C++程序  |  183行  |  7.3 KB

/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ANDROID_BASE_MACROS_H
#define ANDROID_BASE_MACROS_H

#include <stddef.h>  // for size_t
#include <unistd.h>  // for TEMP_FAILURE_RETRY

// bionic and glibc both have TEMP_FAILURE_RETRY, but eg Mac OS' libc doesn't.
#ifndef TEMP_FAILURE_RETRY
#define TEMP_FAILURE_RETRY(exp)            \
  ({                                       \
    decltype(exp) _rc;                     \
    do {                                   \
      _rc = (exp);                         \
    } while (_rc == -1 && errno == EINTR); \
    _rc;                                   \
  })
#endif

// A macro to disallow the copy constructor and operator= functions
// This must be placed in the private: declarations for a class.
//
// For disallowing only assign or copy, delete the relevant operator or
// constructor, for example:
// void operator=(const TypeName&) = delete;
// Note, that most uses of DISALLOW_ASSIGN and DISALLOW_COPY are broken
// semantically, one should either use disallow both or neither. Try to
// avoid these in new code.
#define DISALLOW_COPY_AND_ASSIGN(TypeName) \
  TypeName(const TypeName&) = delete;      \
  void operator=(const TypeName&) = delete

// A macro to disallow all the implicit constructors, namely the
// default constructor, copy constructor and operator= functions.
//
// This should be used in the private: declarations for a class
// that wants to prevent anyone from instantiating it. This is
// especially useful for classes containing only static methods.
#define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
  TypeName() = delete;                           \
  DISALLOW_COPY_AND_ASSIGN(TypeName)

// The arraysize(arr) macro returns the # of elements in an array arr.
// The expression is a compile-time constant, and therefore can be
// used in defining new arrays, for example.  If you use arraysize on
// a pointer by mistake, you will get a compile-time error.
//
// One caveat is that arraysize() doesn't accept any array of an
// anonymous type or a type defined inside a function.  In these rare
// cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below.  This is
// due to a limitation in C++'s template system.  The limitation might
// eventually be removed, but it hasn't happened yet.

// This template function declaration is used in defining arraysize.
// Note that the function doesn't need an implementation, as we only
// use its type.
template <typename T, size_t N>
char(&ArraySizeHelper(T(&array)[N]))[N];  // NOLINT(readability/casting)

#define arraysize(array) (sizeof(ArraySizeHelper(array)))

// ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize,
// but can be used on anonymous types or types defined inside
// functions.  It's less safe than arraysize as it accepts some
// (although not all) pointers.  Therefore, you should use arraysize
// whenever possible.
//
// The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type
// size_t.
//
// ARRAYSIZE_UNSAFE catches a few type errors.  If you see a compiler error
//
//   "warning: division by zero in ..."
//
// when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer.
// You should only use ARRAYSIZE_UNSAFE on statically allocated arrays.
//
// The following comments are on the implementation details, and can
// be ignored by the users.
//
// ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in
// the array) and sizeof(*(arr)) (the # of bytes in one array
// element).  If the former is divisible by the latter, perhaps arr is
// indeed an array, in which case the division result is the # of
// elements in the array.  Otherwise, arr cannot possibly be an array,
// and we generate a compiler error to prevent the code from
// compiling.
//
// Since the size of bool is implementation-defined, we need to cast
// !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
// result has type size_t.
//
// This macro is not perfect as it wrongfully accepts certain
// pointers, namely where the pointer size is divisible by the pointee
// size.  Since all our code has to go through a 32-bit compiler,
// where a pointer is 4 bytes, this means all pointers to a type whose
// size is 3 or greater than 4 will be (righteously) rejected.
#define ARRAYSIZE_UNSAFE(a)     \
  ((sizeof(a) / sizeof(*(a))) / \
    static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))

// Changing this definition will cause you a lot of pain.  A majority of
// vendor code defines LIKELY and UNLIKELY this way, and includes
// this header through an indirect path.
#define LIKELY( exp )       (__builtin_expect( (exp) != 0, true  ))
#define UNLIKELY( exp )     (__builtin_expect( (exp) != 0, false ))

#define WARN_UNUSED __attribute__((warn_unused_result))

// A deprecated function to call to create a false use of the parameter, for
// example:
//   int foo(int x) { UNUSED(x); return 10; }
// to avoid compiler warnings. Going forward we prefer ATTRIBUTE_UNUSED.
template <typename... T>
void UNUSED(const T&...) {
}

// An attribute to place on a parameter to a function, for example:
//   int foo(int x ATTRIBUTE_UNUSED) { return 10; }
// to avoid compiler warnings.
#define ATTRIBUTE_UNUSED __attribute__((__unused__))

// The FALLTHROUGH_INTENDED macro can be used to annotate implicit fall-through
// between switch labels:
//  switch (x) {
//    case 40:
//    case 41:
//      if (truth_is_out_there) {
//        ++x;
//        FALLTHROUGH_INTENDED;  // Use instead of/along with annotations in
//                               // comments.
//      } else {
//        return x;
//      }
//    case 42:
//      ...
//
//  As shown in the example above, the FALLTHROUGH_INTENDED macro should be
//  followed by a semicolon. It is designed to mimic control-flow statements
//  like 'break;', so it can be placed in most places where 'break;' can, but
//  only if there are no statements on the execution path between it and the
//  next switch label.
//
//  When compiled with clang, the FALLTHROUGH_INTENDED macro is expanded to
//  [[clang::fallthrough]] attribute, which is analysed when performing switch
//  labels fall-through diagnostic ('-Wimplicit-fallthrough'). See clang
//  documentation on language extensions for details:
//  http://clang.llvm.org/docs/LanguageExtensions.html#clang__fallthrough
//
//  When used with unsupported compilers, the FALLTHROUGH_INTENDED macro has no
//  effect on diagnostics.
//
//  In either case this macro has no effect on runtime behavior and performance
//  of code.
#if defined(__clang__) && defined(__has_warning)
#if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
#define FALLTHROUGH_INTENDED [[clang::fallthrough]]  // NOLINT
#endif
#endif

#ifndef FALLTHROUGH_INTENDED
#define FALLTHROUGH_INTENDED \
  do {                       \
  } while (0)
#endif

#endif  // ANDROID_BASE_MACROS_H