInvoke* invoke) { CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitUnsafeCASInt(HInvoke* invoke) { GenCas(invoke, DataType::Type::kInt32, codegen_); } // boolean sun.misc.Unsafe.compareAndSwapObject(Object o, long offset, Object expected, Object x) void IntrinsicLocationsBuilderMIPS::VisitUnsafeCASObject(HInvoke* invoke) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { return; } CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitUnsafeCASObject(HInvoke* invoke) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); GenCas(invoke, DataType::Type::kReference, codegen_); } // int java.lang.String.compareTo(String anotherString) void IntrinsicLocationsBuilderMIPS::VisitStringCompareTo(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32); locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>())); } void IntrinsicCodeGeneratorMIPS::VisitStringCompareTo(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); Register argument = locations->InAt(1).AsRegister<Register>(); SlowPathCodeMIPS* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke); codegen_->AddSlowPath(slow_path); __ Beqz(argument, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path); __ Bind(slow_path->GetExitLabel()); } // boolean java.lang.String.equals(Object anObject) void IntrinsicLocationsBuilderMIPS::VisitStringEquals(HInvoke* invoke) { if (kEmitCompilerReadBarrier && !StringEqualsOptimizations(invoke).GetArgumentIsString() && !StringEqualsOptimizations(invoke).GetNoReadBarrierForStringClass()) { // No support for this odd case (String class is moveable, not in the boot image). return; } LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); // Temporary registers to store lengths of strings and for calculations. locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorMIPS::VisitStringEquals(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register str = locations->InAt(0).AsRegister<Register>(); Register arg = locations->InAt(1).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); Register temp1 = locations->GetTemp(0).AsRegister<Register>(); Register temp2 = locations->GetTemp(1).AsRegister<Register>(); Register temp3 = locations->GetTemp(2).AsRegister<Register>(); MipsLabel loop; MipsLabel end; MipsLabel return_true; MipsLabel return_false; // Get offsets of count, value, and class fields within a string object. const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); // If the register containing the pointer to "this", and the register // containing the pointer to "anObject" are the same register then // "this", and "anObject" are the same object and we can // short-circuit the logic to a true result. if (str == arg) { __ LoadConst32(out, 1); return; } StringEqualsOptimizations optimizations(invoke); if (!optimizations.GetArgumentNotNull()) { // Check if input is null, return false if it is. __ Beqz(arg, &return_false); } // Reference equality check, return true if same reference. __ Beq(str, arg, &return_true); if (!optimizations.GetArgumentIsString()) { // Instanceof check for the argument by comparing class fields. // All string objects must have the same type since String cannot be subclassed. // Receiver must be a string object, so its class field is equal to all strings' class fields. // If the argument is a string object, its class field must be equal to receiver's class field. __ Lw(temp1, str, class_offset); __ Lw(temp2, arg, class_offset); __ Bne(temp1, temp2, &return_false); } // Load `count` fields of this and argument strings. __ Lw(temp1, str, count_offset); __ Lw(temp2, arg, count_offset); // Check if `count` fields are equal, return false if they're not. // Also compares the compression style, if differs return false. __ Bne(temp1, temp2, &return_false); // Return true if both strings are empty. Even with string compression `count == 0` means empty. static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ Beqz(temp1, &return_true); // Don't overwrite input registers __ Move(TMP, str); __ Move(temp3, arg); // Assertions that must hold in order to compare strings 4 bytes at a time. DCHECK_ALIGNED(value_offset, 4); static_assert(IsAligned<4>(kObjectAlignment), "String of odd length is not zero padded"); // For string compression, calculate the number of bytes to compare (not chars). if (mirror::kUseStringCompression) { // Extract compression flag. if (IsR2OrNewer()) { __ Ext(temp2, temp1, 0, 1); } else { __ Sll(temp2, temp1, 31); __ Srl(temp2, temp2, 31); } __ Srl(temp1, temp1, 1); // Extract length. __ Sllv(temp1, temp1, temp2); // Double the byte count if uncompressed. } // Loop to compare strings 4 bytes at a time starting at the beginning of the string. // Ok to do this because strings are zero-padded to kObjectAlignment. __ Bind(&loop); __ Lw(out, TMP, value_offset); __ Lw(temp2, temp3, value_offset); __ Bne(out, temp2, &return_false); __ Addiu(TMP, TMP, 4); __ Addiu(temp3, temp3, 4); // With string compression, we have compared 4 bytes, otherwise 2 chars. __ Addiu(temp1, temp1, mirror::kUseStringCompression ? -4 : -2); __ Bgtz(temp1, &loop); // Return true and exit the function. // If loop does not result in returning false, we return true. __ Bind(&return_true); __ LoadConst32(out, 1); __ B(&end); // Return false and exit the function. __ Bind(&return_false); __ LoadConst32(out, 0); __ Bind(&end); } static void GenerateStringIndexOf(HInvoke* invoke, bool start_at_zero, MipsAssembler* assembler, CodeGeneratorMIPS* codegen) { LocationSummary* locations = invoke->GetLocations(); Register tmp_reg = start_at_zero ? locations->GetTemp(0).AsRegister<Register>() : TMP; // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, // or directly dispatch for a large constant, or omit slow-path for a small constant or a char. SlowPathCodeMIPS* slow_path = nullptr; HInstruction* code_point = invoke->InputAt(1); if (code_point->IsIntConstant()) { if (!IsUint<16>(code_point->AsIntConstant()->GetValue())) { // Always needs the slow-path. We could directly dispatch to it, // but this case should be rare, so for simplicity just put the // full slow-path down and branch unconditionally. slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke); codegen->AddSlowPath(slow_path); __ B(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); return; } } else if (code_point->GetType() != DataType::Type::kUint16) { Register char_reg = locations->InAt(1).AsRegister<Register>(); // The "bltu" conditional branch tests to see if the character value // fits in a valid 16-bit (MIPS halfword) value. If it doesn't then // the character being searched for, if it exists in the string, is // encoded using UTF-16 and stored in the string as two (16-bit) // halfwords. Currently the assembly code used to implement this // intrinsic doesn't support searching for a character stored as // two halfwords so we fallback to using the generic implementation // of indexOf(). __ LoadConst32(tmp_reg, std::numeric_limits<uint16_t>::max()); slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke); codegen->AddSlowPath(slow_path); __ Bltu(tmp_reg, char_reg, slow_path->GetEntryLabel()); } if (start_at_zero) { DCHECK_EQ(tmp_reg, A2); // Start-index = 0. __ Clear(tmp_reg); } codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path); if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } // int java.lang.String.indexOf(int ch) void IntrinsicLocationsBuilderMIPS::VisitStringIndexOf(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); // We have a hand-crafted assembly stub that follows the runtime // calling convention. So it's best to align the inputs accordingly. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32); locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>())); // Need a temp for slow-path codepoint compare, and need to send start-index=0. locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2))); } void IntrinsicCodeGeneratorMIPS::VisitStringIndexOf(HInvoke* invoke) { GenerateStringIndexOf(invoke, /* start_at_zero */ true, GetAssembler(), codegen_); } // int java.lang.String.indexOf(int ch, int fromIndex) void IntrinsicLocationsBuilderMIPS::VisitStringIndexOfAfter(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); // We have a hand-crafted assembly stub that follows the runtime // calling convention. So it's best to align the inputs accordingly. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32); locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>())); // Need a temp for slow-path codepoint compare. locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorMIPS::VisitStringIndexOfAfter(HInvoke* invoke) { GenerateStringIndexOf(invoke, /* start_at_zero */ false, GetAssembler(), codegen_); } // java.lang.StringFactory.newStringFromBytes(byte[] data, int high, int offset, int byteCount) void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromBytes(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3))); Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32); locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>())); } void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromBytes(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register byte_array = locations->InAt(0).AsRegister<Register>(); SlowPathCodeMIPS* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke); codegen_->AddSlowPath(slow_path); __ Beqz(byte_array, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path); __ Bind(slow_path->GetExitLabel()); } // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromChars(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32); locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>())); } void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromChars(HInvoke* invoke) { // No need to emit code checking whether `locations->InAt(2)` is a null // pointer, as callers of the native method // // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) // // all include a null check on `data` before calling that method. codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc()); } // java.lang.StringFactory.newStringFromString(String toCopy) void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromString(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32); locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>())); } void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromString(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register string_to_copy = locations->InAt(0).AsRegister<Register>(); SlowPathCodeMIPS* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke); codegen_->AddSlowPath(slow_path); __ Beqz(string_to_copy, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc()); __ Bind(slow_path->GetExitLabel()); } static void GenIsInfinite(LocationSummary* locations, const DataType::Type type, const bool isR6, MipsAssembler* assembler) { FRegister in = locations->InAt(0).AsFpuRegister<FRegister>(); Register out = locations->Out().AsRegister<Register>(); DCHECK(type == DataType::Type::kFloat32 || type == DataType::Type::kFloat64); if (isR6) { if (type == DataType::Type::kFloat64) { __ ClassD(FTMP, in); } else { __ ClassS(FTMP, in); } __ Mfc1(out, FTMP); __ Andi(out, out, kPositiveInfinity | kNegativeInfinity); __ Sltu(out, ZERO, out); } else { // If one, or more, of the exponent bits is zero, then the number can't be infinite. if (type == DataType::Type::kFloat64) { __ MoveFromFpuHigh(TMP, in); __ LoadConst32(AT, High32Bits(kPositiveInfinityDouble)); } else { __ Mfc1(TMP, in); __ LoadConst32(AT, kPositiveInfinityFloat); } __ Xor(TMP, TMP, AT); __ Sll(TMP, TMP, 1); if (type == DataType::Type::kFloat64) { __ Mfc1(AT, in); __ Or(TMP, TMP, AT); } // If any of the significand bits are one, then the number is not infinite. __ Sltiu(out, TMP, 1); } } // boolean java.lang.Float.isInfinite(float) void IntrinsicLocationsBuilderMIPS::VisitFloatIsInfinite(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitFloatIsInfinite(HInvoke* invoke) { GenIsInfinite(invoke->GetLocations(), DataType::Type::kFloat32, IsR6(), GetAssembler()); } // boolean java.lang.Double.isInfinite(double) void IntrinsicLocationsBuilderMIPS::VisitDoubleIsInfinite(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitDoubleIsInfinite(HInvoke* invoke) { GenIsInfinite(invoke->GetLocations(), DataType::Type::kFloat64, IsR6(), GetAssembler()); } static void GenHighestOneBit(LocationSummary* locations, const DataType::Type type, bool isR6, MipsAssembler* assembler) { DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); if (type == DataType::Type::kInt64) { Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); Register out_lo = locations->Out().AsRegisterPairLow<Register>(); Register out_hi = locations->Out().AsRegisterPairHigh<Register>(); if (isR6) { __ ClzR6(TMP, in_hi); } else { __ ClzR2(TMP, in_hi); } __ LoadConst32(AT, 0x80000000); __ Srlv(out_hi, AT, TMP); __ And(out_hi, out_hi, in_hi); if (isR6) { __ ClzR6(TMP, in_lo); } else { __ ClzR2(TMP, in_lo); } __ Srlv(out_lo, AT, TMP); __ And(out_lo, out_lo, in_lo); if (isR6) { __ Seleqz(out_lo, out_lo, out_hi); } else { __ Movn(out_lo, ZERO, out_hi); } } else { Register in = locations->InAt(0).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); if (isR6) { __ ClzR6(TMP, in); } else { __ ClzR2(TMP, in); } __ LoadConst32(AT, 0x80000000); __ Srlv(AT, AT, TMP); // Srlv shifts in the range of [0;31] bits (lower 5 bits of arg). __ And(out, AT, in); // So this is required for 0 (=shift by 32). } } // int java.lang.Integer.highestOneBit(int) void IntrinsicLocationsBuilderMIPS::VisitIntegerHighestOneBit(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitIntegerHighestOneBit(HInvoke* invoke) { GenHighestOneBit(invoke->GetLocations(), DataType::Type::kInt32, IsR6(), GetAssembler()); } // long java.lang.Long.highestOneBit(long) void IntrinsicLocationsBuilderMIPS::VisitLongHighestOneBit(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap); } void IntrinsicCodeGeneratorMIPS::VisitLongHighestOneBit(HInvoke* invoke) { GenHighestOneBit(invoke->GetLocations(), DataType::Type::kInt64, IsR6(), GetAssembler()); } static void GenLowestOneBit(LocationSummary* locations, const DataType::Type type, bool isR6, MipsAssembler* assembler) { DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); if (type == DataType::Type::kInt64) { Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); Register out_lo = locations->Out().AsRegisterPairLow<Register>(); Register out_hi = locations->Out().AsRegisterPairHigh<Register>(); __ Subu(TMP, ZERO, in_lo); __ And(out_lo, TMP, in_lo); __ Subu(TMP, ZERO, in_hi); __ And(out_hi, TMP, in_hi); if (isR6) { __ Seleqz(out_hi, out_hi, out_lo); } else { __ Movn(out_hi, ZERO, out_lo); } } else { Register in = locations->InAt(0).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); __ Subu(TMP, ZERO, in); __ And(out, TMP, in); } } // int java.lang.Integer.lowestOneBit(int) void IntrinsicLocationsBuilderMIPS::VisitIntegerLowestOneBit(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitIntegerLowestOneBit(HInvoke* invoke) { GenLowestOneBit(invoke->GetLocations(), DataType::Type::kInt32, IsR6(), GetAssembler()); } // long java.lang.Long.lowestOneBit(long) void IntrinsicLocationsBuilderMIPS::VisitLongLowestOneBit(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitLongLowestOneBit(HInvoke* invoke) { GenLowestOneBit(invoke->GetLocations(), DataType::Type::kInt64, IsR6(), GetAssembler()); } // int java.lang.Math.round(float) void IntrinsicLocationsBuilderMIPS::VisitMathRoundFloat(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorMIPS::VisitMathRoundFloat(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); MipsAssembler* assembler = GetAssembler(); FRegister in = locations->InAt(0).AsFpuRegister<FRegister>(); FRegister half = locations->GetTemp(0).AsFpuRegister<FRegister>(); Register out = locations->Out().AsRegister<Register>(); MipsLabel done; if (IsR6()) { // out = floor(in); // // if (out != MAX_VALUE && out != MIN_VALUE) { // TMP = ((in - out) >= 0.5) ? 1 : 0; // return out += TMP; // } // return out; // out = floor(in); __ FloorWS(FTMP, in); __ Mfc1(out, FTMP); // if (out != MAX_VALUE && out != MIN_VALUE) __ Addiu(TMP, out, 1); __ Aui(TMP, TMP, 0x8000); // TMP = out + 0x8000 0001 // or out - 0x7FFF FFFF. // IOW, TMP = 1 if out = Int.MIN_VALUE // or TMP = 0 if out = Int.MAX_VALUE. __ Srl(TMP, TMP, 1); // TMP = 0 if out = Int.MIN_VALUE // or out = Int.MAX_VALUE. __ Beqz(TMP, &done); // TMP = (0.5f <= (in - out)) ? -1 : 0; __ Cvtsw(FTMP, FTMP); // Convert output of floor.w.s back to "float". __ LoadConst32(AT, bit_cast<int32_t, float>(0.5f)); __ SubS(FTMP, in, FTMP); __ Mtc1(AT, half); __ CmpLeS(FTMP, half, FTMP); __ Mfc1(TMP, FTMP); // Return out -= TMP. __ Subu(out, out, TMP); } else { // if (in.isNaN) { // return 0; // } // // out = floor.w.s(in); // // /* // * This "if" statement is only needed for the pre-R6 version of floor.w.s // * which outputs Integer.MAX_VALUE for negative numbers with magnitudes // * too large to fit in a 32-bit integer. // */ // if (out == Integer.MAX_VALUE) { // TMP = (in < 0.0f) ? 1 : 0; // /* // * If TMP is 1, then adding it to out will wrap its value from // * Integer.MAX_VALUE to Integer.MIN_VALUE. // */ // return out += TMP; // } // // /* // * For negative values not handled by the previous "if" statement the // * test here will correctly set the value of TMP. // */ // TMP = ((in - out) >= 0.5f) ? 1 : 0; // return out += TMP; MipsLabel finite; MipsLabel add; // Test for NaN. __ CunS(in, in); // Return zero for NaN. __ Move(out, ZERO); __ Bc1t(&done); // out = floor(in); __ FloorWS(FTMP, in); __ Mfc1(out, FTMP); __ LoadConst32(TMP, -1); // TMP = (out = java.lang.Integer.MAX_VALUE) ? -1 : 0; __ LoadConst32(AT, std::numeric_limits<int32_t>::max()); __ Bne(AT, out, &finite); __ Mtc1(ZERO, FTMP); __ ColtS(in, FTMP); __ B(&add); __ Bind(&finite); // TMP = (0.5f <= (in - out)) ? -1 : 0; __ Cvtsw(FTMP, FTMP); // Convert output of floor.w.s back to "float". __ LoadConst32(AT, bit_cast<int32_t, float>(0.5f)); __ SubS(FTMP, in, FTMP); __ Mtc1(AT, half); __ ColeS(half, FTMP); __ Bind(&add); __ Movf(TMP, ZERO); // Return out -= TMP. __ Subu(out, out, TMP); } __ Bind(&done); } // void java.lang.String.getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin) void IntrinsicLocationsBuilderMIPS::VisitStringGetCharsNoCheck(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorMIPS::VisitStringGetCharsNoCheck(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = DataType::Size(DataType::Type::kUint16); DCHECK_EQ(char_size, 2u); const size_t char_shift = DataType::SizeShift(DataType::Type::kUint16); Register srcObj = locations->InAt(0).AsRegister<Register>(); Register srcBegin = locations->InAt(1).AsRegister<Register>(); Register srcEnd = locations->InAt(2).AsRegister<Register>(); Register dstObj = locations->InAt(3).AsRegister<Register>(); Register dstBegin = locations->InAt(4).AsRegister<Register>(); Register dstPtr = locations->GetTemp(0).AsRegister<Register>(); Register srcPtr = locations->GetTemp(1).AsRegister<Register>(); Register numChrs = locations->GetTemp(2).AsRegister<Register>(); MipsLabel done; MipsLabel loop; // Location of data in char array buffer. const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); // Get offset of value field within a string object. const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); __ Beq(srcEnd, srcBegin, &done); // No characters to move. // Calculate number of characters to be copied. __ Subu(numChrs, srcEnd, srcBegin); // Calculate destination address. __ Addiu(dstPtr, dstObj, data_offset); __ ShiftAndAdd(dstPtr, dstBegin, dstPtr, char_shift); if (mirror::kUseStringCompression) { MipsLabel uncompressed_copy, compressed_loop; const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); // Load count field and extract compression flag. __ LoadFromOffset(kLoadWord, TMP, srcObj, count_offset); __ Sll(TMP, TMP, 31); // If string is uncompressed, use uncompressed path. __ Bnez(TMP, &uncompressed_copy); // Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time. __ Addu(srcPtr, srcObj, srcBegin); __ Bind(&compressed_loop); __ LoadFromOffset(kLoadUnsignedByte, TMP, srcPtr, value_offset); __ StoreToOffset(kStoreHalfword, TMP, dstPtr, 0); __ Addiu(numChrs, numChrs, -1); __ Addiu(srcPtr, srcPtr, 1); __ Addiu(dstPtr, dstPtr, 2); __ Bnez(numChrs, &compressed_loop); __ B(&done); __ Bind(&uncompressed_copy); } // Calculate source address. __ Addiu(srcPtr, srcObj, value_offset); __ ShiftAndAdd(srcPtr, srcBegin, srcPtr, char_shift); __ Bind(&loop); __ Lh(AT, srcPtr, 0); __ Addiu(numChrs, numChrs, -1); __ Addiu(srcPtr, srcPtr, char_size); __ Sh(AT, dstPtr, 0); __ Addiu(dstPtr, dstPtr, char_size); __ Bnez(numChrs, &loop); __ Bind(&done); } static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kFloat64)); } static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kFloat64)); } static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorMIPS* codegen, QuickEntrypointEnum entry) { LocationSummary* locations = invoke->GetLocations(); FRegister in = locations->InAt(0).AsFpuRegister<FRegister>(); DCHECK_EQ(in, F12); FRegister out = locations->Out().AsFpuRegister<FRegister>(); DCHECK_EQ(out, F0); codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); } static void GenFPFPToFPCall(HInvoke* invoke, CodeGeneratorMIPS* codegen, QuickEntrypointEnum entry) { LocationSummary* locations = invoke->GetLocations(); FRegister in0 = locations->InAt(0).AsFpuRegister<FRegister>(); DCHECK_EQ(in0, F12); FRegister in1 = locations->InAt(1).AsFpuRegister<FRegister>(); DCHECK_EQ(in1, F14); FRegister out = locations->Out().AsFpuRegister<FRegister>(); DCHECK_EQ(out, F0); codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); } // static double java.lang.Math.cos(double a) void IntrinsicLocationsBuilderMIPS::VisitMathCos(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathCos(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCos); } // static double java.lang.Math.sin(double a) void IntrinsicLocationsBuilderMIPS::VisitMathSin(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathSin(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickSin); } // static double java.lang.Math.acos(double a) void IntrinsicLocationsBuilderMIPS::VisitMathAcos(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathAcos(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAcos); } // static double java.lang.Math.asin(double a) void IntrinsicLocationsBuilderMIPS::VisitMathAsin(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathAsin(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAsin); } // static double java.lang.Math.atan(double a) void IntrinsicLocationsBuilderMIPS::VisitMathAtan(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathAtan(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAtan); } // static double java.lang.Math.atan2(double y, double x) void IntrinsicLocationsBuilderMIPS::VisitMathAtan2(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathAtan2(HInvoke* invoke) { GenFPFPToFPCall(invoke, codegen_, kQuickAtan2); } // static double java.lang.Math.pow(double y, double x) void IntrinsicLocationsBuilderMIPS::VisitMathPow(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathPow(HInvoke* invoke) { GenFPFPToFPCall(invoke, codegen_, kQuickPow); } // static double java.lang.Math.cbrt(double a) void IntrinsicLocationsBuilderMIPS::VisitMathCbrt(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathCbrt(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCbrt); } // static double java.lang.Math.cosh(double x) void IntrinsicLocationsBuilderMIPS::VisitMathCosh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathCosh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCosh); } // static double java.lang.Math.exp(double a) void IntrinsicLocationsBuilderMIPS::VisitMathExp(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathExp(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickExp); } // static double java.lang.Math.expm1(double x) void IntrinsicLocationsBuilderMIPS::VisitMathExpm1(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathExpm1(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickExpm1); } // static double java.lang.Math.hypot(double x, double y) void IntrinsicLocationsBuilderMIPS::VisitMathHypot(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathHypot(HInvoke* invoke) { GenFPFPToFPCall(invoke, codegen_, kQuickHypot); } // static double java.lang.Math.log(double a) void IntrinsicLocationsBuilderMIPS::VisitMathLog(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathLog(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickLog); } // static double java.lang.Math.log10(double x) void IntrinsicLocationsBuilderMIPS::VisitMathLog10(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathLog10(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickLog10); } // static double java.lang.Math.nextAfter(double start, double direction) void IntrinsicLocationsBuilderMIPS::VisitMathNextAfter(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathNextAfter(HInvoke* invoke) { GenFPFPToFPCall(invoke, codegen_, kQuickNextAfter); } // static double java.lang.Math.sinh(double x) void IntrinsicLocationsBuilderMIPS::VisitMathSinh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathSinh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickSinh); } // static double java.lang.Math.tan(double a) void IntrinsicLocationsBuilderMIPS::VisitMathTan(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathTan(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickTan); } // static double java.lang.Math.tanh(double x) void IntrinsicLocationsBuilderMIPS::VisitMathTanh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS::VisitMathTanh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickTanh); } // static void java.lang.System.arraycopy(Object src, int srcPos, // Object dest, int destPos, // int length) void IntrinsicLocationsBuilderMIPS::VisitSystemArrayCopyChar(HInvoke* invoke) { HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); // As long as we are checking, we might as well check to see if the src and dest // positions are >= 0. if ((src_pos != nullptr && src_pos->GetValue() < 0) || (dest_pos != nullptr && dest_pos->GetValue() < 0)) { // We will have to fail anyways. return; } // And since we are already checking, check the length too. if (length != nullptr) { int32_t len = length->GetValue(); if (len < 0) { // Just call as normal. return; } } // Okay, it is safe to generate inline code. LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); // arraycopy(Object src, int srcPos, Object dest, int destPos, int length). locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3))); locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4))); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } // Utility routine to verify that "length(input) - pos >= length" static void EnoughItems(MipsAssembler* assembler, Register length_input_minus_pos, Location length, SlowPathCodeMIPS* slow_path) { if (length.IsConstant()) { int32_t length_constant = length.GetConstant()->AsIntConstant()->GetValue(); if (IsInt<16>(length_constant)) { __ Slti(TMP, length_input_minus_pos, length_constant); __ Bnez(TMP, slow_path->GetEntryLabel()); } else { __ LoadConst32(TMP, length_constant); __ Blt(length_input_minus_pos, TMP, slow_path->GetEntryLabel()); } } else { __ Blt(length_input_minus_pos, length.AsRegister<Register>(), slow_path->GetEntryLabel()); } } static void CheckPosition(MipsAssembler* assembler, Location pos, Register input, Location length, SlowPathCodeMIPS* slow_path, bool length_is_input_length = false) { // Where is the length in the Array? const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); // Calculate length(input) - pos. if (pos.IsConstant()) { int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); if (pos_const == 0) { if (!length_is_input_length) { // Check that length(input) >= length. __ LoadFromOffset(kLoadWord, AT, input, length_offset); EnoughItems(assembler, AT, length, slow_path); } } else { // Check that (length(input) - pos) >= zero. __ LoadFromOffset(kLoadWord, AT, input, length_offset); DCHECK_GT(pos_const, 0); __ Addiu32(AT, AT, -pos_const, TMP); __ Bltz(AT, slow_path->GetEntryLabel()); // Verify that (length(input) - pos) >= length. EnoughItems(assembler, AT, length, slow_path); } } else if (length_is_input_length) { // The only way the copy can succeed is if pos is zero. Register pos_reg = pos.AsRegister<Register>(); __ Bnez(pos_reg, slow_path->GetEntryLabel()); } else { // Verify that pos >= 0. Register pos_reg = pos.AsRegister<Register>(); __ Bltz(pos_reg, slow_path->GetEntryLabel()); // Check that (length(input) - pos) >= zero. __ LoadFromOffset(kLoadWord, AT, input, length_offset); __ Subu(AT, AT, pos_reg); __ Bltz(AT, slow_path->GetEntryLabel()); // Verify that (length(input) - pos) >= length. EnoughItems(assembler, AT, length, slow_path); } } void IntrinsicCodeGeneratorMIPS::VisitSystemArrayCopyChar(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register src = locations->InAt(0).AsRegister<Register>(); Location src_pos = locations->InAt(1); Register dest = locations->InAt(2).AsRegister<Register>(); Location dest_pos = locations->InAt(3); Location length = locations->InAt(4); MipsLabel loop; Register dest_base = locations->GetTemp(0).AsRegister<Register>(); Register src_base = locations->GetTemp(1).AsRegister<Register>(); Register count = locations->GetTemp(2).AsRegister<Register>(); SlowPathCodeMIPS* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke); codegen_->AddSlowPath(slow_path); // Bail out if the source and destination are the same (to handle overlap). __ Beq(src, dest, slow_path->GetEntryLabel()); // Bail out if the source is null. __ Beqz(src, slow_path->GetEntryLabel()); // Bail out if the destination is null. __ Beqz(dest, slow_path->GetEntryLabel()); // Load length into register for count. if (length.IsConstant()) { __ LoadConst32(count, length.GetConstant()->AsIntConstant()->GetValue()); } else { // If the length is negative, bail out. // We have already checked in the LocationsBuilder for the constant case. __ Bltz(length.AsRegister<Register>(), slow_path->GetEntryLabel()); __ Move(count, length.AsRegister<Register>()); } // Validity checks: source. CheckPosition(assembler, src_pos, src, Location::RegisterLocation(count), slow_path); // Validity checks: dest. CheckPosition(assembler, dest_pos, dest, Location::RegisterLocation(count), slow_path); // If count is zero, we're done. __ Beqz(count, slow_path->GetExitLabel()); // Okay, everything checks out. Finally time to do the copy. // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = DataType::Size(DataType::Type::kUint16); DCHECK_EQ(char_size, 2u); const size_t char_shift = DataType::SizeShift(DataType::Type::kUint16); const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); // Calculate source and destination addresses. if (src_pos.IsConstant()) { int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue(); __ Addiu32(src_base, src, data_offset + char_size * src_pos_const, TMP); } else { __ Addiu32(src_base, src, data_offset, TMP); __ ShiftAndAdd(src_base, src_pos.AsRegister<Register>(), src_base, char_shift); } if (dest_pos.IsConstant()) { int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue(); __ Addiu32(dest_base, dest, data_offset + char_size * dest_pos_const, TMP); } else { __ Addiu32(dest_base, dest, data_offset, TMP); __ ShiftAndAdd(dest_base, dest_pos.AsRegister<Register>(), dest_base, char_shift); } __ Bind(&loop); __ Lh(TMP, src_base, 0); __ Addiu(src_base, src_base, char_size); __ Addiu(count, count, -1); __ Sh(TMP, dest_base, 0); __ Addiu(dest_base, dest_base, char_size); __ Bnez(count, &loop); __ Bind(slow_path->GetExitLabel()); } // long java.lang.Integer.valueOf(long) void IntrinsicLocationsBuilderMIPS::VisitIntegerValueOf(HInvoke* invoke) { InvokeRuntimeCallingConvention calling_convention; IntrinsicVisitor::ComputeIntegerValueOfLocations( invoke, codegen_, calling_convention.GetReturnLocation(DataType::Type::kReference), Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void IntrinsicCodeGeneratorMIPS::VisitIntegerValueOf(HInvoke* invoke) { IntrinsicVisitor::IntegerValueOfInfo info = IntrinsicVisitor::ComputeIntegerValueOfInfo(); LocationSummary* locations = invoke->GetLocations(); MipsAssembler* assembler = GetAssembler(); InstructionCodeGeneratorMIPS* icodegen = down_cast<InstructionCodeGeneratorMIPS*>(codegen_->GetInstructionVisitor()); Register out = locations->Out().AsRegister<Register>(); InvokeRuntimeCallingConvention calling_convention; if (invoke->InputAt(0)->IsConstant()) { int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue(); if (value >= info.low && value <= info.high) { // Just embed the j.l.Integer in the code. ScopedObjectAccess soa(Thread::Current()); mirror::Object* boxed = info.cache->Get(value + (-info.low)); DCHECK(boxed != nullptr && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(boxed)); uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(boxed)); __ LoadConst32(out, address); } else { // Allocate and initialize a new j.l.Integer. // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the // JIT object table. uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer)); __ LoadConst32(calling_convention.GetRegisterAt(0), address); codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); __ StoreConstToOffset(kStoreWord, value, out, info.value_offset, TMP); // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation // one. icodegen->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); } } else { Register in = locations->InAt(0).AsRegister<Register>(); MipsLabel allocate, done; int32_t count = static_cast<uint32_t>(info.high) - info.low + 1; // Is (info.low <= in) && (in <= info.high)? __ Addiu32(out, in, -info.low); // As unsigned quantities is out < (info.high - info.low + 1)? if (IsInt<16>(count)) { __ Sltiu(AT, out, count); } else { __ LoadConst32(AT, count); __ Sltu(AT, out, AT); } // Branch if out >= (info.high - info.low + 1). // This means that "in" is outside of the range [info.low, info.high]. __ Beqz(AT, &allocate); // If the value is within the bounds, load the j.l.Integer directly from the array. uint32_t data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.cache)); __ LoadConst32(TMP, data_offset + address); __ ShiftAndAdd(out, out, TMP, TIMES_4); __ Lw(out, out, 0); __ MaybeUnpoisonHeapReference(out); __ B(&done); __ Bind(&allocate); // Otherwise allocate and initialize a new j.l.Integer. address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer)); __ LoadConst32(calling_convention.GetRegisterAt(0), address); codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); __ StoreToOffset(kStoreWord, in, out, info.value_offset); // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation // one. icodegen->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); __ Bind(&done); } } // static boolean java.lang.Thread.interrupted() void IntrinsicLocationsBuilderMIPS::VisitThreadInterrupted(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorMIPS::VisitThreadInterrupted(HInvoke* invoke) { MipsAssembler* assembler = GetAssembler(); Register out = invoke->GetLocations()->Out().AsRegister<Register>(); int32_t offset = Thread::InterruptedOffset<kMipsPointerSize>().Int32Value(); __ LoadFromOffset(kLoadWord, out, TR, offset); MipsLabel done; __ Beqz(out, &done); __ Sync(0); __ StoreToOffset(kStoreWord, ZERO, TR, offset); __ Sync(0); __ Bind(&done); } void IntrinsicLocationsBuilderMIPS::VisitReachabilityFence(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); } void IntrinsicCodeGeneratorMIPS::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { } // Unimplemented intrinsics. UNIMPLEMENTED_INTRINSIC(MIPS, MathCeil) UNIMPLEMENTED_INTRINSIC(MIPS, MathFloor) UNIMPLEMENTED_INTRINSIC(MIPS, MathRint) UNIMPLEMENTED_INTRINSIC(MIPS, MathRoundDouble) UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetLongVolatile); UNIMPLEMENTED_INTRINSIC(MIPS, UnsafePutLongVolatile); UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeCASLong) UNIMPLEMENTED_INTRINSIC(MIPS, ReferenceGetReferent) UNIMPLEMENTED_INTRINSIC(MIPS, SystemArrayCopy) UNIMPLEMENTED_INTRINSIC(MIPS, StringStringIndexOf); UNIMPLEMENTED_INTRINSIC(MIPS, StringStringIndexOfAfter); UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferAppend); UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferLength); UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferToString); UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderAppend); UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderLength); UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderToString); // 1.8. UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndAddInt) UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndAddLong) UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetInt) UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetLong) UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetObject) UNREACHABLE_INTRINSICS(MIPS) #undef __ } // namespace mips } // namespace art