/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "code_generator_arm64.h" #include "mirror/array-inl.h" #include "mirror/string.h" using namespace vixl::aarch64; // NOLINT(build/namespaces) namespace art { namespace arm64 { using helpers::ARM64EncodableConstantOrRegister; using helpers::Arm64CanEncodeConstantAsImmediate; using helpers::DRegisterFrom; using helpers::HeapOperand; using helpers::InputRegisterAt; using helpers::Int64ConstantFrom; using helpers::OutputRegister; using helpers::VRegisterFrom; using helpers::WRegisterFrom; using helpers::XRegisterFrom; #define __ GetVIXLAssembler()-> void LocationsBuilderARM64::VisitVecReplicateScalar(HVecReplicateScalar* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); HInstruction* input = instruction->InputAt(0); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: locations->SetInAt(0, ARM64EncodableConstantOrRegister(input, instruction)); locations->SetOut(Location::RequiresFpuRegister()); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: if (input->IsConstant() && Arm64CanEncodeConstantAsImmediate(input->AsConstant(), instruction)) { locations->SetInAt(0, Location::ConstantLocation(input->AsConstant())); locations->SetOut(Location::RequiresFpuRegister()); } else { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void InstructionCodeGeneratorARM64::VisitVecReplicateScalar(HVecReplicateScalar* instruction) { LocationSummary* locations = instruction->GetLocations(); Location src_loc = locations->InAt(0); VRegister dst = VRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); if (src_loc.IsConstant()) { __ Movi(dst.V16B(), Int64ConstantFrom(src_loc)); } else { __ Dup(dst.V16B(), InputRegisterAt(instruction, 0)); } break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); if (src_loc.IsConstant()) { __ Movi(dst.V8H(), Int64ConstantFrom(src_loc)); } else { __ Dup(dst.V8H(), InputRegisterAt(instruction, 0)); } break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); if (src_loc.IsConstant()) { __ Movi(dst.V4S(), Int64ConstantFrom(src_loc)); } else { __ Dup(dst.V4S(), InputRegisterAt(instruction, 0)); } break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); if (src_loc.IsConstant()) { __ Movi(dst.V2D(), Int64ConstantFrom(src_loc)); } else { __ Dup(dst.V2D(), XRegisterFrom(src_loc)); } break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); if (src_loc.IsConstant()) { __ Fmov(dst.V4S(), src_loc.GetConstant()->AsFloatConstant()->GetValue()); } else { __ Dup(dst.V4S(), VRegisterFrom(src_loc).V4S(), 0); } break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); if (src_loc.IsConstant()) { __ Fmov(dst.V2D(), src_loc.GetConstant()->AsDoubleConstant()->GetValue()); } else { __ Dup(dst.V2D(), VRegisterFrom(src_loc).V2D(), 0); } break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecExtractScalar(HVecExtractScalar* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void InstructionCodeGeneratorARM64::VisitVecExtractScalar(HVecExtractScalar* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister src = VRegisterFrom(locations->InAt(0)); switch (instruction->GetPackedType()) { case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Umov(OutputRegister(instruction), src.V4S(), 0); break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Umov(OutputRegister(instruction), src.V2D(), 0); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: DCHECK_LE(2u, instruction->GetVectorLength()); DCHECK_LE(instruction->GetVectorLength(), 4u); DCHECK(locations->InAt(0).Equals(locations->Out())); // no code required break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } // Helper to set up locations for vector unary operations. static void CreateVecUnOpLocations(ArenaAllocator* allocator, HVecUnaryOperation* instruction) { LocationSummary* locations = new (allocator) LocationSummary(instruction); switch (instruction->GetPackedType()) { case DataType::Type::kBool: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), instruction->IsVecNot() ? Location::kOutputOverlap : Location::kNoOutputOverlap); break; case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecReduce(HVecReduce* instruction) { CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecReduce(HVecReduce* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister src = VRegisterFrom(locations->InAt(0)); VRegister dst = DRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); switch (instruction->GetKind()) { case HVecReduce::kSum: __ Addv(dst.S(), src.V4S()); break; case HVecReduce::kMin: __ Sminv(dst.S(), src.V4S()); break; case HVecReduce::kMax: __ Smaxv(dst.S(), src.V4S()); break; } break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); switch (instruction->GetKind()) { case HVecReduce::kSum: __ Addp(dst.D(), src.V2D()); break; default: LOG(FATAL) << "Unsupported SIMD min/max"; UNREACHABLE(); } break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecCnv(HVecCnv* instruction) { CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecCnv(HVecCnv* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister src = VRegisterFrom(locations->InAt(0)); VRegister dst = VRegisterFrom(locations->Out()); DataType::Type from = instruction->GetInputType(); DataType::Type to = instruction->GetResultType(); if (from == DataType::Type::kInt32 && to == DataType::Type::kFloat32) { DCHECK_EQ(4u, instruction->GetVectorLength()); __ Scvtf(dst.V4S(), src.V4S()); } else { LOG(FATAL) << "Unsupported SIMD type"; } } void LocationsBuilderARM64::VisitVecNeg(HVecNeg* instruction) { CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecNeg(HVecNeg* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister src = VRegisterFrom(locations->InAt(0)); VRegister dst = VRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ Neg(dst.V16B(), src.V16B()); break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ Neg(dst.V8H(), src.V8H()); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Neg(dst.V4S(), src.V4S()); break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Neg(dst.V2D(), src.V2D()); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Fneg(dst.V4S(), src.V4S()); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Fneg(dst.V2D(), src.V2D()); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecAbs(HVecAbs* instruction) { CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecAbs(HVecAbs* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister src = VRegisterFrom(locations->InAt(0)); VRegister dst = VRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ Abs(dst.V16B(), src.V16B()); break; case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ Abs(dst.V8H(), src.V8H()); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Abs(dst.V4S(), src.V4S()); break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Abs(dst.V2D(), src.V2D()); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Fabs(dst.V4S(), src.V4S()); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Fabs(dst.V2D(), src.V2D()); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecNot(HVecNot* instruction) { CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecNot(HVecNot* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister src = VRegisterFrom(locations->InAt(0)); VRegister dst = VRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kBool: // special case boolean-not DCHECK_EQ(16u, instruction->GetVectorLength()); __ Movi(dst.V16B(), 1); __ Eor(dst.V16B(), dst.V16B(), src.V16B()); break; case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: __ Not(dst.V16B(), src.V16B()); // lanes do not matter break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } // Helper to set up locations for vector binary operations. static void CreateVecBinOpLocations(ArenaAllocator* allocator, HVecBinaryOperation* instruction) { LocationSummary* locations = new (allocator) LocationSummary(instruction); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecAdd(HVecAdd* instruction) { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecAdd(HVecAdd* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister lhs = VRegisterFrom(locations->InAt(0)); VRegister rhs = VRegisterFrom(locations->InAt(1)); VRegister dst = VRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ Add(dst.V16B(), lhs.V16B(), rhs.V16B()); break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ Add(dst.V8H(), lhs.V8H(), rhs.V8H()); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Add(dst.V4S(), lhs.V4S(), rhs.V4S()); break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Add(dst.V2D(), lhs.V2D(), rhs.V2D()); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Fadd(dst.V4S(), lhs.V4S(), rhs.V4S()); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Fadd(dst.V2D(), lhs.V2D(), rhs.V2D()); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecHalvingAdd(HVecHalvingAdd* instruction) { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecHalvingAdd(HVecHalvingAdd* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister lhs = VRegisterFrom(locations->InAt(0)); VRegister rhs = VRegisterFrom(locations->InAt(1)); VRegister dst = VRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: DCHECK_EQ(16u, instruction->GetVectorLength()); instruction->IsRounded() ? __ Urhadd(dst.V16B(), lhs.V16B(), rhs.V16B()) : __ Uhadd(dst.V16B(), lhs.V16B(), rhs.V16B()); break; case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); instruction->IsRounded() ? __ Srhadd(dst.V16B(), lhs.V16B(), rhs.V16B()) : __ Shadd(dst.V16B(), lhs.V16B(), rhs.V16B()); break; case DataType::Type::kUint16: DCHECK_EQ(8u, instruction->GetVectorLength()); instruction->IsRounded() ? __ Urhadd(dst.V8H(), lhs.V8H(), rhs.V8H()) : __ Uhadd(dst.V8H(), lhs.V8H(), rhs.V8H()); break; case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); instruction->IsRounded() ? __ Srhadd(dst.V8H(), lhs.V8H(), rhs.V8H()) : __ Shadd(dst.V8H(), lhs.V8H(), rhs.V8H()); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecSub(HVecSub* instruction) { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecSub(HVecSub* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister lhs = VRegisterFrom(locations->InAt(0)); VRegister rhs = VRegisterFrom(locations->InAt(1)); VRegister dst = VRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ Sub(dst.V16B(), lhs.V16B(), rhs.V16B()); break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ Sub(dst.V8H(), lhs.V8H(), rhs.V8H()); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Sub(dst.V4S(), lhs.V4S(), rhs.V4S()); break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Sub(dst.V2D(), lhs.V2D(), rhs.V2D()); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Fsub(dst.V4S(), lhs.V4S(), rhs.V4S()); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Fsub(dst.V2D(), lhs.V2D(), rhs.V2D()); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecMul(HVecMul* instruction) { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecMul(HVecMul* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister lhs = VRegisterFrom(locations->InAt(0)); VRegister rhs = VRegisterFrom(locations->InAt(1)); VRegister dst = VRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ Mul(dst.V16B(), lhs.V16B(), rhs.V16B()); break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ Mul(dst.V8H(), lhs.V8H(), rhs.V8H()); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Mul(dst.V4S(), lhs.V4S(), rhs.V4S()); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Fmul(dst.V4S(), lhs.V4S(), rhs.V4S()); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Fmul(dst.V2D(), lhs.V2D(), rhs.V2D()); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecDiv(HVecDiv* instruction) { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecDiv(HVecDiv* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister lhs = VRegisterFrom(locations->InAt(0)); VRegister rhs = VRegisterFrom(locations->InAt(1)); VRegister dst = VRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Fdiv(dst.V4S(), lhs.V4S(), rhs.V4S()); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Fdiv(dst.V2D(), lhs.V2D(), rhs.V2D()); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecMin(HVecMin* instruction) { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecMin(HVecMin* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister lhs = VRegisterFrom(locations->InAt(0)); VRegister rhs = VRegisterFrom(locations->InAt(1)); VRegister dst = VRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ Umin(dst.V16B(), lhs.V16B(), rhs.V16B()); break; case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ Smin(dst.V16B(), lhs.V16B(), rhs.V16B()); break; case DataType::Type::kUint16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ Umin(dst.V8H(), lhs.V8H(), rhs.V8H()); break; case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ Smin(dst.V8H(), lhs.V8H(), rhs.V8H()); break; case DataType::Type::kUint32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Umin(dst.V4S(), lhs.V4S(), rhs.V4S()); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Smin(dst.V4S(), lhs.V4S(), rhs.V4S()); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Fmin(dst.V4S(), lhs.V4S(), rhs.V4S()); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Fmin(dst.V2D(), lhs.V2D(), rhs.V2D()); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecMax(HVecMax* instruction) { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecMax(HVecMax* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister lhs = VRegisterFrom(locations->InAt(0)); VRegister rhs = VRegisterFrom(locations->InAt(1)); VRegister dst = VRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ Umax(dst.V16B(), lhs.V16B(), rhs.V16B()); break; case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ Smax(dst.V16B(), lhs.V16B(), rhs.V16B()); break; case DataType::Type::kUint16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ Umax(dst.V8H(), lhs.V8H(), rhs.V8H()); break; case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ Smax(dst.V8H(), lhs.V8H(), rhs.V8H()); break; case DataType::Type::kUint32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Umax(dst.V4S(), lhs.V4S(), rhs.V4S()); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Smax(dst.V4S(), lhs.V4S(), rhs.V4S()); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Fmax(dst.V4S(), lhs.V4S(), rhs.V4S()); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Fmax(dst.V2D(), lhs.V2D(), rhs.V2D()); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecAnd(HVecAnd* instruction) { // TODO: Allow constants supported by BIC (vector, immediate). CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecAnd(HVecAnd* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister lhs = VRegisterFrom(locations->InAt(0)); VRegister rhs = VRegisterFrom(locations->InAt(1)); VRegister dst = VRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: __ And(dst.V16B(), lhs.V16B(), rhs.V16B()); // lanes do not matter break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecAndNot(HVecAndNot* instruction) { LOG(FATAL) << "Unsupported SIMD instruction " << instruction->GetId(); } void InstructionCodeGeneratorARM64::VisitVecAndNot(HVecAndNot* instruction) { // TODO: Use BIC (vector, register). LOG(FATAL) << "Unsupported SIMD instruction " << instruction->GetId(); } void LocationsBuilderARM64::VisitVecOr(HVecOr* instruction) { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecOr(HVecOr* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister lhs = VRegisterFrom(locations->InAt(0)); VRegister rhs = VRegisterFrom(locations->InAt(1)); VRegister dst = VRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: __ Orr(dst.V16B(), lhs.V16B(), rhs.V16B()); // lanes do not matter break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecXor(HVecXor* instruction) { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecXor(HVecXor* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister lhs = VRegisterFrom(locations->InAt(0)); VRegister rhs = VRegisterFrom(locations->InAt(1)); VRegister dst = VRegisterFrom(locations->Out()); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: __ Eor(dst.V16B(), lhs.V16B(), rhs.V16B()); // lanes do not matter break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } // Helper to set up locations for vector shift operations. static void CreateVecShiftLocations(ArenaAllocator* allocator, HVecBinaryOperation* instruction) { LocationSummary* locations = new (allocator) LocationSummary(instruction); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecShl(HVecShl* instruction) { CreateVecShiftLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecShl(HVecShl* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister lhs = VRegisterFrom(locations->InAt(0)); VRegister dst = VRegisterFrom(locations->Out()); int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ Shl(dst.V16B(), lhs.V16B(), value); break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ Shl(dst.V8H(), lhs.V8H(), value); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Shl(dst.V4S(), lhs.V4S(), value); break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Shl(dst.V2D(), lhs.V2D(), value); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecShr(HVecShr* instruction) { CreateVecShiftLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecShr(HVecShr* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister lhs = VRegisterFrom(locations->InAt(0)); VRegister dst = VRegisterFrom(locations->Out()); int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ Sshr(dst.V16B(), lhs.V16B(), value); break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ Sshr(dst.V8H(), lhs.V8H(), value); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Sshr(dst.V4S(), lhs.V4S(), value); break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Sshr(dst.V2D(), lhs.V2D(), value); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecUShr(HVecUShr* instruction) { CreateVecShiftLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorARM64::VisitVecUShr(HVecUShr* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister lhs = VRegisterFrom(locations->InAt(0)); VRegister dst = VRegisterFrom(locations->Out()); int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ Ushr(dst.V16B(), lhs.V16B(), value); break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ Ushr(dst.V8H(), lhs.V8H(), value); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Ushr(dst.V4S(), lhs.V4S(), value); break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Ushr(dst.V2D(), lhs.V2D(), value); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecSetScalars(HVecSetScalars* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); DCHECK_EQ(1u, instruction->InputCount()); // only one input currently implemented HInstruction* input = instruction->InputAt(0); bool is_zero = IsZeroBitPattern(input); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: locations->SetInAt(0, is_zero ? Location::ConstantLocation(input->AsConstant()) : Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, is_zero ? Location::ConstantLocation(input->AsConstant()) : Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void InstructionCodeGeneratorARM64::VisitVecSetScalars(HVecSetScalars* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister dst = VRegisterFrom(locations->Out()); DCHECK_EQ(1u, instruction->InputCount()); // only one input currently implemented // Zero out all other elements first. __ Movi(dst.V16B(), 0); // Shorthand for any type of zero. if (IsZeroBitPattern(instruction->InputAt(0))) { return; } // Set required elements. switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ Mov(dst.V16B(), 0, InputRegisterAt(instruction, 0)); break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ Mov(dst.V8H(), 0, InputRegisterAt(instruction, 0)); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Mov(dst.V4S(), 0, InputRegisterAt(instruction, 0)); break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Mov(dst.V2D(), 0, InputRegisterAt(instruction, 0)); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } // Helper to set up locations for vector accumulations. static void CreateVecAccumLocations(ArenaAllocator* allocator, HVecOperation* instruction) { LocationSummary* locations = new (allocator) LocationSummary(instruction); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetInAt(2, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instruction) { CreateVecAccumLocations(GetGraph()->GetAllocator(), instruction); } // Some early revisions of the Cortex-A53 have an erratum (835769) whereby it is possible for a // 64-bit scalar multiply-accumulate instruction in AArch64 state to generate an incorrect result. // However vector MultiplyAccumulate instruction is not affected. void InstructionCodeGeneratorARM64::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister acc = VRegisterFrom(locations->InAt(0)); VRegister left = VRegisterFrom(locations->InAt(1)); VRegister right = VRegisterFrom(locations->InAt(2)); DCHECK(locations->InAt(0).Equals(locations->Out())); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); if (instruction->GetOpKind() == HInstruction::kAdd) { __ Mla(acc.V16B(), left.V16B(), right.V16B()); } else { __ Mls(acc.V16B(), left.V16B(), right.V16B()); } break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); if (instruction->GetOpKind() == HInstruction::kAdd) { __ Mla(acc.V8H(), left.V8H(), right.V8H()); } else { __ Mls(acc.V8H(), left.V8H(), right.V8H()); } break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); if (instruction->GetOpKind() == HInstruction::kAdd) { __ Mla(acc.V4S(), left.V4S(), right.V4S()); } else { __ Mls(acc.V4S(), left.V4S(), right.V4S()); } break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecSADAccumulate(HVecSADAccumulate* instruction) { CreateVecAccumLocations(GetGraph()->GetAllocator(), instruction); // Some conversions require temporary registers. LocationSummary* locations = instruction->GetLocations(); HVecOperation* a = instruction->InputAt(1)->AsVecOperation(); HVecOperation* b = instruction->InputAt(2)->AsVecOperation(); DCHECK_EQ(HVecOperation::ToSignedType(a->GetPackedType()), HVecOperation::ToSignedType(b->GetPackedType())); switch (a->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: switch (instruction->GetPackedType()) { case DataType::Type::kInt64: locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); FALLTHROUGH_INTENDED; case DataType::Type::kInt32: locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; default: break; } break; case DataType::Type::kUint16: case DataType::Type::kInt16: if (instruction->GetPackedType() == DataType::Type::kInt64) { locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); } break; case DataType::Type::kInt32: case DataType::Type::kInt64: if (instruction->GetPackedType() == a->GetPackedType()) { locations->AddTemp(Location::RequiresFpuRegister()); } break; default: break; } } void InstructionCodeGeneratorARM64::VisitVecSADAccumulate(HVecSADAccumulate* instruction) { LocationSummary* locations = instruction->GetLocations(); VRegister acc = VRegisterFrom(locations->InAt(0)); VRegister left = VRegisterFrom(locations->InAt(1)); VRegister right = VRegisterFrom(locations->InAt(2)); DCHECK(locations->InAt(0).Equals(locations->Out())); // Handle all feasible acc_T += sad(a_S, b_S) type combinations (T x S). HVecOperation* a = instruction->InputAt(1)->AsVecOperation(); HVecOperation* b = instruction->InputAt(2)->AsVecOperation(); DCHECK_EQ(HVecOperation::ToSignedType(a->GetPackedType()), HVecOperation::ToSignedType(b->GetPackedType())); switch (a->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, a->GetVectorLength()); switch (instruction->GetPackedType()) { case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ Sabal(acc.V8H(), left.V8B(), right.V8B()); __ Sabal2(acc.V8H(), left.V16B(), right.V16B()); break; case DataType::Type::kInt32: { DCHECK_EQ(4u, instruction->GetVectorLength()); VRegister tmp1 = VRegisterFrom(locations->GetTemp(0)); VRegister tmp2 = VRegisterFrom(locations->GetTemp(1)); __ Sxtl(tmp1.V8H(), left.V8B()); __ Sxtl(tmp2.V8H(), right.V8B()); __ Sabal(acc.V4S(), tmp1.V4H(), tmp2.V4H()); __ Sabal2(acc.V4S(), tmp1.V8H(), tmp2.V8H()); __ Sxtl2(tmp1.V8H(), left.V16B()); __ Sxtl2(tmp2.V8H(), right.V16B()); __ Sabal(acc.V4S(), tmp1.V4H(), tmp2.V4H()); __ Sabal2(acc.V4S(), tmp1.V8H(), tmp2.V8H()); break; } case DataType::Type::kInt64: { DCHECK_EQ(2u, instruction->GetVectorLength()); VRegister tmp1 = VRegisterFrom(locations->GetTemp(0)); VRegister tmp2 = VRegisterFrom(locations->GetTemp(1)); VRegister tmp3 = VRegisterFrom(locations->GetTemp(2)); VRegister tmp4 = VRegisterFrom(locations->GetTemp(3)); __ Sxtl(tmp1.V8H(), left.V8B()); __ Sxtl(tmp2.V8H(), right.V8B()); __ Sxtl(tmp3.V4S(), tmp1.V4H()); __ Sxtl(tmp4.V4S(), tmp2.V4H()); __ Sabal(acc.V2D(), tmp3.V2S(), tmp4.V2S()); __ Sabal2(acc.V2D(), tmp3.V4S(), tmp4.V4S()); __ Sxtl2(tmp3.V4S(), tmp1.V8H()); __ Sxtl2(tmp4.V4S(), tmp2.V8H()); __ Sabal(acc.V2D(), tmp3.V2S(), tmp4.V2S()); __ Sabal2(acc.V2D(), tmp3.V4S(), tmp4.V4S()); __ Sxtl2(tmp1.V8H(), left.V16B()); __ Sxtl2(tmp2.V8H(), right.V16B()); __ Sxtl(tmp3.V4S(), tmp1.V4H()); __ Sxtl(tmp4.V4S(), tmp2.V4H()); __ Sabal(acc.V2D(), tmp3.V2S(), tmp4.V2S()); __ Sabal2(acc.V2D(), tmp3.V4S(), tmp4.V4S()); __ Sxtl2(tmp3.V4S(), tmp1.V8H()); __ Sxtl2(tmp4.V4S(), tmp2.V8H()); __ Sabal(acc.V2D(), tmp3.V2S(), tmp4.V2S()); __ Sabal2(acc.V2D(), tmp3.V4S(), tmp4.V4S()); break; } default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, a->GetVectorLength()); switch (instruction->GetPackedType()) { case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ Sabal(acc.V4S(), left.V4H(), right.V4H()); __ Sabal2(acc.V4S(), left.V8H(), right.V8H()); break; case DataType::Type::kInt64: { DCHECK_EQ(2u, instruction->GetVectorLength()); VRegister tmp1 = VRegisterFrom(locations->GetTemp(0)); VRegister tmp2 = VRegisterFrom(locations->GetTemp(1)); __ Sxtl(tmp1.V4S(), left.V4H()); __ Sxtl(tmp2.V4S(), right.V4H()); __ Sabal(acc.V2D(), tmp1.V2S(), tmp2.V2S()); __ Sabal2(acc.V2D(), tmp1.V4S(), tmp2.V4S()); __ Sxtl2(tmp1.V4S(), left.V8H()); __ Sxtl2(tmp2.V4S(), right.V8H()); __ Sabal(acc.V2D(), tmp1.V2S(), tmp2.V2S()); __ Sabal2(acc.V2D(), tmp1.V4S(), tmp2.V4S()); break; } default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } break; case DataType::Type::kInt32: DCHECK_EQ(4u, a->GetVectorLength()); switch (instruction->GetPackedType()) { case DataType::Type::kInt32: { DCHECK_EQ(4u, instruction->GetVectorLength()); VRegister tmp = VRegisterFrom(locations->GetTemp(0)); __ Sub(tmp.V4S(), left.V4S(), right.V4S()); __ Abs(tmp.V4S(), tmp.V4S()); __ Add(acc.V4S(), acc.V4S(), tmp.V4S()); break; } case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ Sabal(acc.V2D(), left.V2S(), right.V2S()); __ Sabal2(acc.V2D(), left.V4S(), right.V4S()); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } break; case DataType::Type::kInt64: DCHECK_EQ(2u, a->GetVectorLength()); switch (instruction->GetPackedType()) { case DataType::Type::kInt64: { DCHECK_EQ(2u, instruction->GetVectorLength()); VRegister tmp = VRegisterFrom(locations->GetTemp(0)); __ Sub(tmp.V2D(), left.V2D(), right.V2D()); __ Abs(tmp.V2D(), tmp.V2D()); __ Add(acc.V2D(), acc.V2D(), tmp.V2D()); break; } default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } break; default: LOG(FATAL) << "Unsupported SIMD type"; } } // Helper to set up locations for vector memory operations. static void CreateVecMemLocations(ArenaAllocator* allocator, HVecMemoryOperation* instruction, bool is_load) { LocationSummary* locations = new (allocator) LocationSummary(instruction); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (is_load) { locations->SetOut(Location::RequiresFpuRegister()); } else { locations->SetInAt(2, Location::RequiresFpuRegister()); } break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } // Helper to set up locations for vector memory operations. Returns the memory operand and, // if used, sets the output parameter scratch to a temporary register used in this operand, // so that the client can release it right after the memory operand use. MemOperand InstructionCodeGeneratorARM64::VecAddress( HVecMemoryOperation* instruction, UseScratchRegisterScope* temps_scope, size_t size, bool is_string_char_at, /*out*/ Register* scratch) { LocationSummary* locations = instruction->GetLocations(); Register base = InputRegisterAt(instruction, 0); if (instruction->InputAt(1)->IsIntermediateAddressIndex()) { DCHECK(!is_string_char_at); return MemOperand(base.X(), InputRegisterAt(instruction, 1).X()); } Location index = locations->InAt(1); uint32_t offset = is_string_char_at ? mirror::String::ValueOffset().Uint32Value() : mirror::Array::DataOffset(size).Uint32Value(); size_t shift = ComponentSizeShiftWidth(size); // HIntermediateAddress optimization is only applied for scalar ArrayGet and ArraySet. DCHECK(!instruction->InputAt(0)->IsIntermediateAddress()); if (index.IsConstant()) { offset += Int64ConstantFrom(index) << shift; return HeapOperand(base, offset); } else { *scratch = temps_scope->AcquireSameSizeAs(base); __ Add(*scratch, base, Operand(WRegisterFrom(index), LSL, shift)); return HeapOperand(*scratch, offset); } } void LocationsBuilderARM64::VisitVecLoad(HVecLoad* instruction) { CreateVecMemLocations(GetGraph()->GetAllocator(), instruction, /*is_load*/ true); } void InstructionCodeGeneratorARM64::VisitVecLoad(HVecLoad* instruction) { LocationSummary* locations = instruction->GetLocations(); size_t size = DataType::Size(instruction->GetPackedType()); VRegister reg = VRegisterFrom(locations->Out()); UseScratchRegisterScope temps(GetVIXLAssembler()); Register scratch; switch (instruction->GetPackedType()) { case DataType::Type::kUint16: DCHECK_EQ(8u, instruction->GetVectorLength()); // Special handling of compressed/uncompressed string load. if (mirror::kUseStringCompression && instruction->IsStringCharAt()) { vixl::aarch64::Label uncompressed_load, done; // Test compression bit. static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); Register length = temps.AcquireW(); __ Ldr(length, HeapOperand(InputRegisterAt(instruction, 0), count_offset)); __ Tbnz(length.W(), 0, &uncompressed_load); temps.Release(length); // no longer needed // Zero extend 8 compressed bytes into 8 chars. __ Ldr(DRegisterFrom(locations->Out()).V8B(), VecAddress(instruction, &temps, 1, /*is_string_char_at*/ true, &scratch)); __ Uxtl(reg.V8H(), reg.V8B()); __ B(&done); if (scratch.IsValid()) { temps.Release(scratch); // if used, no longer needed } // Load 8 direct uncompressed chars. __ Bind(&uncompressed_load); __ Ldr(reg, VecAddress(instruction, &temps, size, /*is_string_char_at*/ true, &scratch)); __ Bind(&done); return; } FALLTHROUGH_INTENDED; case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kFloat32: case DataType::Type::kInt64: case DataType::Type::kFloat64: DCHECK_LE(2u, instruction->GetVectorLength()); DCHECK_LE(instruction->GetVectorLength(), 16u); __ Ldr(reg, VecAddress(instruction, &temps, size, instruction->IsStringCharAt(), &scratch)); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderARM64::VisitVecStore(HVecStore* instruction) { CreateVecMemLocations(GetGraph()->GetAllocator(), instruction, /*is_load*/ false); } void InstructionCodeGeneratorARM64::VisitVecStore(HVecStore* instruction) { LocationSummary* locations = instruction->GetLocations(); size_t size = DataType::Size(instruction->GetPackedType()); VRegister reg = VRegisterFrom(locations->InAt(2)); UseScratchRegisterScope temps(GetVIXLAssembler()); Register scratch; switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kFloat32: case DataType::Type::kInt64: case DataType::Type::kFloat64: DCHECK_LE(2u, instruction->GetVectorLength()); DCHECK_LE(instruction->GetVectorLength(), 16u); __ Str(reg, VecAddress(instruction, &temps, size, /*is_string_char_at*/ false, &scratch)); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } #undef __ } // namespace arm64 } // namespace art