/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "storaged"
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#include <android-base/logging.h>
#include <batteryservice/BatteryServiceConstants.h>
#include <batteryservice/IBatteryPropertiesRegistrar.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <cutils/properties.h>
#include <log/log.h>
#include <storaged.h>
#include <storaged_utils.h>
/* disk_stats_publisher */
void disk_stats_publisher::publish(void) {
// Logging
struct disk_perf perf = get_disk_perf(&mAccumulate);
log_debug_disk_perf(&perf, "regular");
log_event_disk_stats(&mAccumulate, "regular");
// Reset global structures
memset(&mAccumulate, 0, sizeof(struct disk_stats));
}
void disk_stats_publisher::update(void) {
struct disk_stats curr;
if (parse_disk_stats(DISK_STATS_PATH, &curr)) {
struct disk_stats inc = get_inc_disk_stats(&mPrevious, &curr);
add_disk_stats(&inc, &mAccumulate);
#ifdef DEBUG
// log_kernel_disk_stats(&mPrevious, "prev stats");
// log_kernel_disk_stats(&curr, "curr stats");
// log_kernel_disk_stats(&inc, "inc stats");
// log_kernel_disk_stats(&mAccumulate, "accumulated stats");
#endif
mPrevious = curr;
}
}
/* disk_stats_monitor */
void disk_stats_monitor::update_mean() {
CHECK(mValid);
mMean.read_perf = (uint32_t)mStats.read_perf.get_mean();
mMean.read_ios = (uint32_t)mStats.read_ios.get_mean();
mMean.write_perf = (uint32_t)mStats.write_perf.get_mean();
mMean.write_ios = (uint32_t)mStats.write_ios.get_mean();
mMean.queue = (uint32_t)mStats.queue.get_mean();
}
void disk_stats_monitor::update_std() {
CHECK(mValid);
mStd.read_perf = (uint32_t)mStats.read_perf.get_std();
mStd.read_ios = (uint32_t)mStats.read_ios.get_std();
mStd.write_perf = (uint32_t)mStats.write_perf.get_std();
mStd.write_ios = (uint32_t)mStats.write_ios.get_std();
mStd.queue = (uint32_t)mStats.queue.get_std();
}
void disk_stats_monitor::add(struct disk_perf* perf) {
mStats.read_perf.add(perf->read_perf);
mStats.read_ios.add(perf->read_ios);
mStats.write_perf.add(perf->write_perf);
mStats.write_ios.add(perf->write_ios);
mStats.queue.add(perf->queue);
}
void disk_stats_monitor::evict(struct disk_perf* perf) {
mStats.read_perf.evict(perf->read_perf);
mStats.read_ios.evict(perf->read_ios);
mStats.write_perf.evict(perf->write_perf);
mStats.write_ios.evict(perf->write_ios);
mStats.queue.evict(perf->queue);
}
bool disk_stats_monitor::detect(struct disk_perf* perf) {
return ((double)perf->queue >= (double)mMean.queue + mSigma * (double)mStd.queue) &&
((double)perf->read_perf < (double)mMean.read_perf - mSigma * (double)mStd.read_perf) &&
((double)perf->write_perf < (double)mMean.write_perf - mSigma * (double)mStd.write_perf);
}
void disk_stats_monitor::update(struct disk_stats* stats) {
struct disk_stats inc = get_inc_disk_stats(&mPrevious, stats);
struct disk_perf perf = get_disk_perf(&inc);
// Update internal data structures
if (LIKELY(mValid)) {
CHECK_EQ(mBuffer.size(), mWindow);
if (UNLIKELY(detect(&perf))) {
mStall = true;
add_disk_stats(&inc, &mAccumulate);
log_debug_disk_perf(&mMean, "stalled_mean");
log_debug_disk_perf(&mStd, "stalled_std");
} else {
if (mStall) {
struct disk_perf acc_perf = get_disk_perf(&mAccumulate);
log_debug_disk_perf(&acc_perf, "stalled");
log_event_disk_stats(&mAccumulate, "stalled");
mStall = false;
memset(&mAccumulate, 0, sizeof(mAccumulate));
}
}
evict(&mBuffer.front());
mBuffer.pop();
add(&perf);
mBuffer.push(perf);
update_mean();
update_std();
} else { /* mValid == false */
CHECK_LT(mBuffer.size(), mWindow);
add(&perf);
mBuffer.push(perf);
if (mBuffer.size() == mWindow) {
mValid = true;
update_mean();
update_std();
}
}
mPrevious = *stats;
}
void disk_stats_monitor::update(void) {
struct disk_stats curr;
if (LIKELY(parse_disk_stats(DISK_STATS_PATH, &curr))) {
update(&curr);
}
}
static sp<IBatteryPropertiesRegistrar> get_battery_properties_service() {
sp<IServiceManager> sm = defaultServiceManager();
if (sm == NULL) return NULL;
sp<IBinder> binder = sm->getService(String16("batteryproperties"));
if (binder == NULL) return NULL;
sp<IBatteryPropertiesRegistrar> battery_properties =
interface_cast<IBatteryPropertiesRegistrar>(binder);
return battery_properties;
}
static inline charger_stat_t is_charger_on(int64_t prop) {
return (prop == BATTERY_STATUS_CHARGING || prop == BATTERY_STATUS_FULL) ?
CHARGER_ON : CHARGER_OFF;
}
void storaged_t::batteryPropertiesChanged(struct BatteryProperties props) {
mUidm.set_charger_state(is_charger_on(props.batteryStatus));
}
void storaged_t::init_battery_service() {
if (!mConfig.proc_uid_io_available)
return;
battery_properties = get_battery_properties_service();
if (battery_properties == NULL) {
LOG_TO(SYSTEM, WARNING) << "failed to find batteryproperties service";
return;
}
struct BatteryProperty val;
battery_properties->getProperty(BATTERY_PROP_BATTERY_STATUS, &val);
mUidm.init(is_charger_on(val.valueInt64));
// register listener after init uid_monitor
battery_properties->registerListener(this);
IInterface::asBinder(battery_properties)->linkToDeath(this);
}
void storaged_t::binderDied(const wp<IBinder>& who) {
if (battery_properties != NULL &&
IInterface::asBinder(battery_properties) == who) {
LOG_TO(SYSTEM, ERROR) << "batteryproperties service died, exiting";
IPCThreadState::self()->stopProcess();
exit(1);
} else {
LOG_TO(SYSTEM, ERROR) << "unknown service died";
}
}
/* storaged_t */
storaged_t::storaged_t(void) {
if (access(MMC_DISK_STATS_PATH, R_OK) < 0 && access(SDA_DISK_STATS_PATH, R_OK) < 0) {
mConfig.diskstats_available = false;
} else {
mConfig.diskstats_available = true;
}
mConfig.proc_uid_io_available = (access(UID_IO_STATS_PATH, R_OK) == 0);
mConfig.periodic_chores_interval_unit =
property_get_int32("ro.storaged.event.interval", DEFAULT_PERIODIC_CHORES_INTERVAL_UNIT);
mConfig.event_time_check_usec =
property_get_int32("ro.storaged.event.perf_check", 0);
mConfig.periodic_chores_interval_disk_stats_publish =
property_get_int32("ro.storaged.disk_stats_pub", DEFAULT_PERIODIC_CHORES_INTERVAL_DISK_STATS_PUBLISH);
mConfig.periodic_chores_interval_uid_io =
property_get_int32("ro.storaged.uid_io.interval", DEFAULT_PERIODIC_CHORES_INTERVAL_UID_IO);
mStarttime = time(NULL);
}
void storaged_t::event(void) {
if (mConfig.diskstats_available) {
mDiskStats.update();
mDsm.update();
if (mTimer && (mTimer % mConfig.periodic_chores_interval_disk_stats_publish) == 0) {
mDiskStats.publish();
}
}
if (mConfig.proc_uid_io_available && mTimer &&
(mTimer % mConfig.periodic_chores_interval_uid_io) == 0) {
mUidm.report();
}
mTimer += mConfig.periodic_chores_interval_unit;
}
void storaged_t::event_checked(void) {
struct timespec start_ts, end_ts;
bool check_time = true;
if (mConfig.event_time_check_usec &&
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start_ts) < 0) {
check_time = false;
static time_t state_a;
IF_ALOG_RATELIMIT_LOCAL(300, &state_a) {
PLOG_TO(SYSTEM, ERROR) << "clock_gettime() failed";
}
}
event();
if (mConfig.event_time_check_usec && check_time) {
if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end_ts) < 0) {
static time_t state_b;
IF_ALOG_RATELIMIT_LOCAL(300, &state_b) {
PLOG_TO(SYSTEM, ERROR) << "clock_gettime() failed";
}
return;
}
int64_t cost = (end_ts.tv_sec - start_ts.tv_sec) * SEC_TO_USEC +
(end_ts.tv_nsec - start_ts.tv_nsec) / USEC_TO_NSEC;
if (cost > mConfig.event_time_check_usec) {
LOG_TO(SYSTEM, ERROR)
<< "event loop spent " << cost << " usec, threshold "
<< mConfig.event_time_check_usec << " usec";
}
}
}