/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "DummyConsumer.h"
#include <gtest/gtest.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <binder/ProcessState.h>
#include <configstore/Utils.h>
#include <cutils/properties.h>
#include <gui/BufferItemConsumer.h>
#include <gui/IDisplayEventConnection.h>
#include <gui/IProducerListener.h>
#include <gui/ISurfaceComposer.h>
#include <gui/Surface.h>
#include <gui/SurfaceComposerClient.h>
#include <private/gui/ComposerService.h>
#include <ui/Rect.h>
#include <utils/String8.h>
#include <limits>
#include <thread>
namespace android {
using namespace std::chrono_literals;
// retrieve wide-color and hdr settings from configstore
using namespace android::hardware::configstore;
using namespace android::hardware::configstore::V1_0;
static bool hasWideColorDisplay =
getBool<ISurfaceFlingerConfigs, &ISurfaceFlingerConfigs::hasWideColorDisplay>(false);
class FakeSurfaceComposer;
class FakeProducerFrameEventHistory;
static constexpr uint64_t NO_FRAME_INDEX = std::numeric_limits<uint64_t>::max();
class SurfaceTest : public ::testing::Test {
protected:
SurfaceTest() {
ProcessState::self()->startThreadPool();
}
virtual void SetUp() {
mComposerClient = new SurfaceComposerClient;
ASSERT_EQ(NO_ERROR, mComposerClient->initCheck());
// TODO(brianderson): The following sometimes fails and is a source of
// test flakiness.
mSurfaceControl = mComposerClient->createSurface(
String8("Test Surface"), 32, 32, PIXEL_FORMAT_RGBA_8888, 0);
ASSERT_TRUE(mSurfaceControl != NULL);
ASSERT_TRUE(mSurfaceControl->isValid());
SurfaceComposerClient::openGlobalTransaction();
ASSERT_EQ(NO_ERROR, mSurfaceControl->setLayer(0x7fffffff));
ASSERT_EQ(NO_ERROR, mSurfaceControl->show());
SurfaceComposerClient::closeGlobalTransaction();
mSurface = mSurfaceControl->getSurface();
ASSERT_TRUE(mSurface != NULL);
}
virtual void TearDown() {
mComposerClient->dispose();
}
sp<Surface> mSurface;
sp<SurfaceComposerClient> mComposerClient;
sp<SurfaceControl> mSurfaceControl;
};
TEST_F(SurfaceTest, QueuesToWindowComposerIsTrueWhenVisible) {
sp<ANativeWindow> anw(mSurface);
int result = -123;
int err = anw->query(anw.get(), NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER,
&result);
EXPECT_EQ(NO_ERROR, err);
EXPECT_EQ(1, result);
}
TEST_F(SurfaceTest, QueuesToWindowComposerIsTrueWhenPurgatorized) {
mSurfaceControl.clear();
// Wait for the async clean-up to complete.
std::this_thread::sleep_for(50ms);
sp<ANativeWindow> anw(mSurface);
int result = -123;
int err = anw->query(anw.get(), NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER,
&result);
EXPECT_EQ(NO_ERROR, err);
EXPECT_EQ(1, result);
}
// This test probably doesn't belong here.
TEST_F(SurfaceTest, ScreenshotsOfProtectedBuffersSucceed) {
sp<ANativeWindow> anw(mSurface);
// Verify the screenshot works with no protected buffers.
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
sp<CpuConsumer> cpuConsumer = new CpuConsumer(consumer, 1);
sp<ISurfaceComposer> sf(ComposerService::getComposerService());
sp<IBinder> display(sf->getBuiltInDisplay(
ISurfaceComposer::eDisplayIdMain));
ASSERT_EQ(NO_ERROR, sf->captureScreen(display, producer, Rect(),
64, 64, 0, 0x7fffffff, false));
ASSERT_EQ(NO_ERROR, native_window_api_connect(anw.get(),
NATIVE_WINDOW_API_CPU));
// Set the PROTECTED usage bit and verify that the screenshot fails. Note
// that we need to dequeue a buffer in order for it to actually get
// allocated in SurfaceFlinger.
ASSERT_EQ(NO_ERROR, native_window_set_usage(anw.get(),
GRALLOC_USAGE_PROTECTED));
ASSERT_EQ(NO_ERROR, native_window_set_buffer_count(anw.get(), 3));
ANativeWindowBuffer* buf = 0;
status_t err = native_window_dequeue_buffer_and_wait(anw.get(), &buf);
if (err) {
// we could fail if GRALLOC_USAGE_PROTECTED is not supported.
// that's okay as long as this is the reason for the failure.
// try again without the GRALLOC_USAGE_PROTECTED bit.
ASSERT_EQ(NO_ERROR, native_window_set_usage(anw.get(), 0));
ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(anw.get(),
&buf));
return;
}
ASSERT_EQ(NO_ERROR, anw->cancelBuffer(anw.get(), buf, -1));
for (int i = 0; i < 4; i++) {
// Loop to make sure SurfaceFlinger has retired a protected buffer.
ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(anw.get(),
&buf));
ASSERT_EQ(NO_ERROR, anw->queueBuffer(anw.get(), buf, -1));
}
ASSERT_EQ(NO_ERROR, sf->captureScreen(display, producer, Rect(),
64, 64, 0, 0x7fffffff, false));
}
TEST_F(SurfaceTest, ConcreteTypeIsSurface) {
sp<ANativeWindow> anw(mSurface);
int result = -123;
int err = anw->query(anw.get(), NATIVE_WINDOW_CONCRETE_TYPE, &result);
EXPECT_EQ(NO_ERROR, err);
EXPECT_EQ(NATIVE_WINDOW_SURFACE, result);
}
TEST_F(SurfaceTest, LayerCountIsOne) {
sp<ANativeWindow> anw(mSurface);
int result = -123;
int err = anw->query(anw.get(), NATIVE_WINDOW_LAYER_COUNT, &result);
EXPECT_EQ(NO_ERROR, err);
EXPECT_EQ(1, result);
}
TEST_F(SurfaceTest, QueryConsumerUsage) {
const int TEST_USAGE_FLAGS =
GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER;
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
sp<BufferItemConsumer> c = new BufferItemConsumer(consumer,
TEST_USAGE_FLAGS);
sp<Surface> s = new Surface(producer);
sp<ANativeWindow> anw(s);
int flags = -1;
int err = anw->query(anw.get(), NATIVE_WINDOW_CONSUMER_USAGE_BITS, &flags);
ASSERT_EQ(NO_ERROR, err);
ASSERT_EQ(TEST_USAGE_FLAGS, flags);
}
TEST_F(SurfaceTest, QueryDefaultBuffersDataSpace) {
const android_dataspace TEST_DATASPACE = HAL_DATASPACE_SRGB;
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
sp<CpuConsumer> cpuConsumer = new CpuConsumer(consumer, 1);
cpuConsumer->setDefaultBufferDataSpace(TEST_DATASPACE);
sp<Surface> s = new Surface(producer);
sp<ANativeWindow> anw(s);
android_dataspace dataSpace;
int err = anw->query(anw.get(), NATIVE_WINDOW_DEFAULT_DATASPACE,
reinterpret_cast<int*>(&dataSpace));
ASSERT_EQ(NO_ERROR, err);
ASSERT_EQ(TEST_DATASPACE, dataSpace);
}
TEST_F(SurfaceTest, SettingGenerationNumber) {
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
sp<CpuConsumer> cpuConsumer = new CpuConsumer(consumer, 1);
sp<Surface> surface = new Surface(producer);
sp<ANativeWindow> window(surface);
// Allocate a buffer with a generation number of 0
ANativeWindowBuffer* buffer;
int fenceFd;
ASSERT_EQ(NO_ERROR, native_window_api_connect(window.get(),
NATIVE_WINDOW_API_CPU));
ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fenceFd));
ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffer, fenceFd));
// Detach the buffer and check its generation number
sp<GraphicBuffer> graphicBuffer;
sp<Fence> fence;
ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&graphicBuffer, &fence));
ASSERT_EQ(0U, graphicBuffer->getGenerationNumber());
ASSERT_EQ(NO_ERROR, surface->setGenerationNumber(1));
buffer = static_cast<ANativeWindowBuffer*>(graphicBuffer.get());
// This should change the generation number of the GraphicBuffer
ASSERT_EQ(NO_ERROR, surface->attachBuffer(buffer));
// Check that the new generation number sticks with the buffer
ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffer, -1));
ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fenceFd));
graphicBuffer = static_cast<GraphicBuffer*>(buffer);
ASSERT_EQ(1U, graphicBuffer->getGenerationNumber());
}
TEST_F(SurfaceTest, GetConsumerName) {
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
sp<DummyConsumer> dummyConsumer(new DummyConsumer);
consumer->consumerConnect(dummyConsumer, false);
consumer->setConsumerName(String8("TestConsumer"));
sp<Surface> surface = new Surface(producer);
sp<ANativeWindow> window(surface);
native_window_api_connect(window.get(), NATIVE_WINDOW_API_CPU);
EXPECT_STREQ("TestConsumer", surface->getConsumerName().string());
}
TEST_F(SurfaceTest, GetWideColorSupport) {
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
sp<DummyConsumer> dummyConsumer(new DummyConsumer);
consumer->consumerConnect(dummyConsumer, false);
consumer->setConsumerName(String8("TestConsumer"));
sp<Surface> surface = new Surface(producer);
sp<ANativeWindow> window(surface);
native_window_api_connect(window.get(), NATIVE_WINDOW_API_CPU);
bool supported;
surface->getWideColorSupport(&supported);
// NOTE: This test assumes that device that supports
// wide-color (as indicated by BoardConfig) must also
// have a wide-color primary display.
// That assumption allows this test to cover devices
// that advertised a wide-color color mode without
// actually supporting wide-color to pass this test
// as well as the case of a device that does support
// wide-color (via BoardConfig) and has a wide-color
// primary display.
// NOT covered at this time is a device that supports
// wide color in the BoardConfig but does not support
// a wide-color color mode on the primary display.
ASSERT_EQ(hasWideColorDisplay, supported);
}
TEST_F(SurfaceTest, DynamicSetBufferCount) {
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
sp<DummyConsumer> dummyConsumer(new DummyConsumer);
consumer->consumerConnect(dummyConsumer, false);
consumer->setConsumerName(String8("TestConsumer"));
sp<Surface> surface = new Surface(producer);
sp<ANativeWindow> window(surface);
ASSERT_EQ(NO_ERROR, native_window_api_connect(window.get(),
NATIVE_WINDOW_API_CPU));
native_window_set_buffer_count(window.get(), 4);
int fence;
ANativeWindowBuffer* buffer;
ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fence));
native_window_set_buffer_count(window.get(), 3);
ASSERT_EQ(NO_ERROR, window->queueBuffer(window.get(), buffer, fence));
native_window_set_buffer_count(window.get(), 2);
ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fence));
ASSERT_EQ(NO_ERROR, window->queueBuffer(window.get(), buffer, fence));
}
TEST_F(SurfaceTest, GetAndFlushRemovedBuffers) {
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
sp<DummyConsumer> dummyConsumer(new DummyConsumer);
consumer->consumerConnect(dummyConsumer, false);
consumer->setConsumerName(String8("TestConsumer"));
sp<Surface> surface = new Surface(producer);
sp<ANativeWindow> window(surface);
sp<DummyProducerListener> listener = new DummyProducerListener();
ASSERT_EQ(OK, surface->connect(
NATIVE_WINDOW_API_CPU,
/*listener*/listener,
/*reportBufferRemoval*/true));
const int BUFFER_COUNT = 4;
ASSERT_EQ(NO_ERROR, native_window_set_buffer_count(window.get(), BUFFER_COUNT));
sp<GraphicBuffer> detachedBuffer;
sp<Fence> outFence;
int fences[BUFFER_COUNT];
ANativeWindowBuffer* buffers[BUFFER_COUNT];
// Allocate buffers because detachNextBuffer requires allocated buffers
for (int i = 0; i < BUFFER_COUNT; i++) {
ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffers[i], &fences[i]));
}
for (int i = 0; i < BUFFER_COUNT; i++) {
ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffers[i], fences[i]));
}
// Test detached buffer is correctly reported
ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence));
std::vector<sp<GraphicBuffer>> removedBuffers;
ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers));
ASSERT_EQ(1u, removedBuffers.size());
ASSERT_EQ(detachedBuffer->handle, removedBuffers.at(0)->handle);
// Test the list is flushed one getAndFlushRemovedBuffers returns
ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers));
ASSERT_EQ(0u, removedBuffers.size());
// Test removed buffer list is cleanup after next dequeueBuffer call
ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence));
ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffers[0], &fences[0]));
ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers));
ASSERT_EQ(0u, removedBuffers.size());
ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffers[0], fences[0]));
// Test removed buffer list is cleanup after next detachNextBuffer call
ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence));
ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence));
ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers));
ASSERT_EQ(1u, removedBuffers.size());
ASSERT_EQ(detachedBuffer->handle, removedBuffers.at(0)->handle);
// Re-allocate buffers since all buffers are detached up to now
for (int i = 0; i < BUFFER_COUNT; i++) {
ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffers[i], &fences[i]));
}
for (int i = 0; i < BUFFER_COUNT; i++) {
ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffers[i], fences[i]));
}
ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence));
ASSERT_EQ(NO_ERROR, surface->attachBuffer(detachedBuffer.get()));
ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers));
// Depends on which slot GraphicBufferProducer impl pick, the attach call might
// get 0 or 1 buffer removed.
ASSERT_LE(removedBuffers.size(), 1u);
}
TEST_F(SurfaceTest, TestGetLastDequeueStartTime) {
sp<ANativeWindow> anw(mSurface);
ASSERT_EQ(NO_ERROR, native_window_api_connect(anw.get(), NATIVE_WINDOW_API_CPU));
ANativeWindowBuffer* buffer = nullptr;
int32_t fenceFd = -1;
nsecs_t before = systemTime(CLOCK_MONOTONIC);
anw->dequeueBuffer(anw.get(), &buffer, &fenceFd);
nsecs_t after = systemTime(CLOCK_MONOTONIC);
nsecs_t lastDequeueTime = mSurface->getLastDequeueStartTime();
ASSERT_LE(before, lastDequeueTime);
ASSERT_GE(after, lastDequeueTime);
}
class FakeConsumer : public BnConsumerListener {
public:
void onFrameAvailable(const BufferItem& /*item*/) override {}
void onBuffersReleased() override {}
void onSidebandStreamChanged() override {}
void addAndGetFrameTimestamps(
const NewFrameEventsEntry* newTimestamps,
FrameEventHistoryDelta* outDelta) override {
if (newTimestamps) {
if (mGetFrameTimestampsEnabled) {
EXPECT_GT(mNewFrameEntryOverride.frameNumber, 0u) <<
"Test should set mNewFrameEntryOverride before queuing "
"a frame.";
EXPECT_EQ(newTimestamps->frameNumber,
mNewFrameEntryOverride.frameNumber) <<
"Test attempting to add NewFrameEntryOverride with "
"incorrect frame number.";
mFrameEventHistory.addQueue(mNewFrameEntryOverride);
mNewFrameEntryOverride.frameNumber = 0;
}
mAddFrameTimestampsCount++;
mLastAddedFrameNumber = newTimestamps->frameNumber;
}
if (outDelta) {
mFrameEventHistory.getAndResetDelta(outDelta);
mGetFrameTimestampsCount++;
}
mAddAndGetFrameTimestampsCallCount++;
}
bool mGetFrameTimestampsEnabled = false;
ConsumerFrameEventHistory mFrameEventHistory;
int mAddAndGetFrameTimestampsCallCount = 0;
int mAddFrameTimestampsCount = 0;
int mGetFrameTimestampsCount = 0;
uint64_t mLastAddedFrameNumber = NO_FRAME_INDEX;
NewFrameEventsEntry mNewFrameEntryOverride = { 0, 0, 0, nullptr };
};
class FakeSurfaceComposer : public ISurfaceComposer{
public:
~FakeSurfaceComposer() override {}
void setSupportsPresent(bool supportsPresent) {
mSupportsPresent = supportsPresent;
}
sp<ISurfaceComposerClient> createConnection() override { return nullptr; }
sp<ISurfaceComposerClient> createScopedConnection(
const sp<IGraphicBufferProducer>& /* parent */) override {
return nullptr;
}
sp<IDisplayEventConnection> createDisplayEventConnection(ISurfaceComposer::VsyncSource)
override {
return nullptr;
}
sp<IBinder> createDisplay(const String8& /*displayName*/,
bool /*secure*/) override { return nullptr; }
void destroyDisplay(const sp<IBinder>& /*display */) override {}
sp<IBinder> getBuiltInDisplay(int32_t /*id*/) override { return nullptr; }
void setTransactionState(const Vector<ComposerState>& /*state*/,
const Vector<DisplayState>& /*displays*/, uint32_t /*flags*/)
override {}
void bootFinished() override {}
bool authenticateSurfaceTexture(
const sp<IGraphicBufferProducer>& /*surface*/) const override {
return false;
}
status_t getSupportedFrameTimestamps(std::vector<FrameEvent>* outSupported)
const override {
*outSupported = {
FrameEvent::REQUESTED_PRESENT,
FrameEvent::ACQUIRE,
FrameEvent::LATCH,
FrameEvent::FIRST_REFRESH_START,
FrameEvent::LAST_REFRESH_START,
FrameEvent::GPU_COMPOSITION_DONE,
FrameEvent::DEQUEUE_READY,
FrameEvent::RELEASE
};
if (mSupportsPresent) {
outSupported->push_back(
FrameEvent::DISPLAY_PRESENT);
}
return NO_ERROR;
}
void setPowerMode(const sp<IBinder>& /*display*/, int /*mode*/) override {}
status_t getDisplayConfigs(const sp<IBinder>& /*display*/,
Vector<DisplayInfo>* /*configs*/) override { return NO_ERROR; }
status_t getDisplayStats(const sp<IBinder>& /*display*/,
DisplayStatInfo* /*stats*/) override { return NO_ERROR; }
int getActiveConfig(const sp<IBinder>& /*display*/) override { return 0; }
status_t setActiveConfig(const sp<IBinder>& /*display*/, int /*id*/)
override {
return NO_ERROR;
}
status_t getDisplayColorModes(const sp<IBinder>& /*display*/,
Vector<android_color_mode_t>* /*outColorModes*/) override {
return NO_ERROR;
}
android_color_mode_t getActiveColorMode(const sp<IBinder>& /*display*/)
override {
return HAL_COLOR_MODE_NATIVE;
}
status_t setActiveColorMode(const sp<IBinder>& /*display*/,
android_color_mode_t /*colorMode*/) override { return NO_ERROR; }
status_t captureScreen(const sp<IBinder>& /*display*/,
const sp<IGraphicBufferProducer>& /*producer*/,
Rect /*sourceCrop*/, uint32_t /*reqWidth*/, uint32_t /*reqHeight*/,
int32_t /*minLayerZ*/, int32_t /*maxLayerZ*/,
bool /*useIdentityTransform*/,
Rotation /*rotation*/) override { return NO_ERROR; }
status_t clearAnimationFrameStats() override { return NO_ERROR; }
status_t getAnimationFrameStats(FrameStats* /*outStats*/) const override {
return NO_ERROR;
}
status_t getHdrCapabilities(const sp<IBinder>& /*display*/,
HdrCapabilities* /*outCapabilities*/) const override {
return NO_ERROR;
}
status_t enableVSyncInjections(bool /*enable*/) override {
return NO_ERROR;
}
status_t injectVSync(nsecs_t /*when*/) override { return NO_ERROR; }
protected:
IBinder* onAsBinder() override { return nullptr; }
private:
bool mSupportsPresent{true};
};
class FakeProducerFrameEventHistory : public ProducerFrameEventHistory {
public:
FakeProducerFrameEventHistory(FenceToFenceTimeMap* fenceMap)
: mFenceMap(fenceMap) {}
~FakeProducerFrameEventHistory() {}
void updateAcquireFence(uint64_t frameNumber,
std::shared_ptr<FenceTime>&& acquire) override {
// Verify the acquire fence being added isn't the one from the consumer.
EXPECT_NE(mConsumerAcquireFence, acquire);
// Override the fence, so we can verify this was called by the
// producer after the frame is queued.
ProducerFrameEventHistory::updateAcquireFence(frameNumber,
std::shared_ptr<FenceTime>(mAcquireFenceOverride));
}
void setAcquireFenceOverride(
const std::shared_ptr<FenceTime>& acquireFenceOverride,
const std::shared_ptr<FenceTime>& consumerAcquireFence) {
mAcquireFenceOverride = acquireFenceOverride;
mConsumerAcquireFence = consumerAcquireFence;
}
protected:
std::shared_ptr<FenceTime> createFenceTime(const sp<Fence>& fence)
const override {
return mFenceMap->createFenceTimeForTest(fence);
}
FenceToFenceTimeMap* mFenceMap{nullptr};
std::shared_ptr<FenceTime> mAcquireFenceOverride{FenceTime::NO_FENCE};
std::shared_ptr<FenceTime> mConsumerAcquireFence{FenceTime::NO_FENCE};
};
class TestSurface : public Surface {
public:
TestSurface(const sp<IGraphicBufferProducer>& bufferProducer,
FenceToFenceTimeMap* fenceMap)
: Surface(bufferProducer),
mFakeSurfaceComposer(new FakeSurfaceComposer) {
mFakeFrameEventHistory = new FakeProducerFrameEventHistory(fenceMap);
mFrameEventHistory.reset(mFakeFrameEventHistory);
}
~TestSurface() override {}
sp<ISurfaceComposer> composerService() const override {
return mFakeSurfaceComposer;
}
nsecs_t now() const override {
return mNow;
}
void setNow(nsecs_t now) {
mNow = now;
}
public:
sp<FakeSurfaceComposer> mFakeSurfaceComposer;
nsecs_t mNow = 0;
// mFrameEventHistory owns the instance of FakeProducerFrameEventHistory,
// but this raw pointer gives access to test functionality.
FakeProducerFrameEventHistory* mFakeFrameEventHistory;
};
class GetFrameTimestampsTest : public ::testing::Test {
protected:
struct FenceAndFenceTime {
explicit FenceAndFenceTime(FenceToFenceTimeMap& fenceMap)
: mFence(new Fence),
mFenceTime(fenceMap.createFenceTimeForTest(mFence)) {}
sp<Fence> mFence { nullptr };
std::shared_ptr<FenceTime> mFenceTime { nullptr };
};
struct RefreshEvents {
RefreshEvents(FenceToFenceTimeMap& fenceMap, nsecs_t refreshStart)
: mFenceMap(fenceMap),
kCompositorTiming(
{refreshStart, refreshStart + 1, refreshStart + 2 }),
kStartTime(refreshStart + 3),
kGpuCompositionDoneTime(refreshStart + 4),
kPresentTime(refreshStart + 5) {}
void signalPostCompositeFences() {
mFenceMap.signalAllForTest(
mGpuCompositionDone.mFence, kGpuCompositionDoneTime);
mFenceMap.signalAllForTest(mPresent.mFence, kPresentTime);
}
FenceToFenceTimeMap& mFenceMap;
FenceAndFenceTime mGpuCompositionDone { mFenceMap };
FenceAndFenceTime mPresent { mFenceMap };
const CompositorTiming kCompositorTiming;
const nsecs_t kStartTime;
const nsecs_t kGpuCompositionDoneTime;
const nsecs_t kPresentTime;
};
struct FrameEvents {
FrameEvents(FenceToFenceTimeMap& fenceMap, nsecs_t frameStartTime)
: mFenceMap(fenceMap),
kPostedTime(frameStartTime + 100),
kRequestedPresentTime(frameStartTime + 200),
kProducerAcquireTime(frameStartTime + 300),
kConsumerAcquireTime(frameStartTime + 301),
kLatchTime(frameStartTime + 500),
kDequeueReadyTime(frameStartTime + 600),
kReleaseTime(frameStartTime + 700),
mRefreshes {
{ mFenceMap, frameStartTime + 410 },
{ mFenceMap, frameStartTime + 420 },
{ mFenceMap, frameStartTime + 430 } } {}
void signalQueueFences() {
mFenceMap.signalAllForTest(
mAcquireConsumer.mFence, kConsumerAcquireTime);
mFenceMap.signalAllForTest(
mAcquireProducer.mFence, kProducerAcquireTime);
}
void signalRefreshFences() {
for (auto& re : mRefreshes) {
re.signalPostCompositeFences();
}
}
void signalReleaseFences() {
mFenceMap.signalAllForTest(mRelease.mFence, kReleaseTime);
}
FenceToFenceTimeMap& mFenceMap;
FenceAndFenceTime mAcquireConsumer { mFenceMap };
FenceAndFenceTime mAcquireProducer { mFenceMap };
FenceAndFenceTime mRelease { mFenceMap };
const nsecs_t kPostedTime;
const nsecs_t kRequestedPresentTime;
const nsecs_t kProducerAcquireTime;
const nsecs_t kConsumerAcquireTime;
const nsecs_t kLatchTime;
const nsecs_t kDequeueReadyTime;
const nsecs_t kReleaseTime;
RefreshEvents mRefreshes[3];
};
GetFrameTimestampsTest() {}
virtual void SetUp() {
BufferQueue::createBufferQueue(&mProducer, &mConsumer);
mFakeConsumer = new FakeConsumer;
mCfeh = &mFakeConsumer->mFrameEventHistory;
mConsumer->consumerConnect(mFakeConsumer, false);
mConsumer->setConsumerName(String8("TestConsumer"));
mSurface = new TestSurface(mProducer, &mFenceMap);
mWindow = mSurface;
ASSERT_EQ(NO_ERROR, native_window_api_connect(mWindow.get(),
NATIVE_WINDOW_API_CPU));
native_window_set_buffer_count(mWindow.get(), 4);
}
void disableFrameTimestamps() {
mFakeConsumer->mGetFrameTimestampsEnabled = false;
native_window_enable_frame_timestamps(mWindow.get(), 0);
mFrameTimestampsEnabled = false;
}
void enableFrameTimestamps() {
mFakeConsumer->mGetFrameTimestampsEnabled = true;
native_window_enable_frame_timestamps(mWindow.get(), 1);
mFrameTimestampsEnabled = true;
}
int getAllFrameTimestamps(uint64_t frameId) {
return native_window_get_frame_timestamps(mWindow.get(), frameId,
&outRequestedPresentTime, &outAcquireTime, &outLatchTime,
&outFirstRefreshStartTime, &outLastRefreshStartTime,
&outGpuCompositionDoneTime, &outDisplayPresentTime,
&outDequeueReadyTime, &outReleaseTime);
}
void resetTimestamps() {
outRequestedPresentTime = -1;
outAcquireTime = -1;
outLatchTime = -1;
outFirstRefreshStartTime = -1;
outLastRefreshStartTime = -1;
outGpuCompositionDoneTime = -1;
outDisplayPresentTime = -1;
outDequeueReadyTime = -1;
outReleaseTime = -1;
}
uint64_t getNextFrameId() {
uint64_t frameId = -1;
int status = native_window_get_next_frame_id(mWindow.get(), &frameId);
EXPECT_EQ(status, NO_ERROR);
return frameId;
}
void dequeueAndQueue(uint64_t frameIndex) {
int fence = -1;
ANativeWindowBuffer* buffer = nullptr;
ASSERT_EQ(NO_ERROR,
mWindow->dequeueBuffer(mWindow.get(), &buffer, &fence));
int oldAddFrameTimestampsCount =
mFakeConsumer->mAddFrameTimestampsCount;
FrameEvents* frame = &mFrames[frameIndex];
uint64_t frameNumber = frameIndex + 1;
NewFrameEventsEntry fe;
fe.frameNumber = frameNumber;
fe.postedTime = frame->kPostedTime;
fe.requestedPresentTime = frame->kRequestedPresentTime;
fe.acquireFence = frame->mAcquireConsumer.mFenceTime;
mFakeConsumer->mNewFrameEntryOverride = fe;
mSurface->mFakeFrameEventHistory->setAcquireFenceOverride(
frame->mAcquireProducer.mFenceTime,
frame->mAcquireConsumer.mFenceTime);
ASSERT_EQ(NO_ERROR, mWindow->queueBuffer(mWindow.get(), buffer, fence));
EXPECT_EQ(frameNumber, mFakeConsumer->mLastAddedFrameNumber);
EXPECT_EQ(
oldAddFrameTimestampsCount + (mFrameTimestampsEnabled ? 1 : 0),
mFakeConsumer->mAddFrameTimestampsCount);
}
void addFrameEvents(
bool gpuComposited, uint64_t iOldFrame, int64_t iNewFrame) {
FrameEvents* oldFrame =
(iOldFrame == NO_FRAME_INDEX) ? nullptr : &mFrames[iOldFrame];
FrameEvents* newFrame = &mFrames[iNewFrame];
uint64_t nOldFrame = iOldFrame + 1;
uint64_t nNewFrame = iNewFrame + 1;
// Latch, Composite, and Release the frames in a plausible order.
// Note: The timestamps won't necessarily match the order, but
// that's okay for the purposes of this test.
std::shared_ptr<FenceTime> gpuDoneFenceTime = FenceTime::NO_FENCE;
// Composite the previous frame one more time, which helps verify
// LastRefresh is updated properly.
if (oldFrame != nullptr) {
mCfeh->addPreComposition(nOldFrame,
oldFrame->mRefreshes[2].kStartTime);
gpuDoneFenceTime = gpuComposited ?
oldFrame->mRefreshes[2].mGpuCompositionDone.mFenceTime :
FenceTime::NO_FENCE;
mCfeh->addPostComposition(nOldFrame, gpuDoneFenceTime,
oldFrame->mRefreshes[2].mPresent.mFenceTime,
oldFrame->mRefreshes[2].kCompositorTiming);
}
// Latch the new frame.
mCfeh->addLatch(nNewFrame, newFrame->kLatchTime);
mCfeh->addPreComposition(nNewFrame, newFrame->mRefreshes[0].kStartTime);
gpuDoneFenceTime = gpuComposited ?
newFrame->mRefreshes[0].mGpuCompositionDone.mFenceTime :
FenceTime::NO_FENCE;
// HWC2 releases the previous buffer after a new latch just before
// calling postComposition.
if (oldFrame != nullptr) {
mCfeh->addRelease(nOldFrame, oldFrame->kDequeueReadyTime,
std::shared_ptr<FenceTime>(oldFrame->mRelease.mFenceTime));
}
mCfeh->addPostComposition(nNewFrame, gpuDoneFenceTime,
newFrame->mRefreshes[0].mPresent.mFenceTime,
newFrame->mRefreshes[0].kCompositorTiming);
mCfeh->addPreComposition(nNewFrame, newFrame->mRefreshes[1].kStartTime);
gpuDoneFenceTime = gpuComposited ?
newFrame->mRefreshes[1].mGpuCompositionDone.mFenceTime :
FenceTime::NO_FENCE;
mCfeh->addPostComposition(nNewFrame, gpuDoneFenceTime,
newFrame->mRefreshes[1].mPresent.mFenceTime,
newFrame->mRefreshes[1].kCompositorTiming);
}
sp<IGraphicBufferProducer> mProducer;
sp<IGraphicBufferConsumer> mConsumer;
sp<FakeConsumer> mFakeConsumer;
ConsumerFrameEventHistory* mCfeh;
sp<TestSurface> mSurface;
sp<ANativeWindow> mWindow;
FenceToFenceTimeMap mFenceMap;
bool mFrameTimestampsEnabled = false;
int64_t outRequestedPresentTime = -1;
int64_t outAcquireTime = -1;
int64_t outLatchTime = -1;
int64_t outFirstRefreshStartTime = -1;
int64_t outLastRefreshStartTime = -1;
int64_t outGpuCompositionDoneTime = -1;
int64_t outDisplayPresentTime = -1;
int64_t outDequeueReadyTime = -1;
int64_t outReleaseTime = -1;
FrameEvents mFrames[3] {
{ mFenceMap, 1000 }, { mFenceMap, 2000 }, { mFenceMap, 3000 } };
};
// This test verifies that the frame timestamps are not retrieved when not
// explicitly enabled via native_window_enable_frame_timestamps.
// We want to check this to make sure there's no overhead for users
// that don't need the timestamp information.
TEST_F(GetFrameTimestampsTest, DefaultDisabled) {
int fence;
ANativeWindowBuffer* buffer;
EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount);
EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount);
const uint64_t fId = getNextFrameId();
// Verify the producer doesn't get frame timestamps piggybacked on dequeue.
ASSERT_EQ(NO_ERROR, mWindow->dequeueBuffer(mWindow.get(), &buffer, &fence));
EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount);
EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount);
// Verify the producer doesn't get frame timestamps piggybacked on queue.
// It is okay that frame timestamps are added in the consumer since it is
// still needed for SurfaceFlinger dumps.
ASSERT_EQ(NO_ERROR, mWindow->queueBuffer(mWindow.get(), buffer, fence));
EXPECT_EQ(1, mFakeConsumer->mAddFrameTimestampsCount);
EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount);
// Verify attempts to get frame timestamps fail.
int result = getAllFrameTimestamps(fId);
EXPECT_EQ(INVALID_OPERATION, result);
EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount);
// Verify compositor timing query fails.
nsecs_t compositeDeadline = 0;
nsecs_t compositeInterval = 0;
nsecs_t compositeToPresentLatency = 0;
result = native_window_get_compositor_timing(mWindow.get(),
&compositeDeadline, &compositeInterval, &compositeToPresentLatency);
EXPECT_EQ(INVALID_OPERATION, result);
}
// This test verifies that the frame timestamps are retrieved if explicitly
// enabled via native_window_enable_frame_timestamps.
TEST_F(GetFrameTimestampsTest, EnabledSimple) {
CompositorTiming initialCompositorTiming {
1000000000, // 1s deadline
16666667, // 16ms interval
50000000, // 50ms present latency
};
mCfeh->initializeCompositorTiming(initialCompositorTiming);
enableFrameTimestamps();
// Verify the compositor timing query gets the initial compositor values
// after timststamps are enabled; even before the first frame is queued
// or dequeued.
nsecs_t compositeDeadline = 0;
nsecs_t compositeInterval = 0;
nsecs_t compositeToPresentLatency = 0;
mSurface->setNow(initialCompositorTiming.deadline - 1);
int result = native_window_get_compositor_timing(mWindow.get(),
&compositeDeadline, &compositeInterval, &compositeToPresentLatency);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline);
EXPECT_EQ(initialCompositorTiming.interval, compositeInterval);
EXPECT_EQ(initialCompositorTiming.presentLatency,
compositeToPresentLatency);
int fence;
ANativeWindowBuffer* buffer;
EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount);
EXPECT_EQ(1, mFakeConsumer->mGetFrameTimestampsCount);
const uint64_t fId1 = getNextFrameId();
// Verify getFrameTimestamps is piggybacked on dequeue.
ASSERT_EQ(NO_ERROR, mWindow->dequeueBuffer(mWindow.get(), &buffer, &fence));
EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount);
EXPECT_EQ(2, mFakeConsumer->mGetFrameTimestampsCount);
NewFrameEventsEntry f1;
f1.frameNumber = 1;
f1.postedTime = mFrames[0].kPostedTime;
f1.requestedPresentTime = mFrames[0].kRequestedPresentTime;
f1.acquireFence = mFrames[0].mAcquireConsumer.mFenceTime;
mSurface->mFakeFrameEventHistory->setAcquireFenceOverride(
mFrames[0].mAcquireProducer.mFenceTime,
mFrames[0].mAcquireConsumer.mFenceTime);
mFakeConsumer->mNewFrameEntryOverride = f1;
mFrames[0].signalQueueFences();
// Verify getFrameTimestamps is piggybacked on queue.
ASSERT_EQ(NO_ERROR, mWindow->queueBuffer(mWindow.get(), buffer, fence));
EXPECT_EQ(1, mFakeConsumer->mAddFrameTimestampsCount);
EXPECT_EQ(1u, mFakeConsumer->mLastAddedFrameNumber);
EXPECT_EQ(3, mFakeConsumer->mGetFrameTimestampsCount);
// Verify queries for timestamps that the producer doesn't know about
// triggers a call to see if the consumer has any new timestamps.
result = getAllFrameTimestamps(fId1);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(4, mFakeConsumer->mGetFrameTimestampsCount);
}
TEST_F(GetFrameTimestampsTest, QueryPresentSupported) {
bool displayPresentSupported = true;
mSurface->mFakeSurfaceComposer->setSupportsPresent(displayPresentSupported);
// Verify supported bits are forwarded.
int supportsPresent = -1;
mWindow.get()->query(mWindow.get(),
NATIVE_WINDOW_FRAME_TIMESTAMPS_SUPPORTS_PRESENT, &supportsPresent);
EXPECT_EQ(displayPresentSupported, supportsPresent);
}
TEST_F(GetFrameTimestampsTest, QueryPresentNotSupported) {
bool displayPresentSupported = false;
mSurface->mFakeSurfaceComposer->setSupportsPresent(displayPresentSupported);
// Verify supported bits are forwarded.
int supportsPresent = -1;
mWindow.get()->query(mWindow.get(),
NATIVE_WINDOW_FRAME_TIMESTAMPS_SUPPORTS_PRESENT, &supportsPresent);
EXPECT_EQ(displayPresentSupported, supportsPresent);
}
TEST_F(GetFrameTimestampsTest, SnapToNextTickBasic) {
nsecs_t phase = 4000;
nsecs_t interval = 1000;
// Timestamp in previous interval.
nsecs_t timestamp = 3500;
EXPECT_EQ(4000, ProducerFrameEventHistory::snapToNextTick(
timestamp, phase, interval));
// Timestamp in next interval.
timestamp = 4500;
EXPECT_EQ(5000, ProducerFrameEventHistory::snapToNextTick(
timestamp, phase, interval));
// Timestamp multiple intervals before.
timestamp = 2500;
EXPECT_EQ(3000, ProducerFrameEventHistory::snapToNextTick(
timestamp, phase, interval));
// Timestamp multiple intervals after.
timestamp = 6500;
EXPECT_EQ(7000, ProducerFrameEventHistory::snapToNextTick(
timestamp, phase, interval));
// Timestamp on previous interval.
timestamp = 3000;
EXPECT_EQ(3000, ProducerFrameEventHistory::snapToNextTick(
timestamp, phase, interval));
// Timestamp on next interval.
timestamp = 5000;
EXPECT_EQ(5000, ProducerFrameEventHistory::snapToNextTick(
timestamp, phase, interval));
// Timestamp equal to phase.
timestamp = 4000;
EXPECT_EQ(4000, ProducerFrameEventHistory::snapToNextTick(
timestamp, phase, interval));
}
// int(big_timestamp / interval) < 0, which can cause a crash or invalid result
// if the number of intervals elapsed is internally stored in an int.
TEST_F(GetFrameTimestampsTest, SnapToNextTickOverflow) {
nsecs_t phase = 0;
nsecs_t interval = 4000;
nsecs_t big_timestamp = 8635916564000;
int32_t intervals = big_timestamp / interval;
EXPECT_LT(intervals, 0);
EXPECT_EQ(8635916564000, ProducerFrameEventHistory::snapToNextTick(
big_timestamp, phase, interval));
EXPECT_EQ(8635916564000, ProducerFrameEventHistory::snapToNextTick(
big_timestamp, big_timestamp, interval));
}
// This verifies the compositor timing is updated by refresh events
// and piggy backed on a queue, dequeue, and enabling of timestamps..
TEST_F(GetFrameTimestampsTest, CompositorTimingUpdatesBasic) {
CompositorTiming initialCompositorTiming {
1000000000, // 1s deadline
16666667, // 16ms interval
50000000, // 50ms present latency
};
mCfeh->initializeCompositorTiming(initialCompositorTiming);
enableFrameTimestamps();
// We get the initial values before any frames are submitted.
nsecs_t compositeDeadline = 0;
nsecs_t compositeInterval = 0;
nsecs_t compositeToPresentLatency = 0;
mSurface->setNow(initialCompositorTiming.deadline - 1);
int result = native_window_get_compositor_timing(mWindow.get(),
&compositeDeadline, &compositeInterval, &compositeToPresentLatency);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline);
EXPECT_EQ(initialCompositorTiming.interval, compositeInterval);
EXPECT_EQ(initialCompositorTiming.presentLatency,
compositeToPresentLatency);
const uint64_t fId1 = getNextFrameId();
dequeueAndQueue(0);
addFrameEvents(true, NO_FRAME_INDEX, 0);
// Still get the initial values because the frame events for frame 0
// didn't get a chance to piggyback on a queue or dequeue yet.
result = native_window_get_compositor_timing(mWindow.get(),
&compositeDeadline, &compositeInterval, &compositeToPresentLatency);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline);
EXPECT_EQ(initialCompositorTiming.interval, compositeInterval);
EXPECT_EQ(initialCompositorTiming.presentLatency,
compositeToPresentLatency);
const uint64_t fId2 = getNextFrameId();
dequeueAndQueue(1);
addFrameEvents(true, 0, 1);
// Now expect the composite values associated with frame 1.
mSurface->setNow(mFrames[0].mRefreshes[1].kCompositorTiming.deadline);
result = native_window_get_compositor_timing(mWindow.get(),
&compositeDeadline, &compositeInterval, &compositeToPresentLatency);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[0].mRefreshes[1].kCompositorTiming.deadline,
compositeDeadline);
EXPECT_EQ(mFrames[0].mRefreshes[1].kCompositorTiming.interval,
compositeInterval);
EXPECT_EQ(mFrames[0].mRefreshes[1].kCompositorTiming.presentLatency,
compositeToPresentLatency);
dequeueAndQueue(2);
addFrameEvents(true, 1, 2);
// Now expect the composite values associated with frame 2.
mSurface->setNow(mFrames[1].mRefreshes[1].kCompositorTiming.deadline);
result = native_window_get_compositor_timing(mWindow.get(),
&compositeDeadline, &compositeInterval, &compositeToPresentLatency);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[1].mRefreshes[1].kCompositorTiming.deadline,
compositeDeadline);
EXPECT_EQ(mFrames[1].mRefreshes[1].kCompositorTiming.interval,
compositeInterval);
EXPECT_EQ(mFrames[1].mRefreshes[1].kCompositorTiming.presentLatency,
compositeToPresentLatency);
// Re-enabling frame timestamps should get the latest values.
disableFrameTimestamps();
enableFrameTimestamps();
// Now expect the composite values associated with frame 3.
mSurface->setNow(mFrames[2].mRefreshes[1].kCompositorTiming.deadline);
result = native_window_get_compositor_timing(mWindow.get(),
&compositeDeadline, &compositeInterval, &compositeToPresentLatency);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[2].mRefreshes[1].kCompositorTiming.deadline,
compositeDeadline);
EXPECT_EQ(mFrames[2].mRefreshes[1].kCompositorTiming.interval,
compositeInterval);
EXPECT_EQ(mFrames[2].mRefreshes[1].kCompositorTiming.presentLatency,
compositeToPresentLatency);
}
// This verifies the compositor deadline properly snaps to the the next
// deadline based on the current time.
TEST_F(GetFrameTimestampsTest, CompositorTimingDeadlineSnaps) {
CompositorTiming initialCompositorTiming {
1000000000, // 1s deadline
16666667, // 16ms interval
50000000, // 50ms present latency
};
mCfeh->initializeCompositorTiming(initialCompositorTiming);
enableFrameTimestamps();
nsecs_t compositeDeadline = 0;
nsecs_t compositeInterval = 0;
nsecs_t compositeToPresentLatency = 0;
// A "now" just before the deadline snaps to the deadline.
mSurface->setNow(initialCompositorTiming.deadline - 1);
int result = native_window_get_compositor_timing(mWindow.get(),
&compositeDeadline, &compositeInterval, &compositeToPresentLatency);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline);
nsecs_t expectedDeadline = initialCompositorTiming.deadline;
EXPECT_EQ(expectedDeadline, compositeDeadline);
const uint64_t fId1 = getNextFrameId();
dequeueAndQueue(0);
addFrameEvents(true, NO_FRAME_INDEX, 0);
// A "now" just after the deadline snaps properly.
mSurface->setNow(initialCompositorTiming.deadline + 1);
result = native_window_get_compositor_timing(mWindow.get(),
&compositeDeadline, &compositeInterval, &compositeToPresentLatency);
EXPECT_EQ(NO_ERROR, result);
expectedDeadline =
initialCompositorTiming.deadline +initialCompositorTiming.interval;
EXPECT_EQ(expectedDeadline, compositeDeadline);
const uint64_t fId2 = getNextFrameId();
dequeueAndQueue(1);
addFrameEvents(true, 0, 1);
// A "now" just after the next interval snaps properly.
mSurface->setNow(
mFrames[0].mRefreshes[1].kCompositorTiming.deadline +
mFrames[0].mRefreshes[1].kCompositorTiming.interval + 1);
result = native_window_get_compositor_timing(mWindow.get(),
&compositeDeadline, &compositeInterval, &compositeToPresentLatency);
EXPECT_EQ(NO_ERROR, result);
expectedDeadline =
mFrames[0].mRefreshes[1].kCompositorTiming.deadline +
mFrames[0].mRefreshes[1].kCompositorTiming.interval * 2;
EXPECT_EQ(expectedDeadline, compositeDeadline);
dequeueAndQueue(2);
addFrameEvents(true, 1, 2);
// A "now" over 1 interval before the deadline snaps properly.
mSurface->setNow(
mFrames[1].mRefreshes[1].kCompositorTiming.deadline -
mFrames[1].mRefreshes[1].kCompositorTiming.interval - 1);
result = native_window_get_compositor_timing(mWindow.get(),
&compositeDeadline, &compositeInterval, &compositeToPresentLatency);
EXPECT_EQ(NO_ERROR, result);
expectedDeadline =
mFrames[1].mRefreshes[1].kCompositorTiming.deadline -
mFrames[1].mRefreshes[1].kCompositorTiming.interval;
EXPECT_EQ(expectedDeadline, compositeDeadline);
// Re-enabling frame timestamps should get the latest values.
disableFrameTimestamps();
enableFrameTimestamps();
// A "now" over 2 intervals before the deadline snaps properly.
mSurface->setNow(
mFrames[2].mRefreshes[1].kCompositorTiming.deadline -
mFrames[2].mRefreshes[1].kCompositorTiming.interval * 2 - 1);
result = native_window_get_compositor_timing(mWindow.get(),
&compositeDeadline, &compositeInterval, &compositeToPresentLatency);
EXPECT_EQ(NO_ERROR, result);
expectedDeadline =
mFrames[2].mRefreshes[1].kCompositorTiming.deadline -
mFrames[2].mRefreshes[1].kCompositorTiming.interval * 2;
EXPECT_EQ(expectedDeadline, compositeDeadline);
}
// This verifies the timestamps recorded in the consumer's
// FrameTimestampsHistory are properly retrieved by the producer for the
// correct frames.
TEST_F(GetFrameTimestampsTest, TimestampsAssociatedWithCorrectFrame) {
enableFrameTimestamps();
const uint64_t fId1 = getNextFrameId();
dequeueAndQueue(0);
mFrames[0].signalQueueFences();
const uint64_t fId2 = getNextFrameId();
dequeueAndQueue(1);
mFrames[1].signalQueueFences();
addFrameEvents(true, NO_FRAME_INDEX, 0);
mFrames[0].signalRefreshFences();
addFrameEvents(true, 0, 1);
mFrames[0].signalReleaseFences();
mFrames[1].signalRefreshFences();
// Verify timestamps are correct for frame 1.
resetTimestamps();
int result = getAllFrameTimestamps(fId1);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime);
EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime);
EXPECT_EQ(mFrames[0].mRefreshes[0].kGpuCompositionDoneTime,
outGpuCompositionDoneTime);
EXPECT_EQ(mFrames[0].mRefreshes[0].kPresentTime, outDisplayPresentTime);
EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime);
EXPECT_EQ(mFrames[0].kReleaseTime, outReleaseTime);
// Verify timestamps are correct for frame 2.
resetTimestamps();
result = getAllFrameTimestamps(fId2);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime);
EXPECT_EQ(mFrames[1].kProducerAcquireTime, outAcquireTime);
EXPECT_EQ(mFrames[1].kLatchTime, outLatchTime);
EXPECT_EQ(mFrames[1].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
EXPECT_EQ(mFrames[1].mRefreshes[1].kStartTime, outLastRefreshStartTime);
EXPECT_EQ(mFrames[1].mRefreshes[0].kGpuCompositionDoneTime,
outGpuCompositionDoneTime);
EXPECT_EQ(mFrames[1].mRefreshes[0].kPresentTime, outDisplayPresentTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDequeueReadyTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime);
}
// This test verifies the acquire fence recorded by the consumer is not sent
// back to the producer and the producer saves its own fence.
TEST_F(GetFrameTimestampsTest, QueueTimestampsNoSync) {
enableFrameTimestamps();
// Dequeue and queue frame 1.
const uint64_t fId1 = getNextFrameId();
dequeueAndQueue(0);
// Verify queue-related timestamps for f1 are available immediately in the
// producer without asking the consumer again, even before signaling the
// acquire fence.
resetTimestamps();
int oldCount = mFakeConsumer->mGetFrameTimestampsCount;
int result = native_window_get_frame_timestamps(mWindow.get(), fId1,
&outRequestedPresentTime, &outAcquireTime, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outAcquireTime);
// Signal acquire fences. Verify a sync call still isn't necessary.
mFrames[0].signalQueueFences();
oldCount = mFakeConsumer->mGetFrameTimestampsCount;
result = native_window_get_frame_timestamps(mWindow.get(), fId1,
&outRequestedPresentTime, &outAcquireTime, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
// Dequeue and queue frame 2.
const uint64_t fId2 = getNextFrameId();
dequeueAndQueue(1);
// Verify queue-related timestamps for f2 are available immediately in the
// producer without asking the consumer again, even before signaling the
// acquire fence.
resetTimestamps();
oldCount = mFakeConsumer->mGetFrameTimestampsCount;
result = native_window_get_frame_timestamps(mWindow.get(), fId2,
&outRequestedPresentTime, &outAcquireTime, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outAcquireTime);
// Signal acquire fences. Verify a sync call still isn't necessary.
mFrames[1].signalQueueFences();
oldCount = mFakeConsumer->mGetFrameTimestampsCount;
result = native_window_get_frame_timestamps(mWindow.get(), fId2,
&outRequestedPresentTime, &outAcquireTime, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime);
EXPECT_EQ(mFrames[1].kProducerAcquireTime, outAcquireTime);
}
TEST_F(GetFrameTimestampsTest, ZeroRequestedTimestampsNoSync) {
enableFrameTimestamps();
// Dequeue and queue frame 1.
dequeueAndQueue(0);
mFrames[0].signalQueueFences();
// Dequeue and queue frame 2.
const uint64_t fId2 = getNextFrameId();
dequeueAndQueue(1);
mFrames[1].signalQueueFences();
addFrameEvents(true, NO_FRAME_INDEX, 0);
mFrames[0].signalRefreshFences();
addFrameEvents(true, 0, 1);
mFrames[0].signalReleaseFences();
mFrames[1].signalRefreshFences();
// Verify a request for no timestamps doesn't result in a sync call.
int oldCount = mFakeConsumer->mGetFrameTimestampsCount;
int result = native_window_get_frame_timestamps(mWindow.get(), fId2,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
}
// This test verifies that fences can signal and update timestamps producer
// side without an additional sync call to the consumer.
TEST_F(GetFrameTimestampsTest, FencesInProducerNoSync) {
enableFrameTimestamps();
// Dequeue and queue frame 1.
const uint64_t fId1 = getNextFrameId();
dequeueAndQueue(0);
mFrames[0].signalQueueFences();
// Dequeue and queue frame 2.
dequeueAndQueue(1);
mFrames[1].signalQueueFences();
addFrameEvents(true, NO_FRAME_INDEX, 0);
addFrameEvents(true, 0, 1);
// Verify available timestamps are correct for frame 1, before any
// fence has been signaled.
// Note: A sync call is necessary here since the events triggered by
// addFrameEvents didn't get to piggyback on the earlier queues/dequeues.
resetTimestamps();
int oldCount = mFakeConsumer->mGetFrameTimestampsCount;
int result = getAllFrameTimestamps(fId1);
EXPECT_EQ(oldCount + 1, mFakeConsumer->mGetFrameTimestampsCount);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime);
EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outGpuCompositionDoneTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime);
EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime);
// Verify available timestamps are correct for frame 1 again, before any
// fence has been signaled.
// This time a sync call should not be necessary.
resetTimestamps();
oldCount = mFakeConsumer->mGetFrameTimestampsCount;
result = getAllFrameTimestamps(fId1);
EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime);
EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outGpuCompositionDoneTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime);
EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime);
// Signal the fences for frame 1.
mFrames[0].signalRefreshFences();
mFrames[0].signalReleaseFences();
// Verify all timestamps are available without a sync call.
resetTimestamps();
oldCount = mFakeConsumer->mGetFrameTimestampsCount;
result = getAllFrameTimestamps(fId1);
EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime);
EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime);
EXPECT_EQ(mFrames[0].mRefreshes[0].kGpuCompositionDoneTime,
outGpuCompositionDoneTime);
EXPECT_EQ(mFrames[0].mRefreshes[0].kPresentTime, outDisplayPresentTime);
EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime);
EXPECT_EQ(mFrames[0].kReleaseTime, outReleaseTime);
}
// This test verifies that if the frame wasn't GPU composited but has a refresh
// event a sync call isn't made to get the GPU composite done time since it will
// never exist.
TEST_F(GetFrameTimestampsTest, NoGpuNoSync) {
enableFrameTimestamps();
// Dequeue and queue frame 1.
const uint64_t fId1 = getNextFrameId();
dequeueAndQueue(0);
mFrames[0].signalQueueFences();
// Dequeue and queue frame 2.
dequeueAndQueue(1);
mFrames[1].signalQueueFences();
addFrameEvents(false, NO_FRAME_INDEX, 0);
addFrameEvents(false, 0, 1);
// Verify available timestamps are correct for frame 1, before any
// fence has been signaled.
// Note: A sync call is necessary here since the events triggered by
// addFrameEvents didn't get to piggyback on the earlier queues/dequeues.
resetTimestamps();
int oldCount = mFakeConsumer->mGetFrameTimestampsCount;
int result = getAllFrameTimestamps(fId1);
EXPECT_EQ(oldCount + 1, mFakeConsumer->mGetFrameTimestampsCount);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime);
EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime);
EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime);
// Signal the fences for frame 1.
mFrames[0].signalRefreshFences();
mFrames[0].signalReleaseFences();
// Verify all timestamps, except GPU composition, are available without a
// sync call.
resetTimestamps();
oldCount = mFakeConsumer->mGetFrameTimestampsCount;
result = getAllFrameTimestamps(fId1);
EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime);
EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime);
EXPECT_EQ(mFrames[0].mRefreshes[0].kPresentTime, outDisplayPresentTime);
EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime);
EXPECT_EQ(mFrames[0].kReleaseTime, outReleaseTime);
}
// This test verifies that if the certain timestamps can't possibly exist for
// the most recent frame, then a sync call is not done.
TEST_F(GetFrameTimestampsTest, NoReleaseNoSync) {
enableFrameTimestamps();
// Dequeue and queue frame 1.
const uint64_t fId1 = getNextFrameId();
dequeueAndQueue(0);
mFrames[0].signalQueueFences();
// Dequeue and queue frame 2.
const uint64_t fId2 = getNextFrameId();
dequeueAndQueue(1);
mFrames[1].signalQueueFences();
addFrameEvents(false, NO_FRAME_INDEX, 0);
addFrameEvents(false, 0, 1);
// Verify available timestamps are correct for frame 1, before any
// fence has been signaled.
// Note: A sync call is necessary here since the events triggered by
// addFrameEvents didn't get to piggyback on the earlier queues/dequeues.
resetTimestamps();
int oldCount = mFakeConsumer->mGetFrameTimestampsCount;
int result = getAllFrameTimestamps(fId1);
EXPECT_EQ(oldCount + 1, mFakeConsumer->mGetFrameTimestampsCount);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime);
EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime);
EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime);
mFrames[0].signalRefreshFences();
mFrames[0].signalReleaseFences();
mFrames[1].signalRefreshFences();
// Verify querying for all timestmaps of f2 does not do a sync call. Even
// though the lastRefresh, dequeueReady, and release times aren't
// available, a sync call should not occur because it's not possible for f2
// to encounter the final value for those events until another frame is
// queued.
resetTimestamps();
oldCount = mFakeConsumer->mGetFrameTimestampsCount;
result = getAllFrameTimestamps(fId2);
EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
EXPECT_EQ(NO_ERROR, result);
EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime);
EXPECT_EQ(mFrames[1].kProducerAcquireTime, outAcquireTime);
EXPECT_EQ(mFrames[1].kLatchTime, outLatchTime);
EXPECT_EQ(mFrames[1].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
EXPECT_EQ(mFrames[1].mRefreshes[1].kStartTime, outLastRefreshStartTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime);
EXPECT_EQ(mFrames[1].mRefreshes[0].kPresentTime, outDisplayPresentTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDequeueReadyTime);
EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime);
}
// This test verifies there are no sync calls for present times
// when they aren't supported and that an error is returned.
TEST_F(GetFrameTimestampsTest, PresentUnsupportedNoSync) {
enableFrameTimestamps();
mSurface->mFakeSurfaceComposer->setSupportsPresent(false);
// Dequeue and queue frame 1.
const uint64_t fId1 = getNextFrameId();
dequeueAndQueue(0);
// Verify a query for the Present times do not trigger a sync call if they
// are not supported.
resetTimestamps();
int oldCount = mFakeConsumer->mGetFrameTimestampsCount;
int result = native_window_get_frame_timestamps(mWindow.get(), fId1,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
&outDisplayPresentTime, nullptr, nullptr);
EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
EXPECT_EQ(BAD_VALUE, result);
EXPECT_EQ(-1, outDisplayPresentTime);
}
} // namespace android