// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//
#include <assert.h>
#include <math.h>
#include "./backward_references_enc.h"
#include "./histogram_enc.h"
#include "../dsp/lossless.h"
#include "../dsp/lossless_common.h"
#include "../dsp/dsp.h"
#include "../utils/color_cache_utils.h"
#include "../utils/utils.h"
#define VALUES_IN_BYTE 256
#define MIN_BLOCK_SIZE 256 // minimum block size for backward references
#define MAX_ENTROPY (1e30f)
// 1M window (4M bytes) minus 120 special codes for short distances.
#define WINDOW_SIZE_BITS 20
#define WINDOW_SIZE ((1 << WINDOW_SIZE_BITS) - 120)
// Minimum number of pixels for which it is cheaper to encode a
// distance + length instead of each pixel as a literal.
#define MIN_LENGTH 4
// If you change this, you need MAX_LENGTH_BITS + WINDOW_SIZE_BITS <= 32 as it
// is used in VP8LHashChain.
#define MAX_LENGTH_BITS 12
// We want the max value to be attainable and stored in MAX_LENGTH_BITS bits.
#define MAX_LENGTH ((1 << MAX_LENGTH_BITS) - 1)
#if MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32
#error "MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32"
#endif
// -----------------------------------------------------------------------------
static const uint8_t plane_to_code_lut[128] = {
96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255,
101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79,
102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87,
105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91,
110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100,
115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109,
118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114,
119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117
};
static int DistanceToPlaneCode(int xsize, int dist) {
const int yoffset = dist / xsize;
const int xoffset = dist - yoffset * xsize;
if (xoffset <= 8 && yoffset < 8) {
return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1;
} else if (xoffset > xsize - 8 && yoffset < 7) {
return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1;
}
return dist + 120;
}
// Returns the exact index where array1 and array2 are different. For an index
// inferior or equal to best_len_match, the return value just has to be strictly
// inferior to best_len_match. The current behavior is to return 0 if this index
// is best_len_match, and the index itself otherwise.
// If no two elements are the same, it returns max_limit.
static WEBP_INLINE int FindMatchLength(const uint32_t* const array1,
const uint32_t* const array2,
int best_len_match, int max_limit) {
// Before 'expensive' linear match, check if the two arrays match at the
// current best length index.
if (array1[best_len_match] != array2[best_len_match]) return 0;
return VP8LVectorMismatch(array1, array2, max_limit);
}
// -----------------------------------------------------------------------------
// VP8LBackwardRefs
struct PixOrCopyBlock {
PixOrCopyBlock* next_; // next block (or NULL)
PixOrCopy* start_; // data start
int size_; // currently used size
};
static void ClearBackwardRefs(VP8LBackwardRefs* const refs) {
assert(refs != NULL);
if (refs->tail_ != NULL) {
*refs->tail_ = refs->free_blocks_; // recycle all blocks at once
}
refs->free_blocks_ = refs->refs_;
refs->tail_ = &refs->refs_;
refs->last_block_ = NULL;
refs->refs_ = NULL;
}
void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) {
assert(refs != NULL);
ClearBackwardRefs(refs);
while (refs->free_blocks_ != NULL) {
PixOrCopyBlock* const next = refs->free_blocks_->next_;
WebPSafeFree(refs->free_blocks_);
refs->free_blocks_ = next;
}
}
void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) {
assert(refs != NULL);
memset(refs, 0, sizeof(*refs));
refs->tail_ = &refs->refs_;
refs->block_size_ =
(block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size;
}
VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) {
VP8LRefsCursor c;
c.cur_block_ = refs->refs_;
if (refs->refs_ != NULL) {
c.cur_pos = c.cur_block_->start_;
c.last_pos_ = c.cur_pos + c.cur_block_->size_;
} else {
c.cur_pos = NULL;
c.last_pos_ = NULL;
}
return c;
}
void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) {
PixOrCopyBlock* const b = c->cur_block_->next_;
c->cur_pos = (b == NULL) ? NULL : b->start_;
c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_;
c->cur_block_ = b;
}
// Create a new block, either from the free list or allocated
static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) {
PixOrCopyBlock* b = refs->free_blocks_;
if (b == NULL) { // allocate new memory chunk
const size_t total_size =
sizeof(*b) + refs->block_size_ * sizeof(*b->start_);
b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size);
if (b == NULL) {
refs->error_ |= 1;
return NULL;
}
b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b)); // not always aligned
} else { // recycle from free-list
refs->free_blocks_ = b->next_;
}
*refs->tail_ = b;
refs->tail_ = &b->next_;
refs->last_block_ = b;
b->next_ = NULL;
b->size_ = 0;
return b;
}
static WEBP_INLINE void BackwardRefsCursorAdd(VP8LBackwardRefs* const refs,
const PixOrCopy v) {
PixOrCopyBlock* b = refs->last_block_;
if (b == NULL || b->size_ == refs->block_size_) {
b = BackwardRefsNewBlock(refs);
if (b == NULL) return; // refs->error_ is set
}
b->start_[b->size_++] = v;
}
int VP8LBackwardRefsCopy(const VP8LBackwardRefs* const src,
VP8LBackwardRefs* const dst) {
const PixOrCopyBlock* b = src->refs_;
ClearBackwardRefs(dst);
assert(src->block_size_ == dst->block_size_);
while (b != NULL) {
PixOrCopyBlock* const new_b = BackwardRefsNewBlock(dst);
if (new_b == NULL) return 0; // dst->error_ is set
memcpy(new_b->start_, b->start_, b->size_ * sizeof(*b->start_));
new_b->size_ = b->size_;
b = b->next_;
}
return 1;
}
// -----------------------------------------------------------------------------
// Hash chains
int VP8LHashChainInit(VP8LHashChain* const p, int size) {
assert(p->size_ == 0);
assert(p->offset_length_ == NULL);
assert(size > 0);
p->offset_length_ =
(uint32_t*)WebPSafeMalloc(size, sizeof(*p->offset_length_));
if (p->offset_length_ == NULL) return 0;
p->size_ = size;
return 1;
}
void VP8LHashChainClear(VP8LHashChain* const p) {
assert(p != NULL);
WebPSafeFree(p->offset_length_);
p->size_ = 0;
p->offset_length_ = NULL;
}
// -----------------------------------------------------------------------------
#define HASH_MULTIPLIER_HI (0xc6a4a793ULL)
#define HASH_MULTIPLIER_LO (0x5bd1e996ULL)
static WEBP_INLINE uint32_t GetPixPairHash64(const uint32_t* const argb) {
uint32_t key;
key = (argb[1] * HASH_MULTIPLIER_HI) & 0xffffffffu;
key += (argb[0] * HASH_MULTIPLIER_LO) & 0xffffffffu;
key = key >> (32 - HASH_BITS);
return key;
}
// Returns the maximum number of hash chain lookups to do for a
// given compression quality. Return value in range [8, 86].
static int GetMaxItersForQuality(int quality) {
return 8 + (quality * quality) / 128;
}
static int GetWindowSizeForHashChain(int quality, int xsize) {
const int max_window_size = (quality > 75) ? WINDOW_SIZE
: (quality > 50) ? (xsize << 8)
: (quality > 25) ? (xsize << 6)
: (xsize << 4);
assert(xsize > 0);
return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size;
}
static WEBP_INLINE int MaxFindCopyLength(int len) {
return (len < MAX_LENGTH) ? len : MAX_LENGTH;
}
int VP8LHashChainFill(VP8LHashChain* const p, int quality,
const uint32_t* const argb, int xsize, int ysize,
int low_effort) {
const int size = xsize * ysize;
const int iter_max = GetMaxItersForQuality(quality);
const uint32_t window_size = GetWindowSizeForHashChain(quality, xsize);
int pos;
int argb_comp;
uint32_t base_position;
int32_t* hash_to_first_index;
// Temporarily use the p->offset_length_ as a hash chain.
int32_t* chain = (int32_t*)p->offset_length_;
assert(size > 0);
assert(p->size_ != 0);
assert(p->offset_length_ != NULL);
if (size <= 2) {
p->offset_length_[0] = p->offset_length_[size - 1] = 0;
return 1;
}
hash_to_first_index =
(int32_t*)WebPSafeMalloc(HASH_SIZE, sizeof(*hash_to_first_index));
if (hash_to_first_index == NULL) return 0;
// Set the int32_t array to -1.
memset(hash_to_first_index, 0xff, HASH_SIZE * sizeof(*hash_to_first_index));
// Fill the chain linking pixels with the same hash.
argb_comp = (argb[0] == argb[1]);
for (pos = 0; pos < size - 2;) {
uint32_t hash_code;
const int argb_comp_next = (argb[pos + 1] == argb[pos + 2]);
if (argb_comp && argb_comp_next) {
// Consecutive pixels with the same color will share the same hash.
// We therefore use a different hash: the color and its repetition
// length.
uint32_t tmp[2];
uint32_t len = 1;
tmp[0] = argb[pos];
// Figure out how far the pixels are the same.
// The last pixel has a different 64 bit hash, as its next pixel does
// not have the same color, so we just need to get to the last pixel equal
// to its follower.
while (pos + (int)len + 2 < size && argb[pos + len + 2] == argb[pos]) {
++len;
}
if (len > MAX_LENGTH) {
// Skip the pixels that match for distance=1 and length>MAX_LENGTH
// because they are linked to their predecessor and we automatically
// check that in the main for loop below. Skipping means setting no
// predecessor in the chain, hence -1.
memset(chain + pos, 0xff, (len - MAX_LENGTH) * sizeof(*chain));
pos += len - MAX_LENGTH;
len = MAX_LENGTH;
}
// Process the rest of the hash chain.
while (len) {
tmp[1] = len--;
hash_code = GetPixPairHash64(tmp);
chain[pos] = hash_to_first_index[hash_code];
hash_to_first_index[hash_code] = pos++;
}
argb_comp = 0;
} else {
// Just move one pixel forward.
hash_code = GetPixPairHash64(argb + pos);
chain[pos] = hash_to_first_index[hash_code];
hash_to_first_index[hash_code] = pos++;
argb_comp = argb_comp_next;
}
}
// Process the penultimate pixel.
chain[pos] = hash_to_first_index[GetPixPairHash64(argb + pos)];
WebPSafeFree(hash_to_first_index);
// Find the best match interval at each pixel, defined by an offset to the
// pixel and a length. The right-most pixel cannot match anything to the right
// (hence a best length of 0) and the left-most pixel nothing to the left
// (hence an offset of 0).
assert(size > 2);
p->offset_length_[0] = p->offset_length_[size - 1] = 0;
for (base_position = size - 2; base_position > 0;) {
const int max_len = MaxFindCopyLength(size - 1 - base_position);
const uint32_t* const argb_start = argb + base_position;
int iter = iter_max;
int best_length = 0;
uint32_t best_distance = 0;
uint32_t best_argb;
const int min_pos =
(base_position > window_size) ? base_position - window_size : 0;
const int length_max = (max_len < 256) ? max_len : 256;
uint32_t max_base_position;
pos = chain[base_position];
if (!low_effort) {
int curr_length;
// Heuristic: use the comparison with the above line as an initialization.
if (base_position >= (uint32_t)xsize) {
curr_length = FindMatchLength(argb_start - xsize, argb_start,
best_length, max_len);
if (curr_length > best_length) {
best_length = curr_length;
best_distance = xsize;
}
--iter;
}
// Heuristic: compare to the previous pixel.
curr_length =
FindMatchLength(argb_start - 1, argb_start, best_length, max_len);
if (curr_length > best_length) {
best_length = curr_length;
best_distance = 1;
}
--iter;
// Skip the for loop if we already have the maximum.
if (best_length == MAX_LENGTH) pos = min_pos - 1;
}
best_argb = argb_start[best_length];
for (; pos >= min_pos && --iter; pos = chain[pos]) {
int curr_length;
assert(base_position > (uint32_t)pos);
if (argb[pos + best_length] != best_argb) continue;
curr_length = VP8LVectorMismatch(argb + pos, argb_start, max_len);
if (best_length < curr_length) {
best_length = curr_length;
best_distance = base_position - pos;
best_argb = argb_start[best_length];
// Stop if we have reached a good enough length.
if (best_length >= length_max) break;
}
}
// We have the best match but in case the two intervals continue matching
// to the left, we have the best matches for the left-extended pixels.
max_base_position = base_position;
while (1) {
assert(best_length <= MAX_LENGTH);
assert(best_distance <= WINDOW_SIZE);
p->offset_length_[base_position] =
(best_distance << MAX_LENGTH_BITS) | (uint32_t)best_length;
--base_position;
// Stop if we don't have a match or if we are out of bounds.
if (best_distance == 0 || base_position == 0) break;
// Stop if we cannot extend the matching intervals to the left.
if (base_position < best_distance ||
argb[base_position - best_distance] != argb[base_position]) {
break;
}
// Stop if we are matching at its limit because there could be a closer
// matching interval with the same maximum length. Then again, if the
// matching interval is as close as possible (best_distance == 1), we will
// never find anything better so let's continue.
if (best_length == MAX_LENGTH && best_distance != 1 &&
base_position + MAX_LENGTH < max_base_position) {
break;
}
if (best_length < MAX_LENGTH) {
++best_length;
max_base_position = base_position;
}
}
}
return 1;
}
static WEBP_INLINE int HashChainFindOffset(const VP8LHashChain* const p,
const int base_position) {
return p->offset_length_[base_position] >> MAX_LENGTH_BITS;
}
static WEBP_INLINE int HashChainFindLength(const VP8LHashChain* const p,
const int base_position) {
return p->offset_length_[base_position] & ((1U << MAX_LENGTH_BITS) - 1);
}
static WEBP_INLINE void HashChainFindCopy(const VP8LHashChain* const p,
int base_position,
int* const offset_ptr,
int* const length_ptr) {
*offset_ptr = HashChainFindOffset(p, base_position);
*length_ptr = HashChainFindLength(p, base_position);
}
static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache,
VP8LColorCache* const hashers,
VP8LBackwardRefs* const refs) {
PixOrCopy v;
if (use_color_cache) {
const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel);
if (VP8LColorCacheLookup(hashers, key) == pixel) {
v = PixOrCopyCreateCacheIdx(key);
} else {
v = PixOrCopyCreateLiteral(pixel);
VP8LColorCacheSet(hashers, key, pixel);
}
} else {
v = PixOrCopyCreateLiteral(pixel);
}
BackwardRefsCursorAdd(refs, v);
}
static int BackwardReferencesRle(int xsize, int ysize,
const uint32_t* const argb,
int cache_bits, VP8LBackwardRefs* const refs) {
const int pix_count = xsize * ysize;
int i, k;
const int use_color_cache = (cache_bits > 0);
VP8LColorCache hashers;
if (use_color_cache && !VP8LColorCacheInit(&hashers, cache_bits)) {
return 0;
}
ClearBackwardRefs(refs);
// Add first pixel as literal.
AddSingleLiteral(argb[0], use_color_cache, &hashers, refs);
i = 1;
while (i < pix_count) {
const int max_len = MaxFindCopyLength(pix_count - i);
const int rle_len = FindMatchLength(argb + i, argb + i - 1, 0, max_len);
const int prev_row_len = (i < xsize) ? 0 :
FindMatchLength(argb + i, argb + i - xsize, 0, max_len);
if (rle_len >= prev_row_len && rle_len >= MIN_LENGTH) {
BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, rle_len));
// We don't need to update the color cache here since it is always the
// same pixel being copied, and that does not change the color cache
// state.
i += rle_len;
} else if (prev_row_len >= MIN_LENGTH) {
BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(xsize, prev_row_len));
if (use_color_cache) {
for (k = 0; k < prev_row_len; ++k) {
VP8LColorCacheInsert(&hashers, argb[i + k]);
}
}
i += prev_row_len;
} else {
AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
i++;
}
}
if (use_color_cache) VP8LColorCacheClear(&hashers);
return !refs->error_;
}
static int BackwardReferencesLz77(int xsize, int ysize,
const uint32_t* const argb, int cache_bits,
const VP8LHashChain* const hash_chain,
VP8LBackwardRefs* const refs) {
int i;
int i_last_check = -1;
int ok = 0;
int cc_init = 0;
const int use_color_cache = (cache_bits > 0);
const int pix_count = xsize * ysize;
VP8LColorCache hashers;
if (use_color_cache) {
cc_init = VP8LColorCacheInit(&hashers, cache_bits);
if (!cc_init) goto Error;
}
ClearBackwardRefs(refs);
for (i = 0; i < pix_count;) {
// Alternative#1: Code the pixels starting at 'i' using backward reference.
int offset = 0;
int len = 0;
int j;
HashChainFindCopy(hash_chain, i, &offset, &len);
if (len >= MIN_LENGTH) {
const int len_ini = len;
int max_reach = 0;
assert(i + len < pix_count);
// Only start from what we have not checked already.
i_last_check = (i > i_last_check) ? i : i_last_check;
// We know the best match for the current pixel but we try to find the
// best matches for the current pixel AND the next one combined.
// The naive method would use the intervals:
// [i,i+len) + [i+len, length of best match at i+len)
// while we check if we can use:
// [i,j) (where j<=i+len) + [j, length of best match at j)
for (j = i_last_check + 1; j <= i + len_ini; ++j) {
const int len_j = HashChainFindLength(hash_chain, j);
const int reach =
j + (len_j >= MIN_LENGTH ? len_j : 1); // 1 for single literal.
if (reach > max_reach) {
len = j - i;
max_reach = reach;
}
}
} else {
len = 1;
}
// Go with literal or backward reference.
assert(len > 0);
if (len == 1) {
AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
} else {
BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
if (use_color_cache) {
for (j = i; j < i + len; ++j) VP8LColorCacheInsert(&hashers, argb[j]);
}
}
i += len;
}
ok = !refs->error_;
Error:
if (cc_init) VP8LColorCacheClear(&hashers);
return ok;
}
// -----------------------------------------------------------------------------
typedef struct {
double alpha_[VALUES_IN_BYTE];
double red_[VALUES_IN_BYTE];
double blue_[VALUES_IN_BYTE];
double distance_[NUM_DISTANCE_CODES];
double* literal_;
} CostModel;
static int BackwardReferencesTraceBackwards(
int xsize, int ysize, const uint32_t* const argb, int quality,
int cache_bits, const VP8LHashChain* const hash_chain,
VP8LBackwardRefs* const refs);
static void ConvertPopulationCountTableToBitEstimates(
int num_symbols, const uint32_t population_counts[], double output[]) {
uint32_t sum = 0;
int nonzeros = 0;
int i;
for (i = 0; i < num_symbols; ++i) {
sum += population_counts[i];
if (population_counts[i] > 0) {
++nonzeros;
}
}
if (nonzeros <= 1) {
memset(output, 0, num_symbols * sizeof(*output));
} else {
const double logsum = VP8LFastLog2(sum);
for (i = 0; i < num_symbols; ++i) {
output[i] = logsum - VP8LFastLog2(population_counts[i]);
}
}
}
static int CostModelBuild(CostModel* const m, int cache_bits,
VP8LBackwardRefs* const refs) {
int ok = 0;
VP8LHistogram* const histo = VP8LAllocateHistogram(cache_bits);
if (histo == NULL) goto Error;
VP8LHistogramCreate(histo, refs, cache_bits);
ConvertPopulationCountTableToBitEstimates(
VP8LHistogramNumCodes(histo->palette_code_bits_),
histo->literal_, m->literal_);
ConvertPopulationCountTableToBitEstimates(
VALUES_IN_BYTE, histo->red_, m->red_);
ConvertPopulationCountTableToBitEstimates(
VALUES_IN_BYTE, histo->blue_, m->blue_);
ConvertPopulationCountTableToBitEstimates(
VALUES_IN_BYTE, histo->alpha_, m->alpha_);
ConvertPopulationCountTableToBitEstimates(
NUM_DISTANCE_CODES, histo->distance_, m->distance_);
ok = 1;
Error:
VP8LFreeHistogram(histo);
return ok;
}
static WEBP_INLINE double GetLiteralCost(const CostModel* const m, uint32_t v) {
return m->alpha_[v >> 24] +
m->red_[(v >> 16) & 0xff] +
m->literal_[(v >> 8) & 0xff] +
m->blue_[v & 0xff];
}
static WEBP_INLINE double GetCacheCost(const CostModel* const m, uint32_t idx) {
const int literal_idx = VALUES_IN_BYTE + NUM_LENGTH_CODES + idx;
return m->literal_[literal_idx];
}
static WEBP_INLINE double GetLengthCost(const CostModel* const m,
uint32_t length) {
int code, extra_bits;
VP8LPrefixEncodeBits(length, &code, &extra_bits);
return m->literal_[VALUES_IN_BYTE + code] + extra_bits;
}
static WEBP_INLINE double GetDistanceCost(const CostModel* const m,
uint32_t distance) {
int code, extra_bits;
VP8LPrefixEncodeBits(distance, &code, &extra_bits);
return m->distance_[code] + extra_bits;
}
static void AddSingleLiteralWithCostModel(const uint32_t* const argb,
VP8LColorCache* const hashers,
const CostModel* const cost_model,
int idx, int use_color_cache,
double prev_cost, float* const cost,
uint16_t* const dist_array) {
double cost_val = prev_cost;
const uint32_t color = argb[0];
const int ix = use_color_cache ? VP8LColorCacheContains(hashers, color) : -1;
if (ix >= 0) {
// use_color_cache is true and hashers contains color
const double mul0 = 0.68;
cost_val += GetCacheCost(cost_model, ix) * mul0;
} else {
const double mul1 = 0.82;
if (use_color_cache) VP8LColorCacheInsert(hashers, color);
cost_val += GetLiteralCost(cost_model, color) * mul1;
}
if (cost[idx] > cost_val) {
cost[idx] = (float)cost_val;
dist_array[idx] = 1; // only one is inserted.
}
}
// -----------------------------------------------------------------------------
// CostManager and interval handling
// Empirical value to avoid high memory consumption but good for performance.
#define COST_CACHE_INTERVAL_SIZE_MAX 100
// To perform backward reference every pixel at index index_ is considered and
// the cost for the MAX_LENGTH following pixels computed. Those following pixels
// at index index_ + k (k from 0 to MAX_LENGTH) have a cost of:
// distance_cost_ at index_ + GetLengthCost(cost_model, k)
// (named cost) (named cached cost)
// and the minimum value is kept. GetLengthCost(cost_model, k) is cached in an
// array of size MAX_LENGTH.
// Instead of performing MAX_LENGTH comparisons per pixel, we keep track of the
// minimal values using intervals, for which lower_ and upper_ bounds are kept.
// An interval is defined by the index_ of the pixel that generated it and
// is only useful in a range of indices from start_ to end_ (exclusive), i.e.
// it contains the minimum value for pixels between start_ and end_.
// Intervals are stored in a linked list and ordered by start_. When a new
// interval has a better minimum, old intervals are split or removed.
typedef struct CostInterval CostInterval;
struct CostInterval {
double lower_;
double upper_;
int start_;
int end_;
double distance_cost_;
int index_;
CostInterval* previous_;
CostInterval* next_;
};
// The GetLengthCost(cost_model, k) part of the costs is also bounded for
// efficiency in a set of intervals of a different type.
// If those intervals are small enough, they are not used for comparison and
// written into the costs right away.
typedef struct {
double lower_; // Lower bound of the interval.
double upper_; // Upper bound of the interval.
int start_;
int end_; // Exclusive.
int do_write_; // If !=0, the interval is saved to cost instead of being kept
// for comparison.
} CostCacheInterval;
// This structure is in charge of managing intervals and costs.
// It caches the different CostCacheInterval, caches the different
// GetLengthCost(cost_model, k) in cost_cache_ and the CostInterval's (whose
// count_ is limited by COST_CACHE_INTERVAL_SIZE_MAX).
#define COST_MANAGER_MAX_FREE_LIST 10
typedef struct {
CostInterval* head_;
int count_; // The number of stored intervals.
CostCacheInterval* cache_intervals_;
size_t cache_intervals_size_;
double cost_cache_[MAX_LENGTH]; // Contains the GetLengthCost(cost_model, k).
double min_cost_cache_; // The minimum value in cost_cache_[1:].
double max_cost_cache_; // The maximum value in cost_cache_[1:].
float* costs_;
uint16_t* dist_array_;
// Most of the time, we only need few intervals -> use a free-list, to avoid
// fragmentation with small allocs in most common cases.
CostInterval intervals_[COST_MANAGER_MAX_FREE_LIST];
CostInterval* free_intervals_;
// These are regularly malloc'd remains. This list can't grow larger than than
// size COST_CACHE_INTERVAL_SIZE_MAX - COST_MANAGER_MAX_FREE_LIST, note.
CostInterval* recycled_intervals_;
// Buffer used in BackwardReferencesHashChainDistanceOnly to store the ends
// of the intervals that can have impacted the cost at a pixel.
int* interval_ends_;
int interval_ends_size_;
} CostManager;
static int IsCostCacheIntervalWritable(int start, int end) {
// 100 is the length for which we consider an interval for comparison, and not
// for writing.
// The first intervals are very small and go in increasing size. This constant
// helps merging them into one big interval (up to index 150/200 usually from
// which intervals start getting much bigger).
// This value is empirical.
return (end - start + 1 < 100);
}
static void CostIntervalAddToFreeList(CostManager* const manager,
CostInterval* const interval) {
interval->next_ = manager->free_intervals_;
manager->free_intervals_ = interval;
}
static int CostIntervalIsInFreeList(const CostManager* const manager,
const CostInterval* const interval) {
return (interval >= &manager->intervals_[0] &&
interval <= &manager->intervals_[COST_MANAGER_MAX_FREE_LIST - 1]);
}
static void CostManagerInitFreeList(CostManager* const manager) {
int i;
manager->free_intervals_ = NULL;
for (i = 0; i < COST_MANAGER_MAX_FREE_LIST; ++i) {
CostIntervalAddToFreeList(manager, &manager->intervals_[i]);
}
}
static void DeleteIntervalList(CostManager* const manager,
const CostInterval* interval) {
while (interval != NULL) {
const CostInterval* const next = interval->next_;
if (!CostIntervalIsInFreeList(manager, interval)) {
WebPSafeFree((void*)interval);
} // else: do nothing
interval = next;
}
}
static void CostManagerClear(CostManager* const manager) {
if (manager == NULL) return;
WebPSafeFree(manager->costs_);
WebPSafeFree(manager->cache_intervals_);
WebPSafeFree(manager->interval_ends_);
// Clear the interval lists.
DeleteIntervalList(manager, manager->head_);
manager->head_ = NULL;
DeleteIntervalList(manager, manager->recycled_intervals_);
manager->recycled_intervals_ = NULL;
// Reset pointers, count_ and cache_intervals_size_.
memset(manager, 0, sizeof(*manager));
CostManagerInitFreeList(manager);
}
static int CostManagerInit(CostManager* const manager,
uint16_t* const dist_array, int pix_count,
const CostModel* const cost_model) {
int i;
const int cost_cache_size = (pix_count > MAX_LENGTH) ? MAX_LENGTH : pix_count;
// This constant is tied to the cost_model we use.
// Empirically, differences between intervals is usually of more than 1.
const double min_cost_diff = 0.1;
manager->costs_ = NULL;
manager->cache_intervals_ = NULL;
manager->interval_ends_ = NULL;
manager->head_ = NULL;
manager->recycled_intervals_ = NULL;
manager->count_ = 0;
manager->dist_array_ = dist_array;
CostManagerInitFreeList(manager);
// Fill in the cost_cache_.
manager->cache_intervals_size_ = 1;
manager->cost_cache_[0] = 0;
for (i = 1; i < cost_cache_size; ++i) {
manager->cost_cache_[i] = GetLengthCost(cost_model, i);
// Get an approximation of the number of bound intervals.
if (fabs(manager->cost_cache_[i] - manager->cost_cache_[i - 1]) >
min_cost_diff) {
++manager->cache_intervals_size_;
}
// Compute the minimum of cost_cache_.
if (i == 1) {
manager->min_cost_cache_ = manager->cost_cache_[1];
manager->max_cost_cache_ = manager->cost_cache_[1];
} else if (manager->cost_cache_[i] < manager->min_cost_cache_) {
manager->min_cost_cache_ = manager->cost_cache_[i];
} else if (manager->cost_cache_[i] > manager->max_cost_cache_) {
manager->max_cost_cache_ = manager->cost_cache_[i];
}
}
// With the current cost models, we have 15 intervals, so we are safe by
// setting a maximum of COST_CACHE_INTERVAL_SIZE_MAX.
if (manager->cache_intervals_size_ > COST_CACHE_INTERVAL_SIZE_MAX) {
manager->cache_intervals_size_ = COST_CACHE_INTERVAL_SIZE_MAX;
}
manager->cache_intervals_ = (CostCacheInterval*)WebPSafeMalloc(
manager->cache_intervals_size_, sizeof(*manager->cache_intervals_));
if (manager->cache_intervals_ == NULL) {
CostManagerClear(manager);
return 0;
}
// Fill in the cache_intervals_.
{
double cost_prev = -1e38f; // unprobably low initial value
CostCacheInterval* prev = NULL;
CostCacheInterval* cur = manager->cache_intervals_;
const CostCacheInterval* const end =
manager->cache_intervals_ + manager->cache_intervals_size_;
// Consecutive values in cost_cache_ are compared and if a big enough
// difference is found, a new interval is created and bounded.
for (i = 0; i < cost_cache_size; ++i) {
const double cost_val = manager->cost_cache_[i];
if (i == 0 ||
(fabs(cost_val - cost_prev) > min_cost_diff && cur + 1 < end)) {
if (i > 1) {
const int is_writable =
IsCostCacheIntervalWritable(cur->start_, cur->end_);
// Merge with the previous interval if both are writable.
if (is_writable && cur != manager->cache_intervals_ &&
prev->do_write_) {
// Update the previous interval.
prev->end_ = cur->end_;
if (cur->lower_ < prev->lower_) {
prev->lower_ = cur->lower_;
} else if (cur->upper_ > prev->upper_) {
prev->upper_ = cur->upper_;
}
} else {
cur->do_write_ = is_writable;
prev = cur;
++cur;
}
}
// Initialize an interval.
cur->start_ = i;
cur->do_write_ = 0;
cur->lower_ = cost_val;
cur->upper_ = cost_val;
} else {
// Update the current interval bounds.
if (cost_val < cur->lower_) {
cur->lower_ = cost_val;
} else if (cost_val > cur->upper_) {
cur->upper_ = cost_val;
}
}
cur->end_ = i + 1;
cost_prev = cost_val;
}
manager->cache_intervals_size_ = cur + 1 - manager->cache_intervals_;
}
manager->costs_ = (float*)WebPSafeMalloc(pix_count, sizeof(*manager->costs_));
if (manager->costs_ == NULL) {
CostManagerClear(manager);
return 0;
}
// Set the initial costs_ high for every pixel as we will keep the minimum.
for (i = 0; i < pix_count; ++i) manager->costs_[i] = 1e38f;
// The cost at pixel is influenced by the cost intervals from previous pixels.
// Let us take the specific case where the offset is the same (which actually
// happens a lot in case of uniform regions).
// pixel i contributes to j>i a cost of: offset cost + cost_cache_[j-i]
// pixel i+1 contributes to j>i a cost of: 2*offset cost + cost_cache_[j-i-1]
// pixel i+2 contributes to j>i a cost of: 3*offset cost + cost_cache_[j-i-2]
// and so on.
// A pixel i influences the following length(j) < MAX_LENGTH pixels. What is
// the value of j such that pixel i + j cannot influence any of those pixels?
// This value is such that:
// max of cost_cache_ < j*offset cost + min of cost_cache_
// (pixel i + j 's cost cannot beat the worst cost given by pixel i).
// This value will be used to optimize the cost computation in
// BackwardReferencesHashChainDistanceOnly.
{
// The offset cost is computed in GetDistanceCost and has a minimum value of
// the minimum in cost_model->distance_. The case where the offset cost is 0
// will be dealt with differently later so we are only interested in the
// minimum non-zero offset cost.
double offset_cost_min = 0.;
int size;
for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
if (cost_model->distance_[i] != 0) {
if (offset_cost_min == 0.) {
offset_cost_min = cost_model->distance_[i];
} else if (cost_model->distance_[i] < offset_cost_min) {
offset_cost_min = cost_model->distance_[i];
}
}
}
// In case all the cost_model->distance_ is 0, the next non-zero cost we
// can have is from the extra bit in GetDistanceCost, hence 1.
if (offset_cost_min < 1.) offset_cost_min = 1.;
size = 1 + (int)ceil((manager->max_cost_cache_ - manager->min_cost_cache_) /
offset_cost_min);
// Empirically, we usually end up with a value below 100.
if (size > MAX_LENGTH) size = MAX_LENGTH;
manager->interval_ends_ =
(int*)WebPSafeMalloc(size, sizeof(*manager->interval_ends_));
if (manager->interval_ends_ == NULL) {
CostManagerClear(manager);
return 0;
}
manager->interval_ends_size_ = size;
}
return 1;
}
// Given the distance_cost for pixel 'index', update the cost at pixel 'i' if it
// is smaller than the previously computed value.
static WEBP_INLINE void UpdateCost(CostManager* const manager, int i, int index,
double distance_cost) {
int k = i - index;
double cost_tmp;
assert(k >= 0 && k < MAX_LENGTH);
cost_tmp = distance_cost + manager->cost_cache_[k];
if (manager->costs_[i] > cost_tmp) {
manager->costs_[i] = (float)cost_tmp;
manager->dist_array_[i] = k + 1;
}
}
// Given the distance_cost for pixel 'index', update the cost for all the pixels
// between 'start' and 'end' excluded.
static WEBP_INLINE void UpdateCostPerInterval(CostManager* const manager,
int start, int end, int index,
double distance_cost) {
int i;
for (i = start; i < end; ++i) UpdateCost(manager, i, index, distance_cost);
}
// Given two intervals, make 'prev' be the previous one of 'next' in 'manager'.
static WEBP_INLINE void ConnectIntervals(CostManager* const manager,
CostInterval* const prev,
CostInterval* const next) {
if (prev != NULL) {
prev->next_ = next;
} else {
manager->head_ = next;
}
if (next != NULL) next->previous_ = prev;
}
// Pop an interval in the manager.
static WEBP_INLINE void PopInterval(CostManager* const manager,
CostInterval* const interval) {
CostInterval* const next = interval->next_;
if (interval == NULL) return;
ConnectIntervals(manager, interval->previous_, next);
if (CostIntervalIsInFreeList(manager, interval)) {
CostIntervalAddToFreeList(manager, interval);
} else { // recycle regularly malloc'd intervals too
interval->next_ = manager->recycled_intervals_;
manager->recycled_intervals_ = interval;
}
--manager->count_;
assert(manager->count_ >= 0);
}
// Update the cost at index i by going over all the stored intervals that
// overlap with i.
static WEBP_INLINE void UpdateCostPerIndex(CostManager* const manager, int i) {
CostInterval* current = manager->head_;
while (current != NULL && current->start_ <= i) {
if (current->end_ <= i) {
// We have an outdated interval, remove it.
CostInterval* next = current->next_;
PopInterval(manager, current);
current = next;
} else {
UpdateCost(manager, i, current->index_, current->distance_cost_);
current = current->next_;
}
}
}
// Given a current orphan interval and its previous interval, before
// it was orphaned (which can be NULL), set it at the right place in the list
// of intervals using the start_ ordering and the previous interval as a hint.
static WEBP_INLINE void PositionOrphanInterval(CostManager* const manager,
CostInterval* const current,
CostInterval* previous) {
assert(current != NULL);
if (previous == NULL) previous = manager->head_;
while (previous != NULL && current->start_ < previous->start_) {
previous = previous->previous_;
}
while (previous != NULL && previous->next_ != NULL &&
previous->next_->start_ < current->start_) {
previous = previous->next_;
}
if (previous != NULL) {
ConnectIntervals(manager, current, previous->next_);
} else {
ConnectIntervals(manager, current, manager->head_);
}
ConnectIntervals(manager, previous, current);
}
// Insert an interval in the list contained in the manager by starting at
// interval_in as a hint. The intervals are sorted by start_ value.
static WEBP_INLINE void InsertInterval(CostManager* const manager,
CostInterval* const interval_in,
double distance_cost, double lower,
double upper, int index, int start,
int end) {
CostInterval* interval_new;
if (IsCostCacheIntervalWritable(start, end) ||
manager->count_ >= COST_CACHE_INTERVAL_SIZE_MAX) {
// Write down the interval if it is too small.
UpdateCostPerInterval(manager, start, end, index, distance_cost);
return;
}
if (manager->free_intervals_ != NULL) {
interval_new = manager->free_intervals_;
manager->free_intervals_ = interval_new->next_;
} else if (manager->recycled_intervals_ != NULL) {
interval_new = manager->recycled_intervals_;
manager->recycled_intervals_ = interval_new->next_;
} else { // malloc for good
interval_new = (CostInterval*)WebPSafeMalloc(1, sizeof(*interval_new));
if (interval_new == NULL) {
// Write down the interval if we cannot create it.
UpdateCostPerInterval(manager, start, end, index, distance_cost);
return;
}
}
interval_new->distance_cost_ = distance_cost;
interval_new->lower_ = lower;
interval_new->upper_ = upper;
interval_new->index_ = index;
interval_new->start_ = start;
interval_new->end_ = end;
PositionOrphanInterval(manager, interval_new, interval_in);
++manager->count_;
}
// When an interval has its start_ or end_ modified, it needs to be
// repositioned in the linked list.
static WEBP_INLINE void RepositionInterval(CostManager* const manager,
CostInterval* const interval) {
if (IsCostCacheIntervalWritable(interval->start_, interval->end_)) {
// Maybe interval has been resized and is small enough to be removed.
UpdateCostPerInterval(manager, interval->start_, interval->end_,
interval->index_, interval->distance_cost_);
PopInterval(manager, interval);
return;
}
// Early exit if interval is at the right spot.
if ((interval->previous_ == NULL ||
interval->previous_->start_ <= interval->start_) &&
(interval->next_ == NULL ||
interval->start_ <= interval->next_->start_)) {
return;
}
ConnectIntervals(manager, interval->previous_, interval->next_);
PositionOrphanInterval(manager, interval, interval->previous_);
}
// Given a new cost interval defined by its start at index, its last value and
// distance_cost, add its contributions to the previous intervals and costs.
// If handling the interval or one of its subintervals becomes to heavy, its
// contribution is added to the costs right away.
static WEBP_INLINE void PushInterval(CostManager* const manager,
double distance_cost, int index,
int last) {
size_t i;
CostInterval* interval = manager->head_;
CostInterval* interval_next;
const CostCacheInterval* const cost_cache_intervals =
manager->cache_intervals_;
for (i = 0; i < manager->cache_intervals_size_ &&
cost_cache_intervals[i].start_ < last;
++i) {
// Define the intersection of the ith interval with the new one.
int start = index + cost_cache_intervals[i].start_;
const int end = index + (cost_cache_intervals[i].end_ > last
? last
: cost_cache_intervals[i].end_);
const double lower_in = cost_cache_intervals[i].lower_;
const double upper_in = cost_cache_intervals[i].upper_;
const double lower_full_in = distance_cost + lower_in;
const double upper_full_in = distance_cost + upper_in;
if (cost_cache_intervals[i].do_write_) {
UpdateCostPerInterval(manager, start, end, index, distance_cost);
continue;
}
for (; interval != NULL && interval->start_ < end && start < end;
interval = interval_next) {
const double lower_full_interval =
interval->distance_cost_ + interval->lower_;
const double upper_full_interval =
interval->distance_cost_ + interval->upper_;
interval_next = interval->next_;
// Make sure we have some overlap
if (start >= interval->end_) continue;
if (lower_full_in >= upper_full_interval) {
// When intervals are represented, the lower, the better.
// [**********************************************************]
// start end
// [----------------------------------]
// interval->start_ interval->end_
// If we are worse than what we already have, add whatever we have so
// far up to interval.
const int start_new = interval->end_;
InsertInterval(manager, interval, distance_cost, lower_in, upper_in,
index, start, interval->start_);
start = start_new;
continue;
}
// We know the two intervals intersect.
if (upper_full_in >= lower_full_interval) {
// There is no clear cut on which is best, so let's keep both.
// [*********[*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*]***********]
// start interval->start_ interval->end_ end
// OR
// [*********[*-*-*-*-*-*-*-*-*-*-*-]----------------------]
// start interval->start_ end interval->end_
const int end_new = (interval->end_ <= end) ? interval->end_ : end;
InsertInterval(manager, interval, distance_cost, lower_in, upper_in,
index, start, end_new);
start = end_new;
} else if (start <= interval->start_ && interval->end_ <= end) {
// [----------------------------------]
// interval->start_ interval->end_
// [**************************************************************]
// start end
// We can safely remove the old interval as it is fully included.
PopInterval(manager, interval);
} else {
if (interval->start_ <= start && end <= interval->end_) {
// [--------------------------------------------------------------]
// interval->start_ interval->end_
// [*****************************]
// start end
// We have to split the old interval as it fully contains the new one.
const int end_original = interval->end_;
interval->end_ = start;
InsertInterval(manager, interval, interval->distance_cost_,
interval->lower_, interval->upper_, interval->index_,
end, end_original);
} else if (interval->start_ < start) {
// [------------------------------------]
// interval->start_ interval->end_
// [*****************************]
// start end
interval->end_ = start;
} else {
// [------------------------------------]
// interval->start_ interval->end_
// [*****************************]
// start end
interval->start_ = end;
}
// The interval has been modified, we need to reposition it or write it.
RepositionInterval(manager, interval);
}
}
// Insert the remaining interval from start to end.
InsertInterval(manager, interval, distance_cost, lower_in, upper_in, index,
start, end);
}
}
static int BackwardReferencesHashChainDistanceOnly(
int xsize, int ysize, const uint32_t* const argb, int quality,
int cache_bits, const VP8LHashChain* const hash_chain,
VP8LBackwardRefs* const refs, uint16_t* const dist_array) {
int i;
int ok = 0;
int cc_init = 0;
const int pix_count = xsize * ysize;
const int use_color_cache = (cache_bits > 0);
const size_t literal_array_size = sizeof(double) *
(NUM_LITERAL_CODES + NUM_LENGTH_CODES +
((cache_bits > 0) ? (1 << cache_bits) : 0));
const size_t cost_model_size = sizeof(CostModel) + literal_array_size;
CostModel* const cost_model =
(CostModel*)WebPSafeCalloc(1ULL, cost_model_size);
VP8LColorCache hashers;
const int skip_length = 32 + quality;
const int skip_min_distance_code = 2;
CostManager* cost_manager =
(CostManager*)WebPSafeMalloc(1ULL, sizeof(*cost_manager));
if (cost_model == NULL || cost_manager == NULL) goto Error;
cost_model->literal_ = (double*)(cost_model + 1);
if (use_color_cache) {
cc_init = VP8LColorCacheInit(&hashers, cache_bits);
if (!cc_init) goto Error;
}
if (!CostModelBuild(cost_model, cache_bits, refs)) {
goto Error;
}
if (!CostManagerInit(cost_manager, dist_array, pix_count, cost_model)) {
goto Error;
}
// We loop one pixel at a time, but store all currently best points to
// non-processed locations from this point.
dist_array[0] = 0;
// Add first pixel as literal.
AddSingleLiteralWithCostModel(argb + 0, &hashers, cost_model, 0,
use_color_cache, 0.0, cost_manager->costs_,
dist_array);
for (i = 1; i < pix_count - 1; ++i) {
int offset = 0, len = 0;
double prev_cost = cost_manager->costs_[i - 1];
HashChainFindCopy(hash_chain, i, &offset, &len);
if (len >= 2) {
// If we are dealing with a non-literal.
const int code = DistanceToPlaneCode(xsize, offset);
const double offset_cost = GetDistanceCost(cost_model, code);
const int first_i = i;
int j_max = 0, interval_ends_index = 0;
const int is_offset_zero = (offset_cost == 0.);
if (!is_offset_zero) {
j_max = (int)ceil(
(cost_manager->max_cost_cache_ - cost_manager->min_cost_cache_) /
offset_cost);
if (j_max < 1) {
j_max = 1;
} else if (j_max > cost_manager->interval_ends_size_ - 1) {
// This could only happen in the case of MAX_LENGTH.
j_max = cost_manager->interval_ends_size_ - 1;
}
} // else j_max is unused anyway.
// Instead of considering all contributions from a pixel i by calling:
// PushInterval(cost_manager, prev_cost + offset_cost, i, len);
// we optimize these contributions in case offset_cost stays the same for
// consecutive pixels. This describes a set of pixels similar to a
// previous set (e.g. constant color regions).
for (; i < pix_count - 1; ++i) {
int offset_next, len_next;
prev_cost = cost_manager->costs_[i - 1];
if (is_offset_zero) {
// No optimization can be made so we just push all of the
// contributions from i.
PushInterval(cost_manager, prev_cost, i, len);
} else {
// j_max is chosen as the smallest j such that:
// max of cost_cache_ < j*offset cost + min of cost_cache_
// Therefore, the pixel influenced by i-j_max, cannot be influenced
// by i. Only the costs after the end of what i contributed need to be
// updated. cost_manager->interval_ends_ is a circular buffer that
// stores those ends.
const double distance_cost = prev_cost + offset_cost;
int j = cost_manager->interval_ends_[interval_ends_index];
if (i - first_i <= j_max ||
!IsCostCacheIntervalWritable(j, i + len)) {
PushInterval(cost_manager, distance_cost, i, len);
} else {
for (; j < i + len; ++j) {
UpdateCost(cost_manager, j, i, distance_cost);
}
}
// Store the new end in the circular buffer.
assert(interval_ends_index < cost_manager->interval_ends_size_);
cost_manager->interval_ends_[interval_ends_index] = i + len;
if (++interval_ends_index > j_max) interval_ends_index = 0;
}
// Check whether i is the last pixel to consider, as it is handled
// differently.
if (i + 1 >= pix_count - 1) break;
HashChainFindCopy(hash_chain, i + 1, &offset_next, &len_next);
if (offset_next != offset) break;
len = len_next;
UpdateCostPerIndex(cost_manager, i);
AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i,
use_color_cache, prev_cost,
cost_manager->costs_, dist_array);
}
// Submit the last pixel.
UpdateCostPerIndex(cost_manager, i + 1);
// This if is for speedup only. It roughly doubles the speed, and
// makes compression worse by .1 %.
if (len >= skip_length && code <= skip_min_distance_code) {
// Long copy for short distances, let's skip the middle
// lookups for better copies.
// 1) insert the hashes.
if (use_color_cache) {
int k;
for (k = 0; k < len; ++k) {
VP8LColorCacheInsert(&hashers, argb[i + k]);
}
}
// 2) jump.
{
const int i_next = i + len - 1; // for loop does ++i, thus -1 here.
for (; i <= i_next; ++i) UpdateCostPerIndex(cost_manager, i + 1);
i = i_next;
}
goto next_symbol;
}
if (len > 2) {
// Also try the smallest interval possible (size 2).
double cost_total =
prev_cost + offset_cost + GetLengthCost(cost_model, 1);
if (cost_manager->costs_[i + 1] > cost_total) {
cost_manager->costs_[i + 1] = (float)cost_total;
dist_array[i + 1] = 2;
}
}
} else {
// The pixel is added as a single literal so just update the costs.
UpdateCostPerIndex(cost_manager, i + 1);
}
AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i,
use_color_cache, prev_cost,
cost_manager->costs_, dist_array);
next_symbol: ;
}
// Handle the last pixel.
if (i == (pix_count - 1)) {
AddSingleLiteralWithCostModel(
argb + i, &hashers, cost_model, i, use_color_cache,
cost_manager->costs_[pix_count - 2], cost_manager->costs_, dist_array);
}
ok = !refs->error_;
Error:
if (cc_init) VP8LColorCacheClear(&hashers);
CostManagerClear(cost_manager);
WebPSafeFree(cost_model);
WebPSafeFree(cost_manager);
return ok;
}
// We pack the path at the end of *dist_array and return
// a pointer to this part of the array. Example:
// dist_array = [1x2xx3x2] => packed [1x2x1232], chosen_path = [1232]
static void TraceBackwards(uint16_t* const dist_array,
int dist_array_size,
uint16_t** const chosen_path,
int* const chosen_path_size) {
uint16_t* path = dist_array + dist_array_size;
uint16_t* cur = dist_array + dist_array_size - 1;
while (cur >= dist_array) {
const int k = *cur;
--path;
*path = k;
cur -= k;
}
*chosen_path = path;
*chosen_path_size = (int)(dist_array + dist_array_size - path);
}
static int BackwardReferencesHashChainFollowChosenPath(
const uint32_t* const argb, int cache_bits,
const uint16_t* const chosen_path, int chosen_path_size,
const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) {
const int use_color_cache = (cache_bits > 0);
int ix;
int i = 0;
int ok = 0;
int cc_init = 0;
VP8LColorCache hashers;
if (use_color_cache) {
cc_init = VP8LColorCacheInit(&hashers, cache_bits);
if (!cc_init) goto Error;
}
ClearBackwardRefs(refs);
for (ix = 0; ix < chosen_path_size; ++ix) {
const int len = chosen_path[ix];
if (len != 1) {
int k;
const int offset = HashChainFindOffset(hash_chain, i);
BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
if (use_color_cache) {
for (k = 0; k < len; ++k) {
VP8LColorCacheInsert(&hashers, argb[i + k]);
}
}
i += len;
} else {
PixOrCopy v;
const int idx =
use_color_cache ? VP8LColorCacheContains(&hashers, argb[i]) : -1;
if (idx >= 0) {
// use_color_cache is true and hashers contains argb[i]
// push pixel as a color cache index
v = PixOrCopyCreateCacheIdx(idx);
} else {
if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]);
v = PixOrCopyCreateLiteral(argb[i]);
}
BackwardRefsCursorAdd(refs, v);
++i;
}
}
ok = !refs->error_;
Error:
if (cc_init) VP8LColorCacheClear(&hashers);
return ok;
}
// Returns 1 on success.
static int BackwardReferencesTraceBackwards(
int xsize, int ysize, const uint32_t* const argb, int quality,
int cache_bits, const VP8LHashChain* const hash_chain,
VP8LBackwardRefs* const refs) {
int ok = 0;
const int dist_array_size = xsize * ysize;
uint16_t* chosen_path = NULL;
int chosen_path_size = 0;
uint16_t* dist_array =
(uint16_t*)WebPSafeMalloc(dist_array_size, sizeof(*dist_array));
if (dist_array == NULL) goto Error;
if (!BackwardReferencesHashChainDistanceOnly(
xsize, ysize, argb, quality, cache_bits, hash_chain,
refs, dist_array)) {
goto Error;
}
TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size);
if (!BackwardReferencesHashChainFollowChosenPath(
argb, cache_bits, chosen_path, chosen_path_size, hash_chain, refs)) {
goto Error;
}
ok = 1;
Error:
WebPSafeFree(dist_array);
return ok;
}
static void BackwardReferences2DLocality(int xsize,
const VP8LBackwardRefs* const refs) {
VP8LRefsCursor c = VP8LRefsCursorInit(refs);
while (VP8LRefsCursorOk(&c)) {
if (PixOrCopyIsCopy(c.cur_pos)) {
const int dist = c.cur_pos->argb_or_distance;
const int transformed_dist = DistanceToPlaneCode(xsize, dist);
c.cur_pos->argb_or_distance = transformed_dist;
}
VP8LRefsCursorNext(&c);
}
}
// Computes the entropies for a color cache size (in bits) between 0 (unused)
// and cache_bits_max (inclusive).
// Returns 1 on success, 0 in case of allocation error.
static int ComputeCacheEntropies(const uint32_t* argb,
const VP8LBackwardRefs* const refs,
int cache_bits_max, double entropies[]) {
int cc_init[MAX_COLOR_CACHE_BITS + 1] = { 0 };
VP8LColorCache hashers[MAX_COLOR_CACHE_BITS + 1];
VP8LRefsCursor c = VP8LRefsCursorInit(refs);
VP8LHistogram* histos[MAX_COLOR_CACHE_BITS + 1] = { NULL };
int ok = 0;
int i;
for (i = 0; i <= cache_bits_max; ++i) {
histos[i] = VP8LAllocateHistogram(i);
if (histos[i] == NULL) goto Error;
if (i == 0) continue;
cc_init[i] = VP8LColorCacheInit(&hashers[i], i);
if (!cc_init[i]) goto Error;
}
assert(cache_bits_max >= 0);
// Do not use the color cache for cache_bits=0.
while (VP8LRefsCursorOk(&c)) {
VP8LHistogramAddSinglePixOrCopy(histos[0], c.cur_pos);
VP8LRefsCursorNext(&c);
}
if (cache_bits_max > 0) {
c = VP8LRefsCursorInit(refs);
while (VP8LRefsCursorOk(&c)) {
const PixOrCopy* const v = c.cur_pos;
if (PixOrCopyIsLiteral(v)) {
const uint32_t pix = *argb++;
// The keys of the caches can be derived from the longest one.
int key = HashPix(pix, 32 - cache_bits_max);
for (i = cache_bits_max; i >= 1; --i, key >>= 1) {
if (VP8LColorCacheLookup(&hashers[i], key) == pix) {
++histos[i]->literal_[NUM_LITERAL_CODES + NUM_LENGTH_CODES + key];
} else {
VP8LColorCacheSet(&hashers[i], key, pix);
++histos[i]->blue_[pix & 0xff];
++histos[i]->literal_[(pix >> 8) & 0xff];
++histos[i]->red_[(pix >> 16) & 0xff];
++histos[i]->alpha_[pix >> 24];
}
}
} else {
// Update the histograms for distance/length.
int len = PixOrCopyLength(v);
int code_dist, code_len, extra_bits;
uint32_t argb_prev = *argb ^ 0xffffffffu;
VP8LPrefixEncodeBits(len, &code_len, &extra_bits);
VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code_dist, &extra_bits);
for (i = 1; i <= cache_bits_max; ++i) {
++histos[i]->literal_[NUM_LITERAL_CODES + code_len];
++histos[i]->distance_[code_dist];
}
// Update the colors caches.
do {
if (*argb != argb_prev) {
// Efficiency: insert only if the color changes.
int key = HashPix(*argb, 32 - cache_bits_max);
for (i = cache_bits_max; i >= 1; --i, key >>= 1) {
hashers[i].colors_[key] = *argb;
}
argb_prev = *argb;
}
argb++;
} while (--len != 0);
}
VP8LRefsCursorNext(&c);
}
}
for (i = 0; i <= cache_bits_max; ++i) {
entropies[i] = VP8LHistogramEstimateBits(histos[i]);
}
ok = 1;
Error:
for (i = 0; i <= cache_bits_max; ++i) {
if (cc_init[i]) VP8LColorCacheClear(&hashers[i]);
VP8LFreeHistogram(histos[i]);
}
return ok;
}
// Evaluate optimal cache bits for the local color cache.
// The input *best_cache_bits sets the maximum cache bits to use (passing 0
// implies disabling the local color cache). The local color cache is also
// disabled for the lower (<= 25) quality.
// Returns 0 in case of memory error.
static int CalculateBestCacheSize(const uint32_t* const argb,
int xsize, int ysize, int quality,
const VP8LHashChain* const hash_chain,
VP8LBackwardRefs* const refs,
int* const lz77_computed,
int* const best_cache_bits) {
int i;
int cache_bits_high = (quality <= 25) ? 0 : *best_cache_bits;
double entropy_min = MAX_ENTROPY;
double entropies[MAX_COLOR_CACHE_BITS + 1];
assert(cache_bits_high <= MAX_COLOR_CACHE_BITS);
*lz77_computed = 0;
if (cache_bits_high == 0) {
*best_cache_bits = 0;
// Local color cache is disabled.
return 1;
}
// Compute LZ77 with no cache (0 bits), as the ideal LZ77 with a color cache
// is not that different in practice.
if (!BackwardReferencesLz77(xsize, ysize, argb, 0, hash_chain, refs)) {
return 0;
}
// Find the cache_bits giving the lowest entropy. The search is done in a
// brute-force way as the function (entropy w.r.t cache_bits) can be
// anything in practice.
if (!ComputeCacheEntropies(argb, refs, cache_bits_high, entropies)) {
return 0;
}
for (i = 0; i <= cache_bits_high; ++i) {
if (i == 0 || entropies[i] < entropy_min) {
entropy_min = entropies[i];
*best_cache_bits = i;
}
}
return 1;
}
// Update (in-place) backward references for specified cache_bits.
static int BackwardRefsWithLocalCache(const uint32_t* const argb,
int cache_bits,
VP8LBackwardRefs* const refs) {
int pixel_index = 0;
VP8LColorCache hashers;
VP8LRefsCursor c = VP8LRefsCursorInit(refs);
if (!VP8LColorCacheInit(&hashers, cache_bits)) return 0;
while (VP8LRefsCursorOk(&c)) {
PixOrCopy* const v = c.cur_pos;
if (PixOrCopyIsLiteral(v)) {
const uint32_t argb_literal = v->argb_or_distance;
const int ix = VP8LColorCacheContains(&hashers, argb_literal);
if (ix >= 0) {
// hashers contains argb_literal
*v = PixOrCopyCreateCacheIdx(ix);
} else {
VP8LColorCacheInsert(&hashers, argb_literal);
}
++pixel_index;
} else {
// refs was created without local cache, so it can not have cache indexes.
int k;
assert(PixOrCopyIsCopy(v));
for (k = 0; k < v->len; ++k) {
VP8LColorCacheInsert(&hashers, argb[pixel_index++]);
}
}
VP8LRefsCursorNext(&c);
}
VP8LColorCacheClear(&hashers);
return 1;
}
static VP8LBackwardRefs* GetBackwardReferencesLowEffort(
int width, int height, const uint32_t* const argb,
int* const cache_bits, const VP8LHashChain* const hash_chain,
VP8LBackwardRefs refs_array[2]) {
VP8LBackwardRefs* refs_lz77 = &refs_array[0];
*cache_bits = 0;
if (!BackwardReferencesLz77(width, height, argb, 0, hash_chain, refs_lz77)) {
return NULL;
}
BackwardReferences2DLocality(width, refs_lz77);
return refs_lz77;
}
static VP8LBackwardRefs* GetBackwardReferences(
int width, int height, const uint32_t* const argb, int quality,
int* const cache_bits, const VP8LHashChain* const hash_chain,
VP8LBackwardRefs refs_array[2]) {
int lz77_is_useful;
int lz77_computed;
double bit_cost_lz77, bit_cost_rle;
VP8LBackwardRefs* best = NULL;
VP8LBackwardRefs* refs_lz77 = &refs_array[0];
VP8LBackwardRefs* refs_rle = &refs_array[1];
VP8LHistogram* histo = NULL;
if (!CalculateBestCacheSize(argb, width, height, quality, hash_chain,
refs_lz77, &lz77_computed, cache_bits)) {
goto Error;
}
if (lz77_computed) {
// Transform refs_lz77 for the optimized cache_bits.
if (*cache_bits > 0) {
if (!BackwardRefsWithLocalCache(argb, *cache_bits, refs_lz77)) {
goto Error;
}
}
} else {
if (!BackwardReferencesLz77(width, height, argb, *cache_bits, hash_chain,
refs_lz77)) {
goto Error;
}
}
if (!BackwardReferencesRle(width, height, argb, *cache_bits, refs_rle)) {
goto Error;
}
histo = VP8LAllocateHistogram(*cache_bits);
if (histo == NULL) goto Error;
{
// Evaluate LZ77 coding.
VP8LHistogramCreate(histo, refs_lz77, *cache_bits);
bit_cost_lz77 = VP8LHistogramEstimateBits(histo);
// Evaluate RLE coding.
VP8LHistogramCreate(histo, refs_rle, *cache_bits);
bit_cost_rle = VP8LHistogramEstimateBits(histo);
// Decide if LZ77 is useful.
lz77_is_useful = (bit_cost_lz77 < bit_cost_rle);
}
// Choose appropriate backward reference.
if (lz77_is_useful) {
// TraceBackwards is costly. Don't execute it at lower quality.
const int try_lz77_trace_backwards = (quality >= 25);
best = refs_lz77; // default guess: lz77 is better
if (try_lz77_trace_backwards) {
VP8LBackwardRefs* const refs_trace = refs_rle;
if (!VP8LBackwardRefsCopy(refs_lz77, refs_trace)) {
best = NULL;
goto Error;
}
if (BackwardReferencesTraceBackwards(width, height, argb, quality,
*cache_bits, hash_chain,
refs_trace)) {
double bit_cost_trace;
// Evaluate LZ77 coding.
VP8LHistogramCreate(histo, refs_trace, *cache_bits);
bit_cost_trace = VP8LHistogramEstimateBits(histo);
if (bit_cost_trace < bit_cost_lz77) {
best = refs_trace;
}
}
}
} else {
best = refs_rle;
}
BackwardReferences2DLocality(width, best);
Error:
VP8LFreeHistogram(histo);
return best;
}
VP8LBackwardRefs* VP8LGetBackwardReferences(
int width, int height, const uint32_t* const argb, int quality,
int low_effort, int* const cache_bits,
const VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[2]) {
if (low_effort) {
return GetBackwardReferencesLowEffort(width, height, argb, cache_bits,
hash_chain, refs_array);
} else {
return GetBackwardReferences(width, height, argb, quality, cache_bits,
hash_chain, refs_array);
}
}