/* libs/pixelflinger/codeflinger/ARMAssembler.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#define LOG_TAG "ARMAssembler"
#include <stdio.h>
#include <stdlib.h>
#include <cutils/properties.h>
#include <log/log.h>
#include <private/pixelflinger/ggl_context.h>
#include "ARMAssembler.h"
#include "CodeCache.h"
#include "disassem.h"
// ----------------------------------------------------------------------------
namespace android {
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark ARMAssembler...
#endif
ARMAssembler::ARMAssembler(const sp<Assembly>& assembly)
: ARMAssemblerInterface(),
mAssembly(assembly)
{
mBase = mPC = (uint32_t *)assembly->base();
mDuration = ggl_system_time();
}
ARMAssembler::~ARMAssembler()
{
}
uint32_t* ARMAssembler::pc() const
{
return mPC;
}
uint32_t* ARMAssembler::base() const
{
return mBase;
}
void ARMAssembler::reset()
{
mBase = mPC = (uint32_t *)mAssembly->base();
mBranchTargets.clear();
mLabels.clear();
mLabelsInverseMapping.clear();
mComments.clear();
}
int ARMAssembler::getCodegenArch()
{
return CODEGEN_ARCH_ARM;
}
// ----------------------------------------------------------------------------
void ARMAssembler::disassemble(const char* name)
{
if (name) {
printf("%s:\n", name);
}
size_t count = pc()-base();
uint32_t* i = base();
while (count--) {
ssize_t label = mLabelsInverseMapping.indexOfKey(i);
if (label >= 0) {
printf("%s:\n", mLabelsInverseMapping.valueAt(label));
}
ssize_t comment = mComments.indexOfKey(i);
if (comment >= 0) {
printf("; %s\n", mComments.valueAt(comment));
}
printf("%08x: %08x ", uintptr_t(i), int(i[0]));
::disassemble((uintptr_t)i);
i++;
}
}
void ARMAssembler::comment(const char* string)
{
mComments.add(mPC, string);
}
void ARMAssembler::label(const char* theLabel)
{
mLabels.add(theLabel, mPC);
mLabelsInverseMapping.add(mPC, theLabel);
}
void ARMAssembler::B(int cc, const char* label)
{
mBranchTargets.add(branch_target_t(label, mPC));
*mPC++ = (cc<<28) | (0xA<<24) | 0;
}
void ARMAssembler::BL(int cc, const char* label)
{
mBranchTargets.add(branch_target_t(label, mPC));
*mPC++ = (cc<<28) | (0xB<<24) | 0;
}
#if 0
#pragma mark -
#pragma mark Prolog/Epilog & Generate...
#endif
void ARMAssembler::prolog()
{
// write dummy prolog code
mPrologPC = mPC;
STM(AL, FD, SP, 1, LSAVED);
}
void ARMAssembler::epilog(uint32_t touched)
{
touched &= LSAVED;
if (touched) {
// write prolog code
uint32_t* pc = mPC;
mPC = mPrologPC;
STM(AL, FD, SP, 1, touched | LLR);
mPC = pc;
// write epilog code
LDM(AL, FD, SP, 1, touched | LLR);
BX(AL, LR);
} else { // heh, no registers to save!
// write prolog code
uint32_t* pc = mPC;
mPC = mPrologPC;
MOV(AL, 0, R0, R0); // NOP
mPC = pc;
// write epilog code
BX(AL, LR);
}
}
int ARMAssembler::generate(const char* name)
{
// fixup all the branches
size_t count = mBranchTargets.size();
while (count--) {
const branch_target_t& bt = mBranchTargets[count];
uint32_t* target_pc = mLabels.valueFor(bt.label);
LOG_ALWAYS_FATAL_IF(!target_pc,
"error resolving branch targets, target_pc is null");
int32_t offset = int32_t(target_pc - (bt.pc+2));
*bt.pc |= offset & 0xFFFFFF;
}
mAssembly->resize( int(pc()-base())*4 );
// the instruction cache is flushed by CodeCache
const int64_t duration = ggl_system_time() - mDuration;
const char * const format = "generated %s (%d ins) at [%p:%p] in %lld ns\n";
ALOGI(format, name, int(pc()-base()), base(), pc(), duration);
char value[PROPERTY_VALUE_MAX];
property_get("debug.pf.disasm", value, "0");
if (atoi(value) != 0) {
printf(format, name, int(pc()-base()), base(), pc(), duration);
disassemble(name);
}
return NO_ERROR;
}
uint32_t* ARMAssembler::pcForLabel(const char* label)
{
return mLabels.valueFor(label);
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Data Processing...
#endif
void ARMAssembler::dataProcessing(int opcode, int cc,
int s, int Rd, int Rn, uint32_t Op2)
{
*mPC++ = (cc<<28) | (opcode<<21) | (s<<20) | (Rn<<16) | (Rd<<12) | Op2;
}
#if 0
#pragma mark -
#pragma mark Multiply...
#endif
// multiply...
void ARMAssembler::MLA(int cc, int s,
int Rd, int Rm, int Rs, int Rn) {
if (Rd == Rm) { int t = Rm; Rm=Rs; Rs=t; }
LOG_FATAL_IF(Rd==Rm, "MLA(r%u,r%u,r%u,r%u)", Rd,Rm,Rs,Rn);
*mPC++ = (cc<<28) | (1<<21) | (s<<20) |
(Rd<<16) | (Rn<<12) | (Rs<<8) | 0x90 | Rm;
}
void ARMAssembler::MUL(int cc, int s,
int Rd, int Rm, int Rs) {
if (Rd == Rm) { int t = Rm; Rm=Rs; Rs=t; }
LOG_FATAL_IF(Rd==Rm, "MUL(r%u,r%u,r%u)", Rd,Rm,Rs);
*mPC++ = (cc<<28) | (s<<20) | (Rd<<16) | (Rs<<8) | 0x90 | Rm;
}
void ARMAssembler::UMULL(int cc, int s,
int RdLo, int RdHi, int Rm, int Rs) {
LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
"UMULL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
*mPC++ = (cc<<28) | (1<<23) | (s<<20) |
(RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
}
void ARMAssembler::UMUAL(int cc, int s,
int RdLo, int RdHi, int Rm, int Rs) {
LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
"UMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
*mPC++ = (cc<<28) | (1<<23) | (1<<21) | (s<<20) |
(RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
}
void ARMAssembler::SMULL(int cc, int s,
int RdLo, int RdHi, int Rm, int Rs) {
LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
"SMULL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
*mPC++ = (cc<<28) | (1<<23) | (1<<22) | (s<<20) |
(RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
}
void ARMAssembler::SMUAL(int cc, int s,
int RdLo, int RdHi, int Rm, int Rs) {
LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
"SMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
*mPC++ = (cc<<28) | (1<<23) | (1<<22) | (1<<21) | (s<<20) |
(RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
}
#if 0
#pragma mark -
#pragma mark Branches...
#endif
// branches...
void ARMAssembler::B(int cc, uint32_t* pc)
{
int32_t offset = int32_t(pc - (mPC+2));
*mPC++ = (cc<<28) | (0xA<<24) | (offset & 0xFFFFFF);
}
void ARMAssembler::BL(int cc, uint32_t* pc)
{
int32_t offset = int32_t(pc - (mPC+2));
*mPC++ = (cc<<28) | (0xB<<24) | (offset & 0xFFFFFF);
}
void ARMAssembler::BX(int cc, int Rn)
{
*mPC++ = (cc<<28) | 0x12FFF10 | Rn;
}
#if 0
#pragma mark -
#pragma mark Data Transfer...
#endif
// data transfert...
void ARMAssembler::LDR(int cc, int Rd, int Rn, uint32_t offset) {
*mPC++ = (cc<<28) | (1<<26) | (1<<20) | (Rn<<16) | (Rd<<12) | offset;
}
void ARMAssembler::LDRB(int cc, int Rd, int Rn, uint32_t offset) {
*mPC++ = (cc<<28) | (1<<26) | (1<<22) | (1<<20) | (Rn<<16) | (Rd<<12) | offset;
}
void ARMAssembler::STR(int cc, int Rd, int Rn, uint32_t offset) {
*mPC++ = (cc<<28) | (1<<26) | (Rn<<16) | (Rd<<12) | offset;
}
void ARMAssembler::STRB(int cc, int Rd, int Rn, uint32_t offset) {
*mPC++ = (cc<<28) | (1<<26) | (1<<22) | (Rn<<16) | (Rd<<12) | offset;
}
void ARMAssembler::LDRH(int cc, int Rd, int Rn, uint32_t offset) {
*mPC++ = (cc<<28) | (1<<20) | (Rn<<16) | (Rd<<12) | 0xB0 | offset;
}
void ARMAssembler::LDRSB(int cc, int Rd, int Rn, uint32_t offset) {
*mPC++ = (cc<<28) | (1<<20) | (Rn<<16) | (Rd<<12) | 0xD0 | offset;
}
void ARMAssembler::LDRSH(int cc, int Rd, int Rn, uint32_t offset) {
*mPC++ = (cc<<28) | (1<<20) | (Rn<<16) | (Rd<<12) | 0xF0 | offset;
}
void ARMAssembler::STRH(int cc, int Rd, int Rn, uint32_t offset) {
*mPC++ = (cc<<28) | (Rn<<16) | (Rd<<12) | 0xB0 | offset;
}
#if 0
#pragma mark -
#pragma mark Block Data Transfer...
#endif
// block data transfer...
void ARMAssembler::LDM(int cc, int dir,
int Rn, int W, uint32_t reg_list)
{ // ED FD EA FA IB IA DB DA
const uint8_t P[8] = { 1, 0, 1, 0, 1, 0, 1, 0 };
const uint8_t U[8] = { 1, 1, 0, 0, 1, 1, 0, 0 };
*mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) |
(uint32_t(U[dir])<<23) | (1<<20) | (W<<21) | (Rn<<16) | reg_list;
}
void ARMAssembler::STM(int cc, int dir,
int Rn, int W, uint32_t reg_list)
{ // ED FD EA FA IB IA DB DA
const uint8_t P[8] = { 0, 1, 0, 1, 1, 0, 1, 0 };
const uint8_t U[8] = { 0, 0, 1, 1, 1, 1, 0, 0 };
*mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) |
(uint32_t(U[dir])<<23) | (0<<20) | (W<<21) | (Rn<<16) | reg_list;
}
#if 0
#pragma mark -
#pragma mark Special...
#endif
// special...
void ARMAssembler::SWP(int cc, int Rn, int Rd, int Rm) {
*mPC++ = (cc<<28) | (2<<23) | (Rn<<16) | (Rd << 12) | 0x90 | Rm;
}
void ARMAssembler::SWPB(int cc, int Rn, int Rd, int Rm) {
*mPC++ = (cc<<28) | (2<<23) | (1<<22) | (Rn<<16) | (Rd << 12) | 0x90 | Rm;
}
void ARMAssembler::SWI(int cc, uint32_t comment) {
*mPC++ = (cc<<28) | (0xF<<24) | comment;
}
#if 0
#pragma mark -
#pragma mark DSP instructions...
#endif
// DSP instructions...
void ARMAssembler::PLD(int Rn, uint32_t offset) {
LOG_ALWAYS_FATAL_IF(!((offset&(1<<24)) && !(offset&(1<<21))),
"PLD only P=1, W=0");
*mPC++ = 0xF550F000 | (Rn<<16) | offset;
}
void ARMAssembler::CLZ(int cc, int Rd, int Rm)
{
*mPC++ = (cc<<28) | 0x16F0F10| (Rd<<12) | Rm;
}
void ARMAssembler::QADD(int cc, int Rd, int Rm, int Rn)
{
*mPC++ = (cc<<28) | 0x1000050 | (Rn<<16) | (Rd<<12) | Rm;
}
void ARMAssembler::QDADD(int cc, int Rd, int Rm, int Rn)
{
*mPC++ = (cc<<28) | 0x1400050 | (Rn<<16) | (Rd<<12) | Rm;
}
void ARMAssembler::QSUB(int cc, int Rd, int Rm, int Rn)
{
*mPC++ = (cc<<28) | 0x1200050 | (Rn<<16) | (Rd<<12) | Rm;
}
void ARMAssembler::QDSUB(int cc, int Rd, int Rm, int Rn)
{
*mPC++ = (cc<<28) | 0x1600050 | (Rn<<16) | (Rd<<12) | Rm;
}
void ARMAssembler::SMUL(int cc, int xy,
int Rd, int Rm, int Rs)
{
*mPC++ = (cc<<28) | 0x1600080 | (Rd<<16) | (Rs<<8) | (xy<<4) | Rm;
}
void ARMAssembler::SMULW(int cc, int y,
int Rd, int Rm, int Rs)
{
*mPC++ = (cc<<28) | 0x12000A0 | (Rd<<16) | (Rs<<8) | (y<<4) | Rm;
}
void ARMAssembler::SMLA(int cc, int xy,
int Rd, int Rm, int Rs, int Rn)
{
*mPC++ = (cc<<28) | 0x1000080 | (Rd<<16) | (Rn<<12) | (Rs<<8) | (xy<<4) | Rm;
}
void ARMAssembler::SMLAL(int cc, int xy,
int RdHi, int RdLo, int Rs, int Rm)
{
*mPC++ = (cc<<28) | 0x1400080 | (RdHi<<16) | (RdLo<<12) | (Rs<<8) | (xy<<4) | Rm;
}
void ARMAssembler::SMLAW(int cc, int y,
int Rd, int Rm, int Rs, int Rn)
{
*mPC++ = (cc<<28) | 0x1200080 | (Rd<<16) | (Rn<<12) | (Rs<<8) | (y<<4) | Rm;
}
#if 0
#pragma mark -
#pragma mark Byte/half word extract and extend (ARMv6+ only)...
#endif
void ARMAssembler::UXTB16(int cc, int Rd, int Rm, int rotate)
{
*mPC++ = (cc<<28) | 0x6CF0070 | (Rd<<12) | ((rotate >> 3) << 10) | Rm;
}
#if 0
#pragma mark -
#pragma mark Bit manipulation (ARMv7+ only)...
#endif
// Bit manipulation (ARMv7+ only)...
void ARMAssembler::UBFX(int cc, int Rd, int Rn, int lsb, int width)
{
*mPC++ = (cc<<28) | 0x7E00000 | ((width-1)<<16) | (Rd<<12) | (lsb<<7) | 0x50 | Rn;
}
#if 0
#pragma mark -
#pragma mark Addressing modes...
#endif
int ARMAssembler::buildImmediate(
uint32_t immediate, uint32_t& rot, uint32_t& imm)
{
rot = 0;
imm = immediate;
if (imm > 0x7F) { // skip the easy cases
while (!(imm&3) || (imm&0xFC000000)) {
uint32_t newval;
newval = imm >> 2;
newval |= (imm&3) << 30;
imm = newval;
rot += 2;
if (rot == 32) {
rot = 0;
break;
}
}
}
rot = (16 - (rot>>1)) & 0xF;
if (imm>=0x100)
return -EINVAL;
if (((imm>>(rot<<1)) | (imm<<(32-(rot<<1)))) != immediate)
return -1;
return 0;
}
// shifters...
bool ARMAssembler::isValidImmediate(uint32_t immediate)
{
uint32_t rot, imm;
return buildImmediate(immediate, rot, imm) == 0;
}
uint32_t ARMAssembler::imm(uint32_t immediate)
{
uint32_t rot, imm;
int err = buildImmediate(immediate, rot, imm);
LOG_ALWAYS_FATAL_IF(err==-EINVAL,
"immediate %08x cannot be encoded",
immediate);
LOG_ALWAYS_FATAL_IF(err,
"immediate (%08x) encoding bogus!",
immediate);
return (1<<25) | (rot<<8) | imm;
}
uint32_t ARMAssembler::reg_imm(int Rm, int type, uint32_t shift)
{
return ((shift&0x1F)<<7) | ((type&0x3)<<5) | (Rm&0xF);
}
uint32_t ARMAssembler::reg_rrx(int Rm)
{
return (ROR<<5) | (Rm&0xF);
}
uint32_t ARMAssembler::reg_reg(int Rm, int type, int Rs)
{
return ((Rs&0xF)<<8) | ((type&0x3)<<5) | (1<<4) | (Rm&0xF);
}
// addressing modes...
// LDR(B)/STR(B)/PLD (immediate and Rm can be negative, which indicate U=0)
uint32_t ARMAssembler::immed12_pre(int32_t immed12, int W)
{
LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800,
"LDR(B)/STR(B)/PLD immediate too big (%08x)",
immed12);
return (1<<24) | (((uint32_t(immed12)>>31)^1)<<23) |
((W&1)<<21) | (abs(immed12)&0x7FF);
}
uint32_t ARMAssembler::immed12_post(int32_t immed12)
{
LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800,
"LDR(B)/STR(B)/PLD immediate too big (%08x)",
immed12);
return (((uint32_t(immed12)>>31)^1)<<23) | (abs(immed12)&0x7FF);
}
uint32_t ARMAssembler::reg_scale_pre(int Rm, int type,
uint32_t shift, int W)
{
return (1<<25) | (1<<24) |
(((uint32_t(Rm)>>31)^1)<<23) | ((W&1)<<21) |
reg_imm(abs(Rm), type, shift);
}
uint32_t ARMAssembler::reg_scale_post(int Rm, int type, uint32_t shift)
{
return (1<<25) | (((uint32_t(Rm)>>31)^1)<<23) | reg_imm(abs(Rm), type, shift);
}
// LDRH/LDRSB/LDRSH/STRH (immediate and Rm can be negative, which indicate U=0)
uint32_t ARMAssembler::immed8_pre(int32_t immed8, int W)
{
uint32_t offset = abs(immed8);
LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100,
"LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)",
immed8);
return (1<<24) | (1<<22) | (((uint32_t(immed8)>>31)^1)<<23) |
((W&1)<<21) | (((offset&0xF0)<<4)|(offset&0xF));
}
uint32_t ARMAssembler::immed8_post(int32_t immed8)
{
uint32_t offset = abs(immed8);
LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100,
"LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)",
immed8);
return (1<<22) | (((uint32_t(immed8)>>31)^1)<<23) |
(((offset&0xF0)<<4) | (offset&0xF));
}
uint32_t ARMAssembler::reg_pre(int Rm, int W)
{
return (1<<24) | (((uint32_t(Rm)>>31)^1)<<23) | ((W&1)<<21) | (abs(Rm)&0xF);
}
uint32_t ARMAssembler::reg_post(int Rm)
{
return (((uint32_t(Rm)>>31)^1)<<23) | (abs(Rm)&0xF);
}
}; // namespace android