/*
* Copyright (C) 2008 The Android Open Source Project
* Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
* Not a Contribution, Apache license notifications and license are retained
* for attribution purposes only.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <math.h>
#include "overlayUtils.h"
#include "overlayRotator.h"
#define DEBUG_MDSS_ROT 0
#ifdef VENUS_COLOR_FORMAT
#include <media/msm_media_info.h>
#else
#define VENUS_BUFFER_SIZE(args...) 0
#endif
#ifndef MDSS_MDP_ROT_ONLY
#define MDSS_MDP_ROT_ONLY 0x80
#endif
#define MDSS_ROT_MASK (MDP_ROT_90 | MDP_FLIP_UD | MDP_FLIP_LR)
namespace ovutils = overlay::utils;
namespace overlay {
using namespace utils;
MdssRot::MdssRot() {
reset();
init();
}
MdssRot::~MdssRot() { close(); }
bool MdssRot::enabled() const { return mEnabled; }
void MdssRot::setRotations(uint32_t flags) { mRotInfo.flags |= flags; }
int MdssRot::getSrcMemId() const {
return mRotData.data.memory_id;
}
int MdssRot::getDstMemId() const {
return mRotData.dst_data.memory_id;
}
uint32_t MdssRot::getSrcOffset() const {
return mRotData.data.offset;
}
uint32_t MdssRot::getDstOffset() const {
return mRotData.dst_data.offset;
}
uint32_t MdssRot::getDstFormat() const {
//For mdss src and dst formats are same
return mRotInfo.src.format;
}
utils::Whf MdssRot::getDstWhf() const {
//For Mdss dst_rect itself represents buffer dimensions. We ignore actual
//aligned values during buffer allocation. Also the driver overwrites the
//src.format field if destination format is different.
//This implementation detail makes it possible to retrieve w,h even before
//buffer allocation, which happens in queueBuffer.
return utils::Whf(mRotInfo.dst_rect.w, mRotInfo.dst_rect.h,
mRotInfo.src.format);
}
utils::Dim MdssRot::getDstDimensions() const {
return utils::Dim(mRotInfo.dst_rect.x, mRotInfo.dst_rect.y,
mRotInfo.dst_rect.w, mRotInfo.dst_rect.h);
}
uint32_t MdssRot::getSessId() const { return mRotInfo.id; }
void MdssRot::save() {
mLSRotInfo = mRotInfo;
}
bool MdssRot::rotConfChanged() const {
// 0 means same
if(0 == ::memcmp(&mRotInfo, &mLSRotInfo,
sizeof (mdp_overlay))) {
return false;
}
return true;
}
bool MdssRot::init() {
if(!utils::openDev(mFd, 0, Res::fbPath, O_RDWR)) {
ALOGE("MdssRot failed to init fb0");
return false;
}
return true;
}
void MdssRot::setSource(const overlay::utils::Whf& awhf) {
utils::Whf whf(awhf);
mRotInfo.src.format = whf.format;
mRotInfo.src.width = whf.w;
mRotInfo.src.height = whf.h;
}
void MdssRot::setCrop(const utils::Dim& crop) {
mRotInfo.src_rect.x = crop.x;
mRotInfo.src_rect.y = crop.y;
mRotInfo.src_rect.w = crop.w;
mRotInfo.src_rect.h = crop.h;
}
void MdssRot::setDownscale(int downscale) {
mDownscale = downscale;
}
void MdssRot::setFlags(const utils::eMdpFlags& flags) {
mRotInfo.flags = flags;
}
void MdssRot::setTransform(const utils::eTransform& rot)
{
// reset rotation flags to avoid stale orientation values
mRotInfo.flags &= ~MDSS_ROT_MASK;
int flags = utils::getMdpOrient(rot);
if (flags != -1)
setRotations(flags);
mOrientation = static_cast<utils::eTransform>(flags);
ALOGE_IF(DEBUG_OVERLAY, "%s: rot=%d", __FUNCTION__, flags);
}
void MdssRot::doTransform() {
mRotInfo.flags |= mOrientation;
if(mOrientation & utils::OVERLAY_TRANSFORM_ROT_90)
utils::swap(mRotInfo.dst_rect.w, mRotInfo.dst_rect.h);
}
bool MdssRot::commit() {
Dim adjCrop(mRotInfo.src_rect.x,mRotInfo.src_rect.y,
mRotInfo.src_rect.w,mRotInfo.src_rect.h);
adjCrop = getFormatAdjustedCrop(adjCrop, mRotInfo.src.format,
mRotInfo.flags & utils::OV_MDP_DEINTERLACE);
adjCrop = getDownscaleAdjustedCrop(adjCrop, mDownscale);
mRotInfo.src_rect.x = adjCrop.x;
mRotInfo.src_rect.y = adjCrop.y;
mRotInfo.src_rect.w = adjCrop.w;
mRotInfo.src_rect.h = adjCrop.h;
mRotInfo.dst_rect.x = 0;
mRotInfo.dst_rect.y = 0;
mRotInfo.dst_rect.w = mDownscale ?
mRotInfo.src_rect.w / mDownscale : mRotInfo.src_rect.w;
mRotInfo.dst_rect.h = mDownscale ?
mRotInfo.src_rect.h / mDownscale : mRotInfo.src_rect.h;
//Clear for next round
mDownscale = 0;
doTransform();
mRotInfo.flags |= MDSS_MDP_ROT_ONLY;
mEnabled = true;
if(!overlay::mdp_wrapper::setOverlay(mFd.getFD(), mRotInfo)) {
ALOGE("MdssRot commit failed!");
dump();
return (mEnabled = false);
}
mRotData.id = mRotInfo.id;
return true;
}
bool MdssRot::queueBuffer(int fd, uint32_t offset) {
if(enabled() and (not isRotCached(fd,offset))) {
int prev_fd = getSrcMemId();
uint32_t prev_offset = getSrcOffset();
mRotData.data.memory_id = fd;
mRotData.data.offset = offset;
if(false == remap(RotMem::ROT_NUM_BUFS)) {
ALOGE("%s Remap failed, not queuing", __FUNCTION__);
return false;
}
mRotData.dst_data.offset =
mMem.mRotOffset[mMem.mCurrIndex];
if(!overlay::mdp_wrapper::play(mFd.getFD(), mRotData)) {
ALOGE("MdssRot play failed!");
dump();
mRotData.data.memory_id = prev_fd;
mRotData.data.offset = prev_offset;
return false;
}
save();
mMem.mCurrIndex =
(mMem.mCurrIndex + 1) % mMem.mem.numBufs();
}
return true;
}
bool MdssRot::open_i(uint32_t numbufs, uint32_t bufsz)
{
OvMem mem;
OVASSERT(MAP_FAILED == mem.addr(), "MAP failed in open_i");
bool isSecure = mRotInfo.flags & utils::OV_MDP_SECURE_OVERLAY_SESSION;
if(!mem.open(numbufs, bufsz, isSecure)){
ALOGE("%s: Failed to open", __func__);
mem.close();
return false;
}
OVASSERT(MAP_FAILED != mem.addr(), "MAP failed");
OVASSERT(mem.getFD() != -1, "getFd is -1");
mRotData.dst_data.memory_id = mem.getFD();
mRotData.dst_data.offset = 0;
mMem.mem = mem;
return true;
}
bool MdssRot::remap(uint32_t numbufs) {
// Calculate the size based on rotator's dst format, w and h.
uint32_t opBufSize = calcOutputBufSize();
// If current size changed, remap
if(opBufSize == mMem.size()) {
ALOGE_IF(DEBUG_OVERLAY, "%s: same size %d", __FUNCTION__, opBufSize);
return true;
}
ALOGE_IF(DEBUG_OVERLAY, "%s: size changed - remapping", __FUNCTION__);
if(!mMem.close()) {
ALOGE("%s error in closing prev rot mem", __FUNCTION__);
return false;
}
if(!open_i(numbufs, opBufSize)) {
ALOGE("%s Error could not open", __FUNCTION__);
return false;
}
for (uint32_t i = 0; i < numbufs; ++i) {
mMem.mRotOffset[i] = i * opBufSize;
}
return true;
}
bool MdssRot::close() {
bool success = true;
if(mFd.valid() && (getSessId() != (uint32_t) MSMFB_NEW_REQUEST)) {
if(!mdp_wrapper::unsetOverlay(mFd.getFD(), getSessId())) {
ALOGE("MdssRot::close unsetOverlay failed, fd=%d sessId=%d",
mFd.getFD(), getSessId());
success = false;
}
}
if (!mFd.close()) {
ALOGE("Mdss Rot error closing fd");
success = false;
}
if (!mMem.close()) {
ALOGE("Mdss Rot error closing mem");
success = false;
}
reset();
return success;
}
void MdssRot::reset() {
ovutils::memset0(mRotInfo);
ovutils::memset0(mLSRotInfo);
ovutils::memset0(mRotData);
mRotData.data.memory_id = -1;
mRotInfo.id = MSMFB_NEW_REQUEST;
ovutils::memset0(mMem.mRotOffset);
mMem.mCurrIndex = 0;
mOrientation = utils::OVERLAY_TRANSFORM_0;
mDownscale = 0;
}
void MdssRot::dump() const {
ALOGE("== Dump MdssRot start ==");
mFd.dump();
mMem.mem.dump();
mdp_wrapper::dump("mRotInfo", mRotInfo);
mdp_wrapper::dump("mRotData", mRotData);
ALOGE("== Dump MdssRot end ==");
}
uint32_t MdssRot::calcOutputBufSize() {
uint32_t opBufSize = 0;
ovutils::Whf destWhf(mRotInfo.dst_rect.w, mRotInfo.dst_rect.h,
mRotInfo.src.format); //mdss src and dst formats are same.
if (mRotInfo.flags & ovutils::OV_MDSS_MDP_BWC_EN) {
opBufSize = calcCompressedBufSize(destWhf);
} else {
opBufSize = Rotator::calcOutputBufSize(destWhf);
}
return opBufSize;
}
void MdssRot::getDump(char *buf, size_t len) const {
ovutils::getDump(buf, len, "MdssRotCtrl", mRotInfo);
ovutils::getDump(buf, len, "MdssRotData", mRotData);
}
// Calculate the compressed o/p buffer size for BWC
uint32_t MdssRot::calcCompressedBufSize(const ovutils::Whf& destWhf) {
uint32_t bufSize = 0;
//Worst case alignments
int aWidth = ovutils::align(destWhf.w, 64);
int aHeight = ovutils::align(destWhf.h, 4);
/*
Format | RAU size (width x height)
----------------------------------------------
ARGB | 32 pixel x 4 line
RGB888 | 32 pixel x 4 line
Y (Luma) | 64 pixel x 4 line
CRCB 420 | 32 pixel x 2 line
CRCB 422 H2V1 | 32 pixel x 4 line
CRCB 422 H1V2 | 64 pixel x 2 line
Metadata requirements:-
1 byte meta data for every 8 RAUs
2 byte meta data per RAU
*/
//These blocks attempt to allocate for the worst case in each of the
//respective format classes, yuv/rgb. The table above is for reference
if(utils::isYuv(destWhf.format)) {
int yRauCount = aWidth / 64; //Y
int cRauCount = aWidth / 32; //C
int yStride = (64 * 4 * yRauCount) + alignup(yRauCount, 8) / 8;
int cStride = ((32 * 2 * cRauCount) + alignup(cRauCount, 8) / 8) * 2;
int yStrideOffset = (aHeight / 4);
int cStrideOffset = (aHeight / 2);
bufSize = (yStride * yStrideOffset + cStride * cStrideOffset) +
(yRauCount * yStrideOffset * 2) +
(cRauCount * cStrideOffset * 2) * 2;
ALOGD_IF(DEBUG_MDSS_ROT, "%s:YUV Y RAU Count = %d C RAU Count = %d",
__FUNCTION__, yRauCount, cRauCount);
} else {
int rauCount = aWidth / 32;
//Single plane
int stride = (32 * 4 * rauCount) + alignup(rauCount, 8) / 8;
int strideOffset = (aHeight / 4);
bufSize = (stride * strideOffset * 4 /*bpp*/) +
(rauCount * strideOffset * 2);
ALOGD_IF(DEBUG_MDSS_ROT, "%s:RGB RAU count = %d", __FUNCTION__,
rauCount);
}
ALOGD_IF(DEBUG_MDSS_ROT, "%s: aligned width = %d, aligned height = %d "
"Buf Size = %d", __FUNCTION__, aWidth, aHeight, bufSize);
return bufSize;
}
int MdssRot::getDownscaleFactor(const int& srcW, const int& srcH,
const int& dstW, const int& dstH, const uint32_t& mdpFormat,
const bool& isInterlaced) {
if(not srcW or not srcH or not dstW or not dstH or isInterlaced) return 0;
Dim crop(0, 0, srcW, srcH);
Dim adjCrop = getFormatAdjustedCrop(crop, mdpFormat,
false /*isInterlaced */);
uint32_t downscale = min((adjCrop.w / dstW), (adjCrop.h / dstH));
//Reduced to a power of 2
downscale = (uint32_t) powf(2.0f, floorf(log2f((float)downscale)));
if(downscale < 2 or downscale > 32) return 0;
//Allow only 1 line or pixel to be chopped off since the source needs to
//be aligned to downscale. Progressively try with smaller downscale to see
//if we can satisfy the threshold
//For YUV the loop shouldnt be needed, unless in exceptional cases
Dim dsAdjCrop = getDownscaleAdjustedCrop(adjCrop, downscale);
while(downscale > 2 and (adjCrop.w > dsAdjCrop.w or
adjCrop.h > dsAdjCrop.h)) {
downscale /= 2;
dsAdjCrop = getDownscaleAdjustedCrop(adjCrop, downscale);
}
if(not dsAdjCrop.w or not dsAdjCrop.h) return 0;
return downscale;
}
Dim MdssRot::getFormatAdjustedCrop(const Dim& crop,
const uint32_t& mdpFormat, const bool& isInterlaced) {
Dim adjCrop = crop;
if (isYuv(mdpFormat)) {
normalizeCrop(adjCrop.x, adjCrop.w);
normalizeCrop(adjCrop.y, adjCrop.h);
// For interlaced, crop.h should be 4-aligned
if (isInterlaced and (adjCrop.h % 4))
adjCrop.h = aligndown(adjCrop.h, 4);
}
return adjCrop;
}
Dim MdssRot::getDownscaleAdjustedCrop(const Dim& crop,
const uint32_t& downscale) {
uint32_t alignedSrcW = aligndown(crop.w, downscale * 2);
uint32_t alignedSrcH = aligndown(crop.h, downscale * 2);
return Dim(crop.x, crop.y, alignedSrcW, alignedSrcH);
}
} // namespace overlay