/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef NDEBUG
#define _LARGEFILE64_SOURCE
extern "C" {
#include <fec.h>
}
#include <assert.h>
#include <android-base/file.h>
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <openssl/sha.h>
#include <pthread.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sparse/sparse.h>
#include "image.h"
#if defined(__linux__)
#include <linux/fs.h>
#elif defined(__APPLE__)
#include <sys/disk.h>
#define BLKGETSIZE64 DKIOCGETBLOCKCOUNT
#define O_LARGEFILE 0
#endif
void image_init(image *ctx)
{
memset(ctx, 0, sizeof(*ctx));
}
void image_free(image *ctx)
{
assert(ctx->input == ctx->output);
if (ctx->input) {
delete[] ctx->input;
}
if (ctx->fec) {
delete[] ctx->fec;
}
image_init(ctx);
}
static void calculate_rounds(uint64_t size, image *ctx)
{
if (!size) {
FATAL("empty file?\n");
} else if (size % FEC_BLOCKSIZE) {
FATAL("file size %" PRIu64 " is not a multiple of %u bytes\n",
size, FEC_BLOCKSIZE);
}
ctx->inp_size = size;
ctx->blocks = fec_div_round_up(ctx->inp_size, FEC_BLOCKSIZE);
ctx->rounds = fec_div_round_up(ctx->blocks, ctx->rs_n);
}
static int process_chunk(void *priv, const void *data, int len)
{
image *ctx = (image *)priv;
assert(len % FEC_BLOCKSIZE == 0);
if (data) {
memcpy(&ctx->input[ctx->pos], data, len);
}
ctx->pos += len;
return 0;
}
static void file_image_load(const std::vector<int>& fds, image *ctx)
{
uint64_t size = 0;
std::vector<struct sparse_file *> files;
for (auto fd : fds) {
uint64_t len = 0;
struct sparse_file *file;
if (ctx->sparse) {
file = sparse_file_import(fd, false, false);
} else {
file = sparse_file_import_auto(fd, false, ctx->verbose);
}
if (!file) {
FATAL("failed to read file %s\n", ctx->fec_filename);
}
len = sparse_file_len(file, false, false);
files.push_back(file);
size += len;
}
calculate_rounds(size, ctx);
if (ctx->verbose) {
INFO("allocating %" PRIu64 " bytes of memory\n", ctx->inp_size);
}
ctx->input = new uint8_t[ctx->inp_size];
if (!ctx->input) {
FATAL("failed to allocate memory\n");
}
memset(ctx->input, 0, ctx->inp_size);
ctx->output = ctx->input;
ctx->pos = 0;
for (auto file : files) {
sparse_file_callback(file, false, false, process_chunk, ctx);
sparse_file_destroy(file);
}
for (auto fd : fds) {
close(fd);
}
}
bool image_load(const std::vector<std::string>& filenames, image *ctx)
{
assert(ctx->roots > 0 && ctx->roots < FEC_RSM);
ctx->rs_n = FEC_RSM - ctx->roots;
int flags = O_RDONLY;
if (ctx->inplace) {
flags = O_RDWR;
}
std::vector<int> fds;
for (const auto& fn : filenames) {
int fd = TEMP_FAILURE_RETRY(open(fn.c_str(), flags | O_LARGEFILE));
if (fd < 0) {
FATAL("failed to open file '%s': %s\n", fn.c_str(), strerror(errno));
}
fds.push_back(fd);
}
file_image_load(fds, ctx);
return true;
}
bool image_save(const std::string& filename, image *ctx)
{
/* TODO: support saving as a sparse file */
int fd = TEMP_FAILURE_RETRY(open(filename.c_str(),
O_WRONLY | O_CREAT | O_TRUNC, 0666));
if (fd < 0) {
FATAL("failed to open file '%s: %s'\n", filename.c_str(),
strerror(errno));
}
if (!android::base::WriteFully(fd, ctx->output, ctx->inp_size)) {
FATAL("failed to write to output: %s\n", strerror(errno));
}
close(fd);
return true;
}
bool image_ecc_new(const std::string& filename, image *ctx)
{
assert(ctx->rounds > 0); /* image_load should be called first */
ctx->fec_filename = filename.c_str();
ctx->fec_size = ctx->rounds * ctx->roots * FEC_BLOCKSIZE;
if (ctx->verbose) {
INFO("allocating %u bytes of memory\n", ctx->fec_size);
}
ctx->fec = new uint8_t[ctx->fec_size];
if (!ctx->fec) {
FATAL("failed to allocate %u bytes\n", ctx->fec_size);
}
return true;
}
bool image_ecc_load(const std::string& filename, image *ctx)
{
int fd = TEMP_FAILURE_RETRY(open(filename.c_str(), O_RDONLY));
if (fd < 0) {
FATAL("failed to open file '%s': %s\n", filename.c_str(),
strerror(errno));
}
if (lseek64(fd, -FEC_BLOCKSIZE, SEEK_END) < 0) {
FATAL("failed to seek to header in '%s': %s\n", filename.c_str(),
strerror(errno));
}
assert(sizeof(fec_header) <= FEC_BLOCKSIZE);
uint8_t header[FEC_BLOCKSIZE];
fec_header *p = (fec_header *)header;
if (!android::base::ReadFully(fd, header, sizeof(header))) {
FATAL("failed to read %zd bytes from '%s': %s\n", sizeof(header),
filename.c_str(), strerror(errno));
}
if (p->magic != FEC_MAGIC) {
FATAL("invalid magic in '%s': %08x\n", filename.c_str(), p->magic);
}
if (p->version != FEC_VERSION) {
FATAL("unsupported version in '%s': %u\n", filename.c_str(),
p->version);
}
if (p->size != sizeof(fec_header)) {
FATAL("unexpected header size in '%s': %u\n", filename.c_str(),
p->size);
}
if (p->roots == 0 || p->roots >= FEC_RSM) {
FATAL("invalid roots in '%s': %u\n", filename.c_str(), p->roots);
}
if (p->fec_size % p->roots || p->fec_size % FEC_BLOCKSIZE) {
FATAL("invalid length in '%s': %u\n", filename.c_str(), p->fec_size);
}
ctx->roots = (int)p->roots;
ctx->rs_n = FEC_RSM - ctx->roots;
calculate_rounds(p->inp_size, ctx);
if (!image_ecc_new(filename, ctx)) {
FATAL("failed to allocate ecc\n");
}
if (p->fec_size != ctx->fec_size) {
FATAL("inconsistent header in '%s'\n", filename.c_str());
}
if (lseek64(fd, 0, SEEK_SET) < 0) {
FATAL("failed to rewind '%s': %s", filename.c_str(), strerror(errno));
}
if (!android::base::ReadFully(fd, ctx->fec, ctx->fec_size)) {
FATAL("failed to read %u bytes from '%s': %s\n", ctx->fec_size,
filename.c_str(), strerror(errno));
}
close(fd);
uint8_t hash[SHA256_DIGEST_LENGTH];
SHA256(ctx->fec, ctx->fec_size, hash);
if (memcmp(hash, p->hash, SHA256_DIGEST_LENGTH) != 0) {
FATAL("invalid ecc data\n");
}
return true;
}
bool image_ecc_save(image *ctx)
{
assert(2 * sizeof(fec_header) <= FEC_BLOCKSIZE);
uint8_t header[FEC_BLOCKSIZE] = {0};
fec_header *f = (fec_header *)header;
f->magic = FEC_MAGIC;
f->version = FEC_VERSION;
f->size = sizeof(fec_header);
f->roots = ctx->roots;
f->fec_size = ctx->fec_size;
f->inp_size = ctx->inp_size;
SHA256(ctx->fec, ctx->fec_size, f->hash);
/* store a copy of the fec_header at the end of the header block */
memcpy(&header[sizeof(header) - sizeof(fec_header)], header,
sizeof(fec_header));
assert(ctx->fec_filename);
int fd = TEMP_FAILURE_RETRY(open(ctx->fec_filename,
O_WRONLY | O_CREAT | O_TRUNC, 0666));
if (fd < 0) {
FATAL("failed to open file '%s': %s\n", ctx->fec_filename,
strerror(errno));
}
if (!android::base::WriteFully(fd, ctx->fec, ctx->fec_size)) {
FATAL("failed to write to output: %s\n", strerror(errno));
}
if (ctx->padding > 0) {
uint8_t padding[FEC_BLOCKSIZE] = {0};
for (uint32_t i = 0; i < ctx->padding; i += FEC_BLOCKSIZE) {
if (!android::base::WriteFully(fd, padding, FEC_BLOCKSIZE)) {
FATAL("failed to write padding: %s\n", strerror(errno));
}
}
}
if (!android::base::WriteFully(fd, header, sizeof(header))) {
FATAL("failed to write to header: %s\n", strerror(errno));
}
close(fd);
return true;
}
static void * process(void *cookie)
{
image_proc_ctx *ctx = (image_proc_ctx *)cookie;
ctx->func(ctx);
return NULL;
}
bool image_process(image_proc_func func, image *ctx)
{
int threads = ctx->threads;
if (threads < IMAGE_MIN_THREADS) {
threads = sysconf(_SC_NPROCESSORS_ONLN);
if (threads < IMAGE_MIN_THREADS) {
threads = IMAGE_MIN_THREADS;
}
}
assert(ctx->rounds > 0);
if ((uint64_t)threads > ctx->rounds) {
threads = (int)ctx->rounds;
}
if (threads > IMAGE_MAX_THREADS) {
threads = IMAGE_MAX_THREADS;
}
if (ctx->verbose) {
INFO("starting %d threads to compute RS(255, %d)\n", threads,
ctx->rs_n);
}
pthread_t pthreads[threads];
image_proc_ctx args[threads];
uint64_t current = 0;
uint64_t end = ctx->rounds * ctx->rs_n * FEC_BLOCKSIZE;
uint64_t rs_blocks_per_thread =
fec_div_round_up(ctx->rounds * FEC_BLOCKSIZE, threads);
if (ctx->verbose) {
INFO("computing %" PRIu64 " codes per thread\n", rs_blocks_per_thread);
}
for (int i = 0; i < threads; ++i) {
args[i].func = func;
args[i].id = i;
args[i].ctx = ctx;
args[i].rv = 0;
args[i].fec_pos = current * ctx->roots;
args[i].start = current * ctx->rs_n;
args[i].end = (current + rs_blocks_per_thread) * ctx->rs_n;
args[i].rs = init_rs_char(FEC_PARAMS(ctx->roots));
if (!args[i].rs) {
FATAL("failed to initialize encoder for thread %d\n", i);
}
if (args[i].end > end) {
args[i].end = end;
} else if (i == threads && args[i].end + rs_blocks_per_thread *
ctx->rs_n > end) {
args[i].end = end;
}
if (ctx->verbose) {
INFO("thread %d: [%" PRIu64 ", %" PRIu64 ")\n",
i, args[i].start, args[i].end);
}
assert(args[i].start < args[i].end);
assert((args[i].end - args[i].start) % ctx->rs_n == 0);
if (pthread_create(&pthreads[i], NULL, process, &args[i]) != 0) {
FATAL("failed to create thread %d\n", i);
}
current += rs_blocks_per_thread;
}
ctx->rv = 0;
for (int i = 0; i < threads; ++i) {
if (pthread_join(pthreads[i], NULL) != 0) {
FATAL("failed to join thread %d: %s\n", i, strerror(errno));
}
ctx->rv += args[i].rv;
if (args[i].rs) {
free_rs_char(args[i].rs);
args[i].rs = NULL;
}
}
return true;
}