/*
*
* Copyright (c) 2014-2016 The Khronos Group Inc.
* Copyright (c) 2014-2016 Valve Corporation
* Copyright (c) 2014-2016 LunarG, Inc.
* Copyright (C) 2015 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Jon Ashburn <jon@lunarg.com>
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
*
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdbool.h>
#include <string.h>
#include <sys/types.h>
#if defined(_WIN32)
#include "dirent_on_windows.h"
#else // _WIN32
#include <dirent.h>
#endif // _WIN32
#include "vk_loader_platform.h"
#include "loader.h"
#include "gpa_helper.h"
#include "table_ops.h"
#include "debug_report.h"
#include "wsi.h"
#include "extensions.h"
#include "vulkan/vk_icd.h"
#include "cJSON.h"
#include "murmurhash.h"
#if defined(__GNUC__)
#if (__GLIBC__ < 2) || ((__GLIBC__ == 2) && (__GLIBC_MINOR__ < 17))
#define secure_getenv __secure_getenv
#endif
#endif
struct loader_struct loader = {0};
// TLS for instance for alloc/free callbacks
THREAD_LOCAL_DECL struct loader_instance *tls_instance;
static size_t loader_platform_combine_path(char *dest, size_t len, ...);
struct loader_phys_dev_per_icd {
uint32_t count;
VkPhysicalDevice *phys_devs;
struct loader_icd *this_icd;
};
enum loader_debug {
LOADER_INFO_BIT = 0x01,
LOADER_WARN_BIT = 0x02,
LOADER_PERF_BIT = 0x04,
LOADER_ERROR_BIT = 0x08,
LOADER_DEBUG_BIT = 0x10,
};
uint32_t g_loader_debug = 0;
uint32_t g_loader_log_msgs = 0;
// thread safety lock for accessing global data structures such as "loader"
// all entrypoints on the instance chain need to be locked except GPA
// additionally CreateDevice and DestroyDevice needs to be locked
loader_platform_thread_mutex loader_lock;
loader_platform_thread_mutex loader_json_lock;
const char *std_validation_str = "VK_LAYER_LUNARG_standard_validation";
// This table contains the loader's instance dispatch table, which contains
// default functions if no instance layers are activated. This contains
// pointers to "terminator functions".
const VkLayerInstanceDispatchTable instance_disp = {
.GetInstanceProcAddr = vkGetInstanceProcAddr,
.DestroyInstance = terminator_DestroyInstance,
.EnumeratePhysicalDevices = terminator_EnumeratePhysicalDevices,
.GetPhysicalDeviceFeatures = terminator_GetPhysicalDeviceFeatures,
.GetPhysicalDeviceFormatProperties =
terminator_GetPhysicalDeviceFormatProperties,
.GetPhysicalDeviceImageFormatProperties =
terminator_GetPhysicalDeviceImageFormatProperties,
.GetPhysicalDeviceProperties = terminator_GetPhysicalDeviceProperties,
.GetPhysicalDeviceQueueFamilyProperties =
terminator_GetPhysicalDeviceQueueFamilyProperties,
.GetPhysicalDeviceMemoryProperties =
terminator_GetPhysicalDeviceMemoryProperties,
.EnumerateDeviceExtensionProperties =
terminator_EnumerateDeviceExtensionProperties,
.EnumerateDeviceLayerProperties = terminator_EnumerateDeviceLayerProperties,
.GetPhysicalDeviceSparseImageFormatProperties =
terminator_GetPhysicalDeviceSparseImageFormatProperties,
.DestroySurfaceKHR = terminator_DestroySurfaceKHR,
.GetPhysicalDeviceSurfaceSupportKHR =
terminator_GetPhysicalDeviceSurfaceSupportKHR,
.GetPhysicalDeviceSurfaceCapabilitiesKHR =
terminator_GetPhysicalDeviceSurfaceCapabilitiesKHR,
.GetPhysicalDeviceSurfaceFormatsKHR =
terminator_GetPhysicalDeviceSurfaceFormatsKHR,
.GetPhysicalDeviceSurfacePresentModesKHR =
terminator_GetPhysicalDeviceSurfacePresentModesKHR,
.CreateDebugReportCallbackEXT = terminator_CreateDebugReportCallback,
.DestroyDebugReportCallbackEXT = terminator_DestroyDebugReportCallback,
.DebugReportMessageEXT = terminator_DebugReportMessage,
.GetPhysicalDeviceExternalImageFormatPropertiesNV =
terminator_GetPhysicalDeviceExternalImageFormatPropertiesNV,
#ifdef VK_USE_PLATFORM_MIR_KHR
.CreateMirSurfaceKHR = terminator_CreateMirSurfaceKHR,
.GetPhysicalDeviceMirPresentationSupportKHR =
terminator_GetPhysicalDeviceMirPresentationSupportKHR,
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
.CreateWaylandSurfaceKHR = terminator_CreateWaylandSurfaceKHR,
.GetPhysicalDeviceWaylandPresentationSupportKHR =
terminator_GetPhysicalDeviceWaylandPresentationSupportKHR,
#endif
#ifdef VK_USE_PLATFORM_WIN32_KHR
.CreateWin32SurfaceKHR = terminator_CreateWin32SurfaceKHR,
.GetPhysicalDeviceWin32PresentationSupportKHR =
terminator_GetPhysicalDeviceWin32PresentationSupportKHR,
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
.CreateXcbSurfaceKHR = terminator_CreateXcbSurfaceKHR,
.GetPhysicalDeviceXcbPresentationSupportKHR =
terminator_GetPhysicalDeviceXcbPresentationSupportKHR,
#endif
#ifdef VK_USE_PLATFORM_XLIB_KHR
.CreateXlibSurfaceKHR = terminator_CreateXlibSurfaceKHR,
.GetPhysicalDeviceXlibPresentationSupportKHR =
terminator_GetPhysicalDeviceXlibPresentationSupportKHR,
#endif
#ifdef VK_USE_PLATFORM_ANDROID_KHR
.CreateAndroidSurfaceKHR = terminator_CreateAndroidSurfaceKHR,
#endif
.GetPhysicalDeviceDisplayPropertiesKHR =
terminator_GetPhysicalDeviceDisplayPropertiesKHR,
.GetPhysicalDeviceDisplayPlanePropertiesKHR =
terminator_GetPhysicalDeviceDisplayPlanePropertiesKHR,
.GetDisplayPlaneSupportedDisplaysKHR =
terminator_GetDisplayPlaneSupportedDisplaysKHR,
.GetDisplayModePropertiesKHR = terminator_GetDisplayModePropertiesKHR,
.CreateDisplayModeKHR = terminator_CreateDisplayModeKHR,
.GetDisplayPlaneCapabilitiesKHR = terminator_GetDisplayPlaneCapabilitiesKHR,
.CreateDisplayPlaneSurfaceKHR = terminator_CreateDisplayPlaneSurfaceKHR,
};
LOADER_PLATFORM_THREAD_ONCE_DECLARATION(once_init);
void *loader_instance_heap_alloc(const struct loader_instance *instance,
size_t size,
VkSystemAllocationScope alloc_scope) {
void *pMemory = NULL;
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
{
#else
if (instance && instance->alloc_callbacks.pfnAllocation) {
/* These are internal structures, so it's best to align everything to
* the largest unit size which is the size of a uint64_t.
*/
pMemory = instance->alloc_callbacks.pfnAllocation(
instance->alloc_callbacks.pUserData, size, sizeof(uint64_t),
alloc_scope);
} else {
#endif
pMemory = malloc(size);
}
return pMemory;
}
void loader_instance_heap_free(const struct loader_instance *instance,
void *pMemory) {
if (pMemory != NULL) {
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
{
#else
if (instance && instance->alloc_callbacks.pfnFree) {
instance->alloc_callbacks.pfnFree(
instance->alloc_callbacks.pUserData, pMemory);
} else {
#endif
free(pMemory);
}
}
}
void *loader_instance_heap_realloc(const struct loader_instance *instance,
void *pMemory, size_t orig_size, size_t size,
VkSystemAllocationScope alloc_scope) {
void *pNewMem = NULL;
if (pMemory == NULL || orig_size == 0) {
pNewMem = loader_instance_heap_alloc(instance, size, alloc_scope);
} else if (size == 0) {
loader_instance_heap_free(instance, pMemory);
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
#else
} else if (instance && instance->alloc_callbacks.pfnReallocation) {
/* These are internal structures, so it's best to align everything to
* the largest unit size which is the size of a uint64_t.
*/
pNewMem = instance->alloc_callbacks.pfnReallocation(
instance->alloc_callbacks.pUserData, pMemory, size,
sizeof(uint64_t), alloc_scope);
#endif
} else {
pNewMem = realloc(pMemory, size);
}
return pNewMem;
}
void *loader_instance_tls_heap_alloc(size_t size) {
return loader_instance_heap_alloc(tls_instance, size,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
}
void loader_instance_tls_heap_free(void *pMemory) {
loader_instance_heap_free(tls_instance, pMemory);
}
void *loader_device_heap_alloc(const struct loader_device *device, size_t size,
VkSystemAllocationScope alloc_scope) {
void *pMemory = NULL;
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
{
#else
if (device && device->alloc_callbacks.pfnAllocation) {
/* These are internal structures, so it's best to align everything to
* the largest unit size which is the size of a uint64_t.
*/
pMemory = device->alloc_callbacks.pfnAllocation(
device->alloc_callbacks.pUserData, size, sizeof(uint64_t),
alloc_scope);
} else {
#endif
pMemory = malloc(size);
}
return pMemory;
}
void loader_device_heap_free(const struct loader_device *device,
void *pMemory) {
if (pMemory != NULL) {
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
{
#else
if (device && device->alloc_callbacks.pfnFree) {
device->alloc_callbacks.pfnFree(device->alloc_callbacks.pUserData,
pMemory);
} else {
#endif
free(pMemory);
}
}
}
void *loader_device_heap_realloc(const struct loader_device *device,
void *pMemory, size_t orig_size, size_t size,
VkSystemAllocationScope alloc_scope) {
void *pNewMem = NULL;
if (pMemory == NULL || orig_size == 0) {
pNewMem = loader_device_heap_alloc(device, size, alloc_scope);
} else if (size == 0) {
loader_device_heap_free(device, pMemory);
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
#else
} else if (device && device->alloc_callbacks.pfnReallocation) {
/* These are internal structures, so it's best to align everything to
* the largest unit size which is the size of a uint64_t.
*/
pNewMem = device->alloc_callbacks.pfnReallocation(
device->alloc_callbacks.pUserData, pMemory, size, sizeof(uint64_t),
alloc_scope);
#endif
} else {
pNewMem = realloc(pMemory, size);
}
return pNewMem;
}
// Environment variables
#if defined(__linux__)
static inline char *loader_getenv(const char *name,
const struct loader_instance *inst) {
// No allocation of memory necessary for Linux, but we should at least touch
// the inst pointer to get rid of compiler warnings.
(void)inst;
return getenv(name);
}
static inline void loader_free_getenv(const char *val,
const struct loader_instance *inst) {
// No freeing of memory necessary for Linux, but we should at least touch
// the val and inst pointers to get rid of compiler warnings.
(void)val;
(void)inst;
}
#elif defined(WIN32)
static inline char *loader_getenv(const char *name,
const struct loader_instance *inst) {
char *retVal;
DWORD valSize;
valSize = GetEnvironmentVariableA(name, NULL, 0);
// valSize DOES include the null terminator, so for any set variable
// will always be at least 1. If it's 0, the variable wasn't set.
if (valSize == 0)
return NULL;
// Allocate the space necessary for the registry entry
if (NULL != inst && NULL != inst->alloc_callbacks.pfnAllocation) {
retVal = (char *)inst->alloc_callbacks.pfnAllocation(
inst->alloc_callbacks.pUserData, valSize, sizeof(char *),
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
} else {
retVal = (char *)malloc(valSize);
}
if (NULL != retVal) {
GetEnvironmentVariableA(name, retVal, valSize);
}
return retVal;
}
static inline void loader_free_getenv(char *val,
const struct loader_instance *inst) {
if (NULL != inst && NULL != inst->alloc_callbacks.pfnFree) {
inst->alloc_callbacks.pfnFree(inst->alloc_callbacks.pUserData, val);
} else {
free((void *)val);
}
}
#else
static inline char *loader_getenv(const char *name,
const struct loader_instance *inst) {
// stub func
(void)inst;
(void)name;
return NULL;
}
static inline void loader_free_getenv(const char *val,
const struct loader_instance *inst) {
// stub func
(void)val;
(void)inst;
}
#endif
void loader_log(const struct loader_instance *inst, VkFlags msg_type,
int32_t msg_code, const char *format, ...) {
char msg[512];
va_list ap;
int ret;
va_start(ap, format);
ret = vsnprintf(msg, sizeof(msg), format, ap);
if ((ret >= (int)sizeof(msg)) || ret < 0) {
msg[sizeof(msg) - 1] = '\0';
}
va_end(ap);
if (inst) {
util_DebugReportMessage(inst, msg_type,
VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT,
(uint64_t)inst, 0, msg_code, "loader", msg);
}
if (!(msg_type & g_loader_log_msgs)) {
return;
}
#if defined(WIN32)
OutputDebugString(msg);
OutputDebugString("\n");
#endif
fputs(msg, stderr);
fputc('\n', stderr);
}
VKAPI_ATTR VkResult VKAPI_CALL
vkSetInstanceDispatch(VkInstance instance, void *object) {
struct loader_instance *inst = loader_get_instance(instance);
if (!inst) {
return VK_ERROR_INITIALIZATION_FAILED;
}
loader_set_dispatch(object, inst->disp);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
vkSetDeviceDispatch(VkDevice device, void *object) {
struct loader_device *dev;
struct loader_icd *icd = loader_get_icd_and_device(device, &dev, NULL);
if (!icd) {
return VK_ERROR_INITIALIZATION_FAILED;
}
loader_set_dispatch(object, &dev->loader_dispatch);
return VK_SUCCESS;
}
#if defined(WIN32)
static char *loader_get_next_path(char *path);
/**
* Find the list of registry files (names within a key) in key "location".
*
* This function looks in the registry (hive = DEFAULT_VK_REGISTRY_HIVE) key as
*given in "location"
* for a list or name/values which are added to a returned list (function return
*value).
* The DWORD values within the key must be 0 or they are skipped.
* Function return is a string with a ';' separated list of filenames.
* Function return is NULL if no valid name/value pairs are found in the key,
* or the key is not found.
*
* \returns
* A string list of filenames as pointer.
* When done using the returned string list, pointer should be freed.
*/
static char *loader_get_registry_files(const struct loader_instance *inst,
char *location) {
LONG rtn_value;
HKEY hive, key;
DWORD access_flags;
char name[2048];
char *out = NULL;
char *loc = location;
char *next;
DWORD idx = 0;
DWORD name_size = sizeof(name);
DWORD value;
DWORD total_size = 4096;
DWORD value_size = sizeof(value);
while (*loc) {
next = loader_get_next_path(loc);
hive = DEFAULT_VK_REGISTRY_HIVE;
access_flags = KEY_QUERY_VALUE;
rtn_value = RegOpenKeyEx(hive, loc, 0, access_flags, &key);
if (rtn_value != ERROR_SUCCESS) {
// We still couldn't find the key, so give up:
loc = next;
continue;
}
while ((rtn_value = RegEnumValue(key, idx++, name, &name_size, NULL,
NULL, (LPBYTE)&value, &value_size)) ==
ERROR_SUCCESS) {
if (value_size == sizeof(value) && value == 0) {
if (out == NULL) {
out = loader_instance_heap_alloc(
inst, total_size, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == out) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Out of memory can't alloc space for registry data");
return NULL;
}
out[0] = '\0';
} else if (strlen(out) + name_size + 1 > total_size) {
out = loader_instance_heap_realloc(
inst, out, total_size, total_size * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == out) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Out of memory can't realloc space for registry data");
return NULL;
}
total_size *= 2;
}
if (strlen(out) == 0)
snprintf(out, name_size + 1, "%s", name);
else
snprintf(out + strlen(out), name_size + 2, "%c%s",
PATH_SEPERATOR, name);
}
name_size = 2048;
}
loc = next;
}
return out;
}
#endif // WIN32
/**
* Combine path elements, separating each element with the platform-specific
* directory separator, and save the combined string to a destination buffer,
* not exceeding the given length. Path elements are given as variadic args,
* with a NULL element terminating the list.
*
* \returns the total length of the combined string, not including an ASCII
* NUL termination character. This length may exceed the available storage:
* in this case, the written string will be truncated to avoid a buffer
* overrun, and the return value will greater than or equal to the storage
* size. A NULL argument may be provided as the destination buffer in order
* to determine the required string length without actually writing a string.
*/
static size_t loader_platform_combine_path(char *dest, size_t len, ...) {
size_t required_len = 0;
va_list ap;
const char *component;
va_start(ap, len);
while ((component = va_arg(ap, const char *))) {
if (required_len > 0) {
// This path element is not the first non-empty element; prepend
// a directory separator if space allows
if (dest && required_len + 1 < len) {
snprintf(dest + required_len, len - required_len, "%c",
DIRECTORY_SYMBOL);
}
required_len++;
}
if (dest && required_len < len) {
strncpy(dest + required_len, component, len - required_len);
}
required_len += strlen(component);
}
va_end(ap);
// strncpy(3) won't add a NUL terminating byte in the event of truncation.
if (dest && required_len >= len) {
dest[len - 1] = '\0';
}
return required_len;
}
/**
* Given string of three part form "maj.min.pat" convert to a vulkan version
* number.
*/
static uint32_t loader_make_version(char *vers_str) {
uint32_t vers = 0, major = 0, minor = 0, patch = 0;
char *vers_tok;
if (!vers_str) {
return vers;
}
vers_tok = strtok(vers_str, ".\"\n\r");
if (NULL != vers_tok) {
major = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
if (NULL != vers_tok) {
minor = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
if (NULL != vers_tok) {
patch = (uint16_t)atoi(vers_tok);
}
}
}
return VK_MAKE_VERSION(major, minor, patch);
}
bool compare_vk_extension_properties(const VkExtensionProperties *op1,
const VkExtensionProperties *op2) {
return strcmp(op1->extensionName, op2->extensionName) == 0 ? true : false;
}
/**
* Search the given ext_array for an extension
* matching the given vk_ext_prop
*/
bool has_vk_extension_property_array(const VkExtensionProperties *vk_ext_prop,
const uint32_t count,
const VkExtensionProperties *ext_array) {
for (uint32_t i = 0; i < count; i++) {
if (compare_vk_extension_properties(vk_ext_prop, &ext_array[i]))
return true;
}
return false;
}
/**
* Search the given ext_list for an extension
* matching the given vk_ext_prop
*/
bool has_vk_extension_property(const VkExtensionProperties *vk_ext_prop,
const struct loader_extension_list *ext_list) {
for (uint32_t i = 0; i < ext_list->count; i++) {
if (compare_vk_extension_properties(&ext_list->list[i], vk_ext_prop))
return true;
}
return false;
}
/**
* Search the given ext_list for a device extension matching the given ext_prop
*/
bool has_vk_dev_ext_property(
const VkExtensionProperties *ext_prop,
const struct loader_device_extension_list *ext_list) {
for (uint32_t i = 0; i < ext_list->count; i++) {
if (compare_vk_extension_properties(&ext_list->list[i].props, ext_prop))
return true;
}
return false;
}
/*
* Search the given layer list for a layer matching the given layer name
*/
static struct loader_layer_properties *
loader_get_layer_property(const char *name,
const struct loader_layer_list *layer_list) {
for (uint32_t i = 0; i < layer_list->count; i++) {
const VkLayerProperties *item = &layer_list->list[i].info;
if (strcmp(name, item->layerName) == 0)
return &layer_list->list[i];
}
return NULL;
}
/**
* Get the next unused layer property in the list. Init the property to zero.
*/
static struct loader_layer_properties *
loader_get_next_layer_property(const struct loader_instance *inst,
struct loader_layer_list *layer_list) {
if (layer_list->capacity == 0) {
layer_list->list =
loader_instance_heap_alloc(
inst, sizeof(struct loader_layer_properties) * 64,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (layer_list->list == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Out of memory can't add any layer properties to list");
return NULL;
}
memset(layer_list->list, 0,
sizeof(struct loader_layer_properties) * 64);
layer_list->capacity = sizeof(struct loader_layer_properties) * 64;
}
// ensure enough room to add an entry
if ((layer_list->count + 1) * sizeof(struct loader_layer_properties) >
layer_list->capacity) {
layer_list->list = loader_instance_heap_realloc(
inst, layer_list->list, layer_list->capacity,
layer_list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (layer_list->list == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"realloc failed for layer list");
return NULL;
}
layer_list->capacity *= 2;
}
layer_list->count++;
return &(layer_list->list[layer_list->count - 1]);
}
/**
* Remove all layer properties entrys from the list
*/
void loader_delete_layer_properties(const struct loader_instance *inst,
struct loader_layer_list *layer_list) {
uint32_t i, j;
struct loader_device_extension_list *dev_ext_list;
if (!layer_list)
return;
for (i = 0; i < layer_list->count; i++) {
loader_destroy_generic_list(
inst, (struct loader_generic_list *)&layer_list->list[i]
.instance_extension_list);
dev_ext_list = &layer_list->list[i].device_extension_list;
if (dev_ext_list->capacity > 0 &&
NULL != dev_ext_list->list &&
dev_ext_list->list->entrypoint_count > 0) {
for (j = 0; j < dev_ext_list->list->entrypoint_count; j++) {
loader_instance_heap_free(inst, dev_ext_list->list->entrypoints[j]);
}
loader_instance_heap_free(inst, dev_ext_list->list->entrypoints);
}
loader_destroy_generic_list(inst,
(struct loader_generic_list *)dev_ext_list);
}
layer_list->count = 0;
if (layer_list->capacity > 0) {
layer_list->capacity = 0;
loader_instance_heap_free(inst, layer_list->list);
}
}
static VkResult loader_add_instance_extensions(
const struct loader_instance *inst,
const PFN_vkEnumerateInstanceExtensionProperties fp_get_props,
const char *lib_name, struct loader_extension_list *ext_list) {
uint32_t i, count = 0;
VkExtensionProperties *ext_props;
VkResult res = VK_SUCCESS;
if (!fp_get_props) {
/* No EnumerateInstanceExtensionProperties defined */
goto out;
}
res = fp_get_props(NULL, &count, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Error getting Instance extension count from %s", lib_name);
goto out;
}
if (count == 0) {
/* No ExtensionProperties to report */
goto out;
}
ext_props = loader_stack_alloc(count * sizeof(VkExtensionProperties));
res = fp_get_props(NULL, &count, ext_props);
if (res != VK_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Error getting Instance extensions from %s", lib_name);
goto out;
}
for (i = 0; i < count; i++) {
char spec_version[64];
bool ext_unsupported =
wsi_unsupported_instance_extension(&ext_props[i]);
if (!ext_unsupported) {
snprintf(spec_version, sizeof(spec_version), "%d.%d.%d",
VK_MAJOR(ext_props[i].specVersion),
VK_MINOR(ext_props[i].specVersion),
VK_PATCH(ext_props[i].specVersion));
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"Instance Extension: %s (%s) version %s",
ext_props[i].extensionName, lib_name, spec_version);
res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]);
if (res != VK_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Failed to add %s to Instance extension list",
lib_name);
goto out;
}
}
}
out:
return res;
}
/*
* Initialize ext_list with the physical device extensions.
* The extension properties are passed as inputs in count and ext_props.
*/
static VkResult
loader_init_device_extensions(const struct loader_instance *inst,
struct loader_physical_device *phys_dev,
uint32_t count, VkExtensionProperties *ext_props,
struct loader_extension_list *ext_list) {
VkResult res;
uint32_t i;
res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list,
sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
return res;
}
for (i = 0; i < count; i++) {
char spec_version[64];
snprintf(spec_version, sizeof(spec_version), "%d.%d.%d",
VK_MAJOR(ext_props[i].specVersion),
VK_MINOR(ext_props[i].specVersion),
VK_PATCH(ext_props[i].specVersion));
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"Device Extension: %s (%s) version %s",
ext_props[i].extensionName,
phys_dev->this_icd->this_icd_lib->lib_name, spec_version);
res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]);
if (res != VK_SUCCESS)
return res;
}
return VK_SUCCESS;
}
VkResult loader_add_device_extensions(const struct loader_instance *inst,
PFN_vkEnumerateDeviceExtensionProperties
fpEnumerateDeviceExtensionProperties,
VkPhysicalDevice physical_device,
const char *lib_name,
struct loader_extension_list *ext_list) {
uint32_t i, count;
VkResult res;
VkExtensionProperties *ext_props;
res = fpEnumerateDeviceExtensionProperties(physical_device, NULL, &count,
NULL);
if (res == VK_SUCCESS && count > 0) {
ext_props = loader_stack_alloc(count * sizeof(VkExtensionProperties));
if (!ext_props) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
res = fpEnumerateDeviceExtensionProperties(physical_device, NULL,
&count, ext_props);
if (res != VK_SUCCESS) {
return res;
}
for (i = 0; i < count; i++) {
char spec_version[64];
snprintf(spec_version, sizeof(spec_version), "%d.%d.%d",
VK_MAJOR(ext_props[i].specVersion),
VK_MINOR(ext_props[i].specVersion),
VK_PATCH(ext_props[i].specVersion));
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"Device Extension: %s (%s) version %s",
ext_props[i].extensionName, lib_name, spec_version);
res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]);
if (res != VK_SUCCESS)
return res;
}
} else {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Error getting physical device extension info count from "
"library %s",
lib_name);
return res;
}
return VK_SUCCESS;
}
VkResult loader_init_generic_list(const struct loader_instance *inst,
struct loader_generic_list *list_info,
size_t element_size) {
size_t capacity = 32 * element_size;
list_info->count = 0;
list_info->capacity = 0;
list_info->list = loader_instance_heap_alloc(
inst, capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list_info->list == NULL) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memset(list_info->list, 0, capacity);
list_info->capacity = capacity;
return VK_SUCCESS;
}
void loader_destroy_generic_list(const struct loader_instance *inst,
struct loader_generic_list *list) {
loader_instance_heap_free(inst, list->list);
list->count = 0;
list->capacity = 0;
}
/*
* Append non-duplicate extension properties defined in props
* to the given ext_list.
* Return
* Vk_SUCCESS on success
*/
VkResult loader_add_to_ext_list(const struct loader_instance *inst,
struct loader_extension_list *ext_list,
uint32_t prop_list_count,
const VkExtensionProperties *props) {
uint32_t i;
const VkExtensionProperties *cur_ext;
if (ext_list->list == NULL || ext_list->capacity == 0) {
VkResult res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list,
sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
return res;
}
}
for (i = 0; i < prop_list_count; i++) {
cur_ext = &props[i];
// look for duplicates
if (has_vk_extension_property(cur_ext, ext_list)) {
continue;
}
// add to list at end
// check for enough capacity
if (ext_list->count * sizeof(VkExtensionProperties) >=
ext_list->capacity) {
ext_list->list = loader_instance_heap_realloc(
inst, ext_list->list, ext_list->capacity,
ext_list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (ext_list->list == NULL)
return VK_ERROR_OUT_OF_HOST_MEMORY;
// double capacity
ext_list->capacity *= 2;
}
memcpy(&ext_list->list[ext_list->count], cur_ext,
sizeof(VkExtensionProperties));
ext_list->count++;
}
return VK_SUCCESS;
}
/*
* Append one extension property defined in props with entrypoints
* defined in entrys to the given ext_list. Do not append if a duplicate
* Return
* Vk_SUCCESS on success
*/
VkResult
loader_add_to_dev_ext_list(const struct loader_instance *inst,
struct loader_device_extension_list *ext_list,
const VkExtensionProperties *props,
uint32_t entry_count, char **entrys) {
uint32_t idx;
if (ext_list->list == NULL || ext_list->capacity == 0) {
VkResult res = loader_init_generic_list(
inst, (struct loader_generic_list *)ext_list,
sizeof(struct loader_dev_ext_props));
if (VK_SUCCESS != res) {
return res;
}
}
// look for duplicates
if (has_vk_dev_ext_property(props, ext_list)) {
return VK_SUCCESS;
}
idx = ext_list->count;
// add to list at end
// check for enough capacity
if (idx * sizeof(struct loader_dev_ext_props) >= ext_list->capacity) {
ext_list->list = loader_instance_heap_realloc(
inst, ext_list->list, ext_list->capacity, ext_list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (ext_list->list == NULL)
return VK_ERROR_OUT_OF_HOST_MEMORY;
// double capacity
ext_list->capacity *= 2;
}
memcpy(&ext_list->list[idx].props, props,
sizeof(struct loader_dev_ext_props));
ext_list->list[idx].entrypoint_count = entry_count;
ext_list->list[idx].entrypoints =
loader_instance_heap_alloc(inst, sizeof(char *) * entry_count,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (ext_list->list[idx].entrypoints == NULL) {
ext_list->list[idx].entrypoint_count = 0;
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
for (uint32_t i = 0; i < entry_count; i++) {
ext_list->list[idx].entrypoints[i] = loader_instance_heap_alloc(
inst, strlen(entrys[i]) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (ext_list->list[idx].entrypoints[i] == NULL) {
for (uint32_t j = 0; j < i; j++) {
loader_instance_heap_free(inst,
ext_list->list[idx].entrypoints[j]);
}
loader_instance_heap_free(inst, ext_list->list[idx].entrypoints);
ext_list->list[idx].entrypoint_count = 0;
ext_list->list[idx].entrypoints = NULL;
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
strcpy(ext_list->list[idx].entrypoints[i], entrys[i]);
}
ext_list->count++;
return VK_SUCCESS;
}
/**
* Search the given search_list for any layers in the props list.
* Add these to the output layer_list. Don't add duplicates to the output
* layer_list.
*/
static VkResult
loader_add_layer_names_to_list(const struct loader_instance *inst,
struct loader_layer_list *output_list,
uint32_t name_count, const char *const *names,
const struct loader_layer_list *search_list) {
struct loader_layer_properties *layer_prop;
VkResult err = VK_SUCCESS;
for (uint32_t i = 0; i < name_count; i++) {
const char *search_target = names[i];
layer_prop = loader_get_layer_property(search_target, search_list);
if (!layer_prop) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Unable to find layer %s", search_target);
err = VK_ERROR_LAYER_NOT_PRESENT;
continue;
}
err = loader_add_to_layer_list(inst, output_list, 1, layer_prop);
}
return err;
}
/*
* Manage lists of VkLayerProperties
*/
static bool loader_init_layer_list(const struct loader_instance *inst,
struct loader_layer_list *list) {
list->capacity = 32 * sizeof(struct loader_layer_properties);
list->list = loader_instance_heap_alloc(
inst, list->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list->list == NULL) {
return false;
}
memset(list->list, 0, list->capacity);
list->count = 0;
return true;
}
void loader_destroy_layer_list(const struct loader_instance *inst,
struct loader_device *device,
struct loader_layer_list *layer_list) {
if (device) {
loader_device_heap_free(device, layer_list->list);
} else {
loader_instance_heap_free(inst, layer_list->list);
}
layer_list->count = 0;
layer_list->capacity = 0;
}
/*
* Search the given layer list for a list
* matching the given VkLayerProperties
*/
bool has_vk_layer_property(const VkLayerProperties *vk_layer_prop,
const struct loader_layer_list *list) {
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(vk_layer_prop->layerName, list->list[i].info.layerName) == 0)
return true;
}
return false;
}
/*
* Search the given layer list for a layer
* matching the given name
*/
bool has_layer_name(const char *name, const struct loader_layer_list *list) {
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(name, list->list[i].info.layerName) == 0)
return true;
}
return false;
}
/*
* Append non-duplicate layer properties defined in prop_list
* to the given layer_info list
*/
VkResult loader_add_to_layer_list(const struct loader_instance *inst,
struct loader_layer_list *list,
uint32_t prop_list_count,
const struct loader_layer_properties *props) {
uint32_t i;
struct loader_layer_properties *layer;
if (list->list == NULL || list->capacity == 0) {
loader_init_layer_list(inst, list);
}
if (list->list == NULL)
return VK_SUCCESS;
for (i = 0; i < prop_list_count; i++) {
layer = (struct loader_layer_properties *)&props[i];
// look for duplicates
if (has_vk_layer_property(&layer->info, list)) {
continue;
}
// add to list at end
// check for enough capacity
if (list->count * sizeof(struct loader_layer_properties) >=
list->capacity) {
list->list = loader_instance_heap_realloc(
inst, list->list, list->capacity, list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == list->list) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"realloc failed for layer list when attempting to "
"add new layer");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// double capacity
list->capacity *= 2;
}
memcpy(&list->list[list->count], layer,
sizeof(struct loader_layer_properties));
list->count++;
}
return VK_SUCCESS;
}
/**
* Search the search_list for any layer with a name
* that matches the given name and a type that matches the given type
* Add all matching layers to the found_list
* Do not add if found loader_layer_properties is already
* on the found_list.
*/
void loader_find_layer_name_add_list(
const struct loader_instance *inst, const char *name,
const enum layer_type type, const struct loader_layer_list *search_list,
struct loader_layer_list *found_list) {
bool found = false;
for (uint32_t i = 0; i < search_list->count; i++) {
struct loader_layer_properties *layer_prop = &search_list->list[i];
if (0 == strcmp(layer_prop->info.layerName, name) &&
(layer_prop->type & type)) {
/* Found a layer with the same name, add to found_list */
if (VK_SUCCESS == loader_add_to_layer_list(inst, found_list, 1, layer_prop)) {
found = true;
}
}
}
if (!found) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Warning, couldn't find layer name %s to activate", name);
}
}
static VkExtensionProperties *
get_extension_property(const char *name,
const struct loader_extension_list *list) {
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(name, list->list[i].extensionName) == 0)
return &list->list[i];
}
return NULL;
}
static VkExtensionProperties *
get_dev_extension_property(const char *name,
const struct loader_device_extension_list *list) {
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(name, list->list[i].props.extensionName) == 0)
return &list->list[i].props;
}
return NULL;
}
/*
* For Instance extensions implemented within the loader (i.e. DEBUG_REPORT
* the extension must provide two entry points for the loader to use:
* - "trampoline" entry point - this is the address returned by GetProcAddr
* and will always do what's necessary to support a global call.
* - "terminator" function - this function will be put at the end of the
* instance chain and will contain the necessary logic to call / process
* the extension for the appropriate ICDs that are available.
* There is no generic mechanism for including these functions, the references
* must be placed into the appropriate loader entry points.
* GetInstanceProcAddr: call extension GetInstanceProcAddr to check for
* GetProcAddr requests
* loader_coalesce_extensions(void) - add extension records to the list of
* global
* extension available to the app.
* instance_disp - add function pointer for terminator function to this array.
* The extension itself should be in a separate file that will be
* linked directly with the loader.
*/
VkResult loader_get_icd_loader_instance_extensions(
const struct loader_instance *inst, struct loader_icd_libs *icd_libs,
struct loader_extension_list *inst_exts) {
struct loader_extension_list icd_exts;
VkResult res = VK_SUCCESS;
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"Build ICD instance extension list");
// traverse scanned icd list adding non-duplicate extensions to the list
for (uint32_t i = 0; i < icd_libs->count; i++) {
res = loader_init_generic_list(inst,
(struct loader_generic_list *)&icd_exts,
sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
goto out;
}
res = loader_add_instance_extensions(
inst, icd_libs->list[i].EnumerateInstanceExtensionProperties,
icd_libs->list[i].lib_name, &icd_exts);
if (VK_SUCCESS == res) {
res = loader_add_to_ext_list(inst, inst_exts, icd_exts.count,
icd_exts.list);
}
loader_destroy_generic_list(inst,
(struct loader_generic_list *)&icd_exts);
if (VK_SUCCESS != res) {
goto out;
}
};
// Traverse loader's extensions, adding non-duplicate extensions to the list
debug_report_add_instance_extensions(inst, inst_exts);
out:
return res;
}
struct loader_icd *loader_get_icd_and_device(const VkDevice device,
struct loader_device **found_dev,
uint32_t *icd_index) {
*found_dev = NULL;
uint32_t index = 0;
for (struct loader_instance *inst = loader.instances; inst;
inst = inst->next) {
for (struct loader_icd *icd = inst->icds; icd; icd = icd->next) {
for (struct loader_device *dev = icd->logical_device_list; dev;
dev = dev->next)
/* Value comparison of device prevents object wrapping by layers
*/
if (loader_get_dispatch(dev->device) ==
loader_get_dispatch(device)) {
*found_dev = dev;
if (NULL != icd_index) {
*icd_index = index;
}
return icd;
}
index++;
}
}
return NULL;
}
void loader_destroy_logical_device(const struct loader_instance *inst,
struct loader_device *dev,
const VkAllocationCallbacks *pAllocator) {
if (pAllocator) {
dev->alloc_callbacks = *pAllocator;
}
if (NULL != dev->activated_layer_list.list) {
loader_deactivate_layers(inst, dev, &dev->activated_layer_list);
}
loader_device_heap_free(dev, dev);
}
struct loader_device *
loader_create_logical_device(const struct loader_instance *inst,
const VkAllocationCallbacks *pAllocator) {
struct loader_device *new_dev;
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
{
#else
if (pAllocator) {
new_dev = (struct loader_device *)pAllocator->pfnAllocation(
pAllocator->pUserData, sizeof(struct loader_device), sizeof(int *),
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
} else {
#endif
new_dev = (struct loader_device *)malloc(sizeof(struct loader_device));
}
if (!new_dev) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Failed to alloc struct loader-device");
return NULL;
}
memset(new_dev, 0, sizeof(struct loader_device));
if (pAllocator) {
new_dev->alloc_callbacks = *pAllocator;
}
return new_dev;
}
void loader_add_logical_device(const struct loader_instance *inst,
struct loader_icd *icd,
struct loader_device *dev) {
dev->next = icd->logical_device_list;
icd->logical_device_list = dev;
}
void loader_remove_logical_device(const struct loader_instance *inst,
struct loader_icd *icd,
struct loader_device *found_dev,
const VkAllocationCallbacks *pAllocator) {
struct loader_device *dev, *prev_dev;
if (!icd || !found_dev)
return;
prev_dev = NULL;
dev = icd->logical_device_list;
while (dev && dev != found_dev) {
prev_dev = dev;
dev = dev->next;
}
if (prev_dev)
prev_dev->next = found_dev->next;
else
icd->logical_device_list = found_dev->next;
loader_destroy_logical_device(inst, found_dev, pAllocator);
}
static void loader_icd_destroy(struct loader_instance *ptr_inst,
struct loader_icd *icd,
const VkAllocationCallbacks *pAllocator) {
ptr_inst->total_icd_count--;
for (struct loader_device *dev = icd->logical_device_list; dev;) {
struct loader_device *next_dev = dev->next;
loader_destroy_logical_device(ptr_inst, dev, pAllocator);
dev = next_dev;
}
loader_instance_heap_free(ptr_inst, icd);
}
static struct loader_icd *
loader_icd_create(const struct loader_instance *inst) {
struct loader_icd *icd;
icd = loader_instance_heap_alloc(inst, sizeof(struct loader_icd),
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!icd) {
return NULL;
}
memset(icd, 0, sizeof(struct loader_icd));
return icd;
}
static struct loader_icd *
loader_icd_add(struct loader_instance *ptr_inst,
const struct loader_scanned_icds *icd_lib) {
struct loader_icd *icd;
icd = loader_icd_create(ptr_inst);
if (!icd) {
return NULL;
}
icd->this_icd_lib = icd_lib;
icd->this_instance = ptr_inst;
/* prepend to the list */
icd->next = ptr_inst->icds;
ptr_inst->icds = icd;
ptr_inst->total_icd_count++;
return icd;
}
/**
* Determine the ICD interface version to use.
* @param icd
* @param pVersion Output parameter indicating which version to use or 0 if
* the negotiation API is not supported by the ICD
* @return bool indicating true if the selected interface version is supported
* by the loader, false indicates the version is not supported
* version 0 doesn't support vk_icdGetInstanceProcAddr nor
* vk_icdNegotiateLoaderICDInterfaceVersion
* version 1 supports vk_icdGetInstanceProcAddr
* version 2 supports vk_icdNegotiateLoaderICDInterfaceVersion
*/
bool loader_get_icd_interface_version(
PFN_vkNegotiateLoaderICDInterfaceVersion fp_negotiate_icd_version,
uint32_t *pVersion) {
if (fp_negotiate_icd_version == NULL) {
// ICD does not support the negotiation API, it supports version 0 or 1
// calling code must determine if it is version 0 or 1
*pVersion = 0;
} else {
// ICD supports the negotiation API, so call it with the loader's
// latest version supported
*pVersion = CURRENT_LOADER_ICD_INTERFACE_VERSION;
VkResult result = fp_negotiate_icd_version(pVersion);
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
// ICD no longer supports the loader's latest interface version so
// fail loading the ICD
return false;
}
}
#if MIN_SUPPORTED_LOADER_ICD_INTERFACE_VERSION > 0
if (*pVersion < MIN_SUPPORTED_LOADER_ICD_INTERFACE_VERSION) {
// Loader no longer supports the ICD's latest interface version so fail
// loading the ICD
return false;
}
#endif
return true;
}
void loader_scanned_icd_clear(const struct loader_instance *inst,
struct loader_icd_libs *icd_libs) {
if (icd_libs->capacity == 0)
return;
for (uint32_t i = 0; i < icd_libs->count; i++) {
loader_platform_close_library(icd_libs->list[i].handle);
loader_instance_heap_free(inst, icd_libs->list[i].lib_name);
}
loader_instance_heap_free(inst, icd_libs->list);
icd_libs->capacity = 0;
icd_libs->count = 0;
icd_libs->list = NULL;
}
static VkResult loader_scanned_icd_init(const struct loader_instance *inst,
struct loader_icd_libs *icd_libs) {
VkResult err = VK_SUCCESS;
loader_scanned_icd_clear(inst, icd_libs);
icd_libs->capacity = 8 * sizeof(struct loader_scanned_icds);
icd_libs->list = loader_instance_heap_alloc(
inst, icd_libs->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == icd_libs->list) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"realloc failed for layer list when attempting to add new layer");
err = VK_ERROR_OUT_OF_HOST_MEMORY;
}
return err;
}
static VkResult loader_scanned_icd_add(const struct loader_instance *inst,
struct loader_icd_libs *icd_libs,
const char *filename,
uint32_t api_version) {
loader_platform_dl_handle handle;
PFN_vkCreateInstance fp_create_inst;
PFN_vkEnumerateInstanceExtensionProperties fp_get_inst_ext_props;
PFN_vkGetInstanceProcAddr fp_get_proc_addr;
PFN_vkNegotiateLoaderICDInterfaceVersion fp_negotiate_icd_version;
struct loader_scanned_icds *new_node;
uint32_t interface_vers;
VkResult res = VK_SUCCESS;
/* TODO implement smarter opening/closing of libraries. For now this
* function leaves libraries open and the scanned_icd_clear closes them */
handle = loader_platform_open_library(filename);
if (!handle) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
loader_platform_open_library_error(filename));
goto out;
}
// Get and settle on an ICD interface version
fp_negotiate_icd_version = loader_platform_get_proc_address(
handle, "vk_icdNegotiateLoaderICDInterfaceVersion");
if (!loader_get_icd_interface_version(fp_negotiate_icd_version,
&interface_vers)) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"ICD (%s) doesn't support interface version compatible"
"with loader, skip this ICD %s",
filename);
goto out;
}
fp_get_proc_addr =
loader_platform_get_proc_address(handle, "vk_icdGetInstanceProcAddr");
if (!fp_get_proc_addr) {
assert(interface_vers == 0);
// Use deprecated interface from version 0
fp_get_proc_addr =
loader_platform_get_proc_address(handle, "vkGetInstanceProcAddr");
if (!fp_get_proc_addr) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
loader_platform_get_proc_address_error(
"vk_icdGetInstanceProcAddr"));
goto out;
} else {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Using deprecated ICD interface of "
"vkGetInstanceProcAddr instead of "
"vk_icdGetInstanceProcAddr for ICD %s",
filename);
}
fp_create_inst =
loader_platform_get_proc_address(handle, "vkCreateInstance");
if (!fp_create_inst) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Couldn't get vkCreateInstance via dlsym/loadlibrary "
"for ICD %s",
filename);
goto out;
}
fp_get_inst_ext_props = loader_platform_get_proc_address(
handle, "vkEnumerateInstanceExtensionProperties");
if (!fp_get_inst_ext_props) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Couldn't get vkEnumerateInstanceExtensionProperties "
"via dlsym/loadlibrary for ICD %s",
filename);
goto out;
}
} else {
// Use newer interface version 1 or later
if (interface_vers == 0)
interface_vers = 1;
fp_create_inst =
(PFN_vkCreateInstance)fp_get_proc_addr(NULL, "vkCreateInstance");
if (!fp_create_inst) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Couldn't get vkCreateInstance via "
"vk_icdGetInstanceProcAddr for ICD %s",
filename);
goto out;
}
fp_get_inst_ext_props =
(PFN_vkEnumerateInstanceExtensionProperties)fp_get_proc_addr(
NULL, "vkEnumerateInstanceExtensionProperties");
if (!fp_get_inst_ext_props) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Couldn't get vkEnumerateInstanceExtensionProperties "
"via vk_icdGetInstanceProcAddr for ICD %s",
filename);
goto out;
}
}
// check for enough capacity
if ((icd_libs->count * sizeof(struct loader_scanned_icds)) >=
icd_libs->capacity) {
icd_libs->list = loader_instance_heap_realloc(
inst, icd_libs->list, icd_libs->capacity, icd_libs->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == icd_libs->list) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"realloc failed on icd library list");
goto out;
}
// double capacity
icd_libs->capacity *= 2;
}
new_node = &(icd_libs->list[icd_libs->count]);
new_node->handle = handle;
new_node->api_version = api_version;
new_node->GetInstanceProcAddr = fp_get_proc_addr;
new_node->EnumerateInstanceExtensionProperties = fp_get_inst_ext_props;
new_node->CreateInstance = fp_create_inst;
new_node->interface_version = interface_vers;
new_node->lib_name = (char *)loader_instance_heap_alloc(
inst, strlen(filename) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_node->lib_name) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Out of memory can't add icd");
goto out;
}
strcpy(new_node->lib_name, filename);
icd_libs->count++;
out:
return res;
}
static bool loader_icd_init_entrys(struct loader_icd *icd, VkInstance inst,
const PFN_vkGetInstanceProcAddr fp_gipa) {
/* initialize entrypoint function pointers */
#define LOOKUP_GIPA(func, required) \
do { \
icd->func = (PFN_vk##func)fp_gipa(inst, "vk" #func); \
if (!icd->func && required) { \
loader_log((struct loader_instance *)inst, \
VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, \
loader_platform_get_proc_address_error("vk" #func)); \
return false; \
} \
} while (0)
LOOKUP_GIPA(GetDeviceProcAddr, true);
LOOKUP_GIPA(DestroyInstance, true);
LOOKUP_GIPA(EnumeratePhysicalDevices, true);
LOOKUP_GIPA(GetPhysicalDeviceFeatures, true);
LOOKUP_GIPA(GetPhysicalDeviceFormatProperties, true);
LOOKUP_GIPA(GetPhysicalDeviceImageFormatProperties, true);
LOOKUP_GIPA(CreateDevice, true);
LOOKUP_GIPA(GetPhysicalDeviceProperties, true);
LOOKUP_GIPA(GetPhysicalDeviceMemoryProperties, true);
LOOKUP_GIPA(GetPhysicalDeviceQueueFamilyProperties, true);
LOOKUP_GIPA(EnumerateDeviceExtensionProperties, true);
LOOKUP_GIPA(GetPhysicalDeviceSparseImageFormatProperties, true);
LOOKUP_GIPA(CreateDebugReportCallbackEXT, false);
LOOKUP_GIPA(DestroyDebugReportCallbackEXT, false);
LOOKUP_GIPA(GetPhysicalDeviceSurfaceSupportKHR, false);
LOOKUP_GIPA(GetPhysicalDeviceSurfaceCapabilitiesKHR, false);
LOOKUP_GIPA(GetPhysicalDeviceSurfaceFormatsKHR, false);
LOOKUP_GIPA(GetPhysicalDeviceSurfacePresentModesKHR, false);
LOOKUP_GIPA(GetPhysicalDeviceDisplayPropertiesKHR, false);
LOOKUP_GIPA(GetDisplayModePropertiesKHR, false);
LOOKUP_GIPA(CreateDisplayPlaneSurfaceKHR, false);
LOOKUP_GIPA(GetPhysicalDeviceDisplayPlanePropertiesKHR, false);
LOOKUP_GIPA(GetDisplayPlaneSupportedDisplaysKHR, false);
LOOKUP_GIPA(CreateDisplayModeKHR, false);
LOOKUP_GIPA(GetDisplayPlaneCapabilitiesKHR, false);
LOOKUP_GIPA(DestroySurfaceKHR, false);
LOOKUP_GIPA(CreateSwapchainKHR, false);
#ifdef VK_USE_PLATFORM_WIN32_KHR
LOOKUP_GIPA(CreateWin32SurfaceKHR, false);
LOOKUP_GIPA(GetPhysicalDeviceWin32PresentationSupportKHR, false);
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
LOOKUP_GIPA(CreateXcbSurfaceKHR, false);
LOOKUP_GIPA(GetPhysicalDeviceXcbPresentationSupportKHR, false);
#endif
#ifdef VK_USE_PLATFORM_XLIB_KHR
LOOKUP_GIPA(CreateXlibSurfaceKHR, false);
LOOKUP_GIPA(GetPhysicalDeviceXlibPresentationSupportKHR, false);
#endif
#ifdef VK_USE_PLATFORM_MIR_KHR
LOOKUP_GIPA(CreateMirSurfaceKHR, false);
LOOKUP_GIPA(GetPhysicalDeviceMirPresentationSupportKHR, false);
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
LOOKUP_GIPA(CreateWaylandSurfaceKHR, false);
LOOKUP_GIPA(GetPhysicalDeviceWaylandPresentationSupportKHR, false);
#endif
LOOKUP_GIPA(GetPhysicalDeviceExternalImageFormatPropertiesNV, false);
#undef LOOKUP_GIPA
return true;
}
static void loader_debug_init(void) {
char *env, *orig;
if (g_loader_debug > 0)
return;
g_loader_debug = 0;
/* parse comma-separated debug options */
orig = env = loader_getenv("VK_LOADER_DEBUG", NULL);
while (env) {
char *p = strchr(env, ',');
size_t len;
if (p)
len = p - env;
else
len = strlen(env);
if (len > 0) {
if (strncmp(env, "all", len) == 0) {
g_loader_debug = ~0u;
g_loader_log_msgs = ~0u;
} else if (strncmp(env, "warn", len) == 0) {
g_loader_debug |= LOADER_WARN_BIT;
g_loader_log_msgs |= VK_DEBUG_REPORT_WARNING_BIT_EXT;
} else if (strncmp(env, "info", len) == 0) {
g_loader_debug |= LOADER_INFO_BIT;
g_loader_log_msgs |= VK_DEBUG_REPORT_INFORMATION_BIT_EXT;
} else if (strncmp(env, "perf", len) == 0) {
g_loader_debug |= LOADER_PERF_BIT;
g_loader_log_msgs |=
VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT;
} else if (strncmp(env, "error", len) == 0) {
g_loader_debug |= LOADER_ERROR_BIT;
g_loader_log_msgs |= VK_DEBUG_REPORT_ERROR_BIT_EXT;
} else if (strncmp(env, "debug", len) == 0) {
g_loader_debug |= LOADER_DEBUG_BIT;
g_loader_log_msgs |= VK_DEBUG_REPORT_DEBUG_BIT_EXT;
}
}
if (!p)
break;
env = p + 1;
}
loader_free_getenv(orig, NULL);
}
void loader_initialize(void) {
// initialize mutexs
loader_platform_thread_create_mutex(&loader_lock);
loader_platform_thread_create_mutex(&loader_json_lock);
// initialize logging
loader_debug_init();
// initial cJSON to use alloc callbacks
cJSON_Hooks alloc_fns = {
.malloc_fn = loader_instance_tls_heap_alloc,
.free_fn = loader_instance_tls_heap_free,
};
cJSON_InitHooks(&alloc_fns);
}
struct loader_manifest_files {
uint32_t count;
char **filename_list;
};
/**
* Get next file or dirname given a string list or registry key path
*
* \returns
* A pointer to first char in the next path.
* The next path (or NULL) in the list is returned in next_path.
* Note: input string is modified in some cases. PASS IN A COPY!
*/
static char *loader_get_next_path(char *path) {
uint32_t len;
char *next;
if (path == NULL)
return NULL;
next = strchr(path, PATH_SEPERATOR);
if (next == NULL) {
len = (uint32_t)strlen(path);
next = path + len;
} else {
*next = '\0';
next++;
}
return next;
}
/**
* Given a path which is absolute or relative, expand the path if relative or
* leave the path unmodified if absolute. The base path to prepend to relative
* paths is given in rel_base.
*
* \returns
* A string in out_fullpath of the full absolute path
*/
static void loader_expand_path(const char *path, const char *rel_base,
size_t out_size, char *out_fullpath) {
if (loader_platform_is_path_absolute(path)) {
// do not prepend a base to an absolute path
rel_base = "";
}
loader_platform_combine_path(out_fullpath, out_size, rel_base, path, NULL);
}
/**
* Given a filename (file) and a list of paths (dir), try to find an existing
* file in the paths. If filename already is a path then no
* searching in the given paths.
*
* \returns
* A string in out_fullpath of either the full path or file.
*/
static void loader_get_fullpath(const char *file, const char *dirs,
size_t out_size, char *out_fullpath) {
if (!loader_platform_is_path(file) && *dirs) {
char *dirs_copy, *dir, *next_dir;
dirs_copy = loader_stack_alloc(strlen(dirs) + 1);
strcpy(dirs_copy, dirs);
// find if file exists after prepending paths in given list
for (dir = dirs_copy; *dir && (next_dir = loader_get_next_path(dir));
dir = next_dir) {
loader_platform_combine_path(out_fullpath, out_size, dir, file,
NULL);
if (loader_platform_file_exists(out_fullpath)) {
return;
}
}
}
snprintf(out_fullpath, out_size, "%s", file);
}
/**
* Read a JSON file into a buffer.
*
* \returns
* A pointer to a cJSON object representing the JSON parse tree.
* This returned buffer should be freed by caller.
*/
static VkResult loader_get_json(const struct loader_instance *inst,
const char *filename, cJSON **json) {
FILE *file = NULL;
char *json_buf;
size_t len;
VkResult res = VK_SUCCESS;
if (NULL == json) {
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
*json = NULL;
file = fopen(filename, "rb");
if (!file) {
res = VK_ERROR_INITIALIZATION_FAILED;
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Couldn't open JSON file %s", filename);
goto out;
}
fseek(file, 0, SEEK_END);
len = ftell(file);
fseek(file, 0, SEEK_SET);
json_buf = (char *)loader_stack_alloc(len + 1);
if (json_buf == NULL) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Out of memory can't get JSON file");
goto out;
}
if (fread(json_buf, sizeof(char), len, file) != len) {
res = VK_ERROR_INITIALIZATION_FAILED;
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"fread failed can't get JSON file");
goto out;
}
json_buf[len] = '\0';
// parse text from file
*json = cJSON_Parse(json_buf);
if (*json == NULL) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Can't parse JSON file %s", filename);
goto out;
}
out:
if (NULL != file) {
fclose(file);
}
return res;
}
/**
* Do a deep copy of the loader_layer_properties structure.
*/
VkResult loader_copy_layer_properties(const struct loader_instance *inst,
struct loader_layer_properties *dst,
struct loader_layer_properties *src) {
uint32_t cnt, i;
memcpy(dst, src, sizeof(*src));
dst->instance_extension_list.list =
loader_instance_heap_alloc(inst, sizeof(VkExtensionProperties) *
src->instance_extension_list.count,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == dst->instance_extension_list.list) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"alloc failed for instance extension list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
dst->instance_extension_list.capacity =
sizeof(VkExtensionProperties) * src->instance_extension_list.count;
memcpy(dst->instance_extension_list.list, src->instance_extension_list.list,
dst->instance_extension_list.capacity);
dst->device_extension_list.list =
loader_instance_heap_alloc(inst, sizeof(struct loader_dev_ext_props) *
src->device_extension_list.count,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == dst->device_extension_list.list) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"alloc failed for device extension list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memset(dst->device_extension_list.list, 0, sizeof(struct loader_dev_ext_props) *
src->device_extension_list.count);
dst->device_extension_list.capacity =
sizeof(struct loader_dev_ext_props) * src->device_extension_list.count;
memcpy(dst->device_extension_list.list, src->device_extension_list.list,
dst->device_extension_list.capacity);
if (src->device_extension_list.count > 0 &&
src->device_extension_list.list->entrypoint_count > 0) {
cnt = src->device_extension_list.list->entrypoint_count;
dst->device_extension_list.list->entrypoints =
loader_instance_heap_alloc(inst, sizeof(char *) * cnt,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == dst->device_extension_list.list->entrypoints) {
loader_log(
inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"alloc failed for device extension list entrypoint array");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memset(dst->device_extension_list.list->entrypoints, 0, sizeof(char *) * cnt);
for (i = 0; i < cnt; i++) {
dst->device_extension_list.list->entrypoints[i] =
loader_instance_heap_alloc(
inst,
strlen(src->device_extension_list.list->entrypoints[i]) + 1,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == dst->device_extension_list.list->entrypoints[i]) {
loader_log(
inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"alloc failed for device extension list entrypoint %d", i);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
strcpy(dst->device_extension_list.list->entrypoints[i],
src->device_extension_list.list->entrypoints[i]);
}
}
return VK_SUCCESS;
}
static bool
loader_find_layer_name_list(const char *name,
const struct loader_layer_list *layer_list) {
if (!layer_list)
return false;
for (uint32_t j = 0; j < layer_list->count; j++)
if (!strcmp(name, layer_list->list[j].info.layerName))
return true;
return false;
}
static bool loader_find_layer_name(const char *name, uint32_t layer_count,
const char **layer_list) {
if (!layer_list)
return false;
for (uint32_t j = 0; j < layer_count; j++)
if (!strcmp(name, layer_list[j]))
return true;
return false;
}
bool loader_find_layer_name_array(
const char *name, uint32_t layer_count,
const char layer_list[][VK_MAX_EXTENSION_NAME_SIZE]) {
if (!layer_list)
return false;
for (uint32_t j = 0; j < layer_count; j++)
if (!strcmp(name, layer_list[j]))
return true;
return false;
}
/**
* Searches through an array of layer names (ppp_layer_names) looking for a
* layer key_name.
* If not found then simply returns updating nothing.
* Otherwise, it uses expand_count, expand_names adding them to layer names.
* Any duplicate (pre-existing) expand_names in layer names are removed.
* Order is otherwise preserved, with the layer key_name being replaced by the
* expand_names.
* @param inst
* @param layer_count
* @param ppp_layer_names
*/
VkResult loader_expand_layer_names(
struct loader_instance *inst, const char *key_name, uint32_t expand_count,
const char expand_names[][VK_MAX_EXTENSION_NAME_SIZE],
uint32_t *layer_count, char const *const **ppp_layer_names) {
char const *const *pp_src_layers = *ppp_layer_names;
if (!loader_find_layer_name(key_name, *layer_count,
(char const **)pp_src_layers)) {
inst->activated_layers_are_std_val = false;
return VK_SUCCESS; // didn't find the key_name in the list.
}
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"Found meta layer %s, replacing with actual layer group",
key_name);
inst->activated_layers_are_std_val = true;
char const **pp_dst_layers = loader_instance_heap_alloc(
inst, (expand_count + *layer_count - 1) * sizeof(char const *),
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (NULL == pp_dst_layers) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"alloc failed for dst layer array");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// copy layers from src to dst, stripping key_name and anything in
// expand_names.
uint32_t src_index, dst_index = 0;
for (src_index = 0; src_index < *layer_count; src_index++) {
if (loader_find_layer_name_array(pp_src_layers[src_index], expand_count,
expand_names)) {
continue;
}
if (!strcmp(pp_src_layers[src_index], key_name)) {
// insert all expand_names in place of key_name
uint32_t expand_index;
for (expand_index = 0; expand_index < expand_count;
expand_index++) {
pp_dst_layers[dst_index++] = expand_names[expand_index];
}
continue;
}
pp_dst_layers[dst_index++] = pp_src_layers[src_index];
}
*ppp_layer_names = pp_dst_layers;
*layer_count = dst_index;
return VK_SUCCESS;
}
void loader_delete_shadow_inst_layer_names(const struct loader_instance *inst,
const VkInstanceCreateInfo *orig,
VkInstanceCreateInfo *ours) {
/* Free the layer names array iff we had to reallocate it */
if (orig->ppEnabledLayerNames != ours->ppEnabledLayerNames) {
loader_instance_heap_free(inst, (void *)ours->ppEnabledLayerNames);
}
}
void loader_init_std_validation_props(struct loader_layer_properties *props) {
memset(props, 0, sizeof(struct loader_layer_properties));
props->type = VK_LAYER_TYPE_META_EXPLICT;
strncpy(props->info.description, "LunarG Standard Validation Layer",
sizeof (props->info.description));
props->info.implementationVersion = 1;
strncpy(props->info.layerName, std_validation_str,
sizeof (props->info.layerName));
// TODO what about specVersion? for now insert loader's built version
props->info.specVersion = VK_MAKE_VERSION(1, 0, VK_HEADER_VERSION);
}
/**
* Searches through the existing instance layer lists looking for
* the set of required layer names. If found then it adds a meta property to the
* layer list.
* Assumes the required layers are the same for both instance and device lists.
* @param inst
* @param layer_count number of layers in layer_names
* @param layer_names array of required layer names
* @param layer_instance_list
*/
static void loader_add_layer_property_meta(
const struct loader_instance *inst, uint32_t layer_count,
const char layer_names[][VK_MAX_EXTENSION_NAME_SIZE],
struct loader_layer_list *layer_instance_list) {
uint32_t i;
bool found;
struct loader_layer_list *layer_list;
if (0 == layer_count || (!layer_instance_list))
return;
if (layer_instance_list && (layer_count > layer_instance_list->count))
return;
layer_list = layer_instance_list;
found = true;
if (layer_list == NULL)
return;
for (i = 0; i < layer_count; i++) {
if (loader_find_layer_name_list(layer_names[i], layer_list))
continue;
found = false;
break;
}
struct loader_layer_properties *props;
if (found) {
props = loader_get_next_layer_property(inst, layer_list);
if (NULL == props) {
// Error already triggered in loader_get_next_layer_property.
return;
}
loader_init_std_validation_props(props);
}
}
static void loader_read_json_layer(
const struct loader_instance *inst,
struct loader_layer_list *layer_instance_list, cJSON *layer_node,
cJSON *item, cJSON *disable_environment, bool is_implicit, char *filename) {
char *temp;
char *name, *type, *library_path, *api_version;
char *implementation_version, *description;
cJSON *ext_item;
VkExtensionProperties ext_prop;
/*
* The following are required in the "layer" object:
* (required) "name"
* (required) "type"
* (required) “library_path”
* (required) “api_version”
* (required) “implementation_version”
* (required) “description”
* (required for implicit layers) “disable_environment”
*/
#define GET_JSON_OBJECT(node, var) \
{ \
var = cJSON_GetObjectItem(node, #var); \
if (var == NULL) { \
layer_node = layer_node->next; \
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, \
"Didn't find required layer object %s in manifest " \
"JSON file, skipping this layer", \
#var); \
return; \
} \
}
#define GET_JSON_ITEM(node, var) \
{ \
item = cJSON_GetObjectItem(node, #var); \
if (item == NULL) { \
layer_node = layer_node->next; \
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, \
"Didn't find required layer value %s in manifest JSON " \
"file, skipping this layer", \
#var); \
return; \
} \
temp = cJSON_Print(item); \
if (temp == NULL) { \
layer_node = layer_node->next; \
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, \
"Problem accessing layer value %s in manifest JSON " \
"file, skipping this layer", \
#var); \
return; \
} \
temp[strlen(temp) - 1] = '\0'; \
var = loader_stack_alloc(strlen(temp) + 1); \
strcpy(var, &temp[1]); \
cJSON_Free(temp); \
}
GET_JSON_ITEM(layer_node, name)
GET_JSON_ITEM(layer_node, type)
GET_JSON_ITEM(layer_node, library_path)
GET_JSON_ITEM(layer_node, api_version)
GET_JSON_ITEM(layer_node, implementation_version)
GET_JSON_ITEM(layer_node, description)
if (is_implicit) {
GET_JSON_OBJECT(layer_node, disable_environment)
}
#undef GET_JSON_ITEM
#undef GET_JSON_OBJECT
// add list entry
struct loader_layer_properties *props = NULL;
if (!strcmp(type, "DEVICE")) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Device layers are deprecated skipping this layer");
layer_node = layer_node->next;
return;
}
// Allow either GLOBAL or INSTANCE type interchangeably to handle
// layers that must work with older loaders
if (!strcmp(type, "INSTANCE") || !strcmp(type, "GLOBAL")) {
if (layer_instance_list == NULL) {
layer_node = layer_node->next;
return;
}
props = loader_get_next_layer_property(inst, layer_instance_list);
if (NULL == props) {
// Error already triggered in loader_get_next_layer_property.
return;
}
props->type = (is_implicit) ? VK_LAYER_TYPE_INSTANCE_IMPLICIT
: VK_LAYER_TYPE_INSTANCE_EXPLICIT;
}
if (props == NULL) {
layer_node = layer_node->next;
return;
}
strncpy(props->info.layerName, name, sizeof(props->info.layerName));
props->info.layerName[sizeof(props->info.layerName) - 1] = '\0';
char *fullpath = props->lib_name;
char *rel_base;
if (loader_platform_is_path(library_path)) {
// a relative or absolute path
char *name_copy = loader_stack_alloc(strlen(filename) + 1);
strcpy(name_copy, filename);
rel_base = loader_platform_dirname(name_copy);
loader_expand_path(library_path, rel_base, MAX_STRING_SIZE, fullpath);
} else {
// a filename which is assumed in a system directory
loader_get_fullpath(library_path, DEFAULT_VK_LAYERS_PATH,
MAX_STRING_SIZE, fullpath);
}
props->info.specVersion = loader_make_version(api_version);
props->info.implementationVersion = atoi(implementation_version);
strncpy((char *)props->info.description, description,
sizeof(props->info.description));
props->info.description[sizeof(props->info.description) - 1] = '\0';
if (is_implicit) {
if (!disable_environment || !disable_environment->child) {
loader_log(
inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Didn't find required layer child value disable_environment"
"in manifest JSON file, skipping this layer");
layer_node = layer_node->next;
return;
}
strncpy(props->disable_env_var.name, disable_environment->child->string,
sizeof(props->disable_env_var.name));
props->disable_env_var.name[sizeof(props->disable_env_var.name) - 1] =
'\0';
strncpy(props->disable_env_var.value,
disable_environment->child->valuestring,
sizeof(props->disable_env_var.value));
props->disable_env_var.value[sizeof(props->disable_env_var.value) - 1] =
'\0';
}
/**
* Now get all optional items and objects and put in list:
* functions
* instance_extensions
* device_extensions
* enable_environment (implicit layers only)
*/
#define GET_JSON_OBJECT(node, var) \
{ var = cJSON_GetObjectItem(node, #var); }
#define GET_JSON_ITEM(node, var) \
{ \
item = cJSON_GetObjectItem(node, #var); \
if (item != NULL) { \
temp = cJSON_Print(item); \
if (temp != NULL) { \
temp[strlen(temp) - 1] = '\0'; \
var = loader_stack_alloc(strlen(temp) + 1); \
strcpy(var, &temp[1]); \
cJSON_Free(temp); \
} \
} \
}
cJSON *instance_extensions, *device_extensions, *functions,
*enable_environment;
cJSON *entrypoints;
char *vkGetInstanceProcAddr, *vkGetDeviceProcAddr, *spec_version;
char **entry_array;
vkGetInstanceProcAddr = NULL;
vkGetDeviceProcAddr = NULL;
spec_version = NULL;
entrypoints = NULL;
entry_array = NULL;
int i, j;
/**
* functions
* vkGetInstanceProcAddr
* vkGetDeviceProcAddr
*/
GET_JSON_OBJECT(layer_node, functions)
if (functions != NULL) {
GET_JSON_ITEM(functions, vkGetInstanceProcAddr)
GET_JSON_ITEM(functions, vkGetDeviceProcAddr)
if (vkGetInstanceProcAddr != NULL)
strncpy(props->functions.str_gipa, vkGetInstanceProcAddr,
sizeof(props->functions.str_gipa));
props->functions.str_gipa[sizeof(props->functions.str_gipa) - 1] = '\0';
if (vkGetDeviceProcAddr != NULL)
strncpy(props->functions.str_gdpa, vkGetDeviceProcAddr,
sizeof(props->functions.str_gdpa));
props->functions.str_gdpa[sizeof(props->functions.str_gdpa) - 1] = '\0';
}
/**
* instance_extensions
* array of
* name
* spec_version
*/
GET_JSON_OBJECT(layer_node, instance_extensions)
if (instance_extensions != NULL) {
int count = cJSON_GetArraySize(instance_extensions);
for (i = 0; i < count; i++) {
ext_item = cJSON_GetArrayItem(instance_extensions, i);
GET_JSON_ITEM(ext_item, name)
if (name != NULL) {
strncpy(ext_prop.extensionName, name,
sizeof(ext_prop.extensionName));
ext_prop.extensionName[sizeof(ext_prop.extensionName) - 1] =
'\0';
}
GET_JSON_ITEM(ext_item, spec_version)
if (NULL != spec_version) {
ext_prop.specVersion = atoi(spec_version);
} else {
ext_prop.specVersion = 0;
}
bool ext_unsupported =
wsi_unsupported_instance_extension(&ext_prop);
if (!ext_unsupported) {
loader_add_to_ext_list(inst, &props->instance_extension_list, 1,
&ext_prop);
}
}
}
/**
* device_extensions
* array of
* name
* spec_version
* entrypoints
*/
GET_JSON_OBJECT(layer_node, device_extensions)
if (device_extensions != NULL) {
int count = cJSON_GetArraySize(device_extensions);
for (i = 0; i < count; i++) {
ext_item = cJSON_GetArrayItem(device_extensions, i);
GET_JSON_ITEM(ext_item, name)
GET_JSON_ITEM(ext_item, spec_version)
if (name != NULL) {
strncpy(ext_prop.extensionName, name,
sizeof(ext_prop.extensionName));
ext_prop.extensionName[sizeof(ext_prop.extensionName) - 1] =
'\0';
}
if (NULL != spec_version) {
ext_prop.specVersion = atoi(spec_version);
} else {
ext_prop.specVersion = 0;
}
// entrypoints = cJSON_GetObjectItem(ext_item, "entrypoints");
GET_JSON_OBJECT(ext_item, entrypoints)
int entry_count;
if (entrypoints == NULL) {
loader_add_to_dev_ext_list(inst, &props->device_extension_list,
&ext_prop, 0, NULL);
continue;
}
entry_count = cJSON_GetArraySize(entrypoints);
if (entry_count) {
entry_array =
(char **)loader_stack_alloc(sizeof(char *) * entry_count);
}
for (j = 0; j < entry_count; j++) {
ext_item = cJSON_GetArrayItem(entrypoints, j);
if (ext_item != NULL) {
temp = cJSON_Print(ext_item);
if (NULL == temp) {
entry_array[j] = NULL;
continue;
}
temp[strlen(temp) - 1] = '\0';
entry_array[j] = loader_stack_alloc(strlen(temp) + 1);
strcpy(entry_array[j], &temp[1]);
cJSON_Free(temp);
}
}
loader_add_to_dev_ext_list(inst, &props->device_extension_list,
&ext_prop, entry_count, entry_array);
}
}
if (is_implicit) {
GET_JSON_OBJECT(layer_node, enable_environment)
// enable_environment is optional
if (enable_environment) {
strncpy(props->enable_env_var.name,
enable_environment->child->string,
sizeof(props->enable_env_var.name));
props->enable_env_var.name[sizeof(props->enable_env_var.name) - 1] =
'\0';
strncpy(props->enable_env_var.value,
enable_environment->child->valuestring,
sizeof(props->enable_env_var.value));
props->enable_env_var
.value[sizeof(props->enable_env_var.value) - 1] = '\0';
}
}
#undef GET_JSON_ITEM
#undef GET_JSON_OBJECT
}
/**
* Given a cJSON struct (json) of the top level JSON object from layer manifest
* file, add entry to the layer_list. Fill out the layer_properties in this list
* entry from the input cJSON object.
*
* \returns
* void
* layer_list has a new entry and initialized accordingly.
* If the json input object does not have all the required fields no entry
* is added to the list.
*/
static void
loader_add_layer_properties(const struct loader_instance *inst,
struct loader_layer_list *layer_instance_list,
cJSON *json, bool is_implicit, char *filename) {
/* Fields in layer manifest file that are required:
* (required) “file_format_version”
*
* If more than one "layer" object are to be used, use the "layers" array
* instead.
*
* First get all required items and if any missing abort
*/
cJSON *item, *layers_node, *layer_node;
uint16_t file_major_vers = 0;
uint16_t file_minor_vers = 0;
uint16_t file_patch_vers = 0;
char *vers_tok;
cJSON *disable_environment = NULL;
item = cJSON_GetObjectItem(json, "file_format_version");
if (item == NULL) {
return;
}
char *file_vers = cJSON_PrintUnformatted(item);
if (NULL == file_vers) {
return;
}
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"Found manifest file %s, version %s", filename, file_vers);
// Get the major/minor/and patch as integers for easier comparison
vers_tok = strtok(file_vers, ".\"\n\r");
if (NULL != vers_tok) {
file_major_vers = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
if (NULL != vers_tok) {
file_minor_vers = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
if (NULL != vers_tok) {
file_patch_vers = (uint16_t)atoi(vers_tok);
}
}
}
if (file_major_vers != 1 || file_minor_vers != 0 || file_patch_vers > 1) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"%s Unexpected manifest file version (expected 1.0.0 or "
"1.0.1), may cause errors",
filename);
}
cJSON_Free(file_vers);
// If "layers" is present, read in the array of layer objects
layers_node = cJSON_GetObjectItem(json, "layers");
if (layers_node != NULL) {
int numItems = cJSON_GetArraySize(layers_node);
if (file_major_vers == 1 && file_minor_vers == 0 &&
file_patch_vers == 0) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"\"layers\" tag not officially added until file version "
"1.0.1, but %s is reporting version %s",
filename, file_vers);
}
for (int curLayer = 0; curLayer < numItems; curLayer++) {
layer_node = cJSON_GetArrayItem(layers_node, curLayer);
if (layer_node == NULL) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Can't find \"layers\" array element %d object in "
"manifest JSON file %s, skipping this file",
curLayer, filename);
return;
}
loader_read_json_layer(inst, layer_instance_list, layer_node, item,
disable_environment, is_implicit, filename);
}
} else {
// Otherwise, try to read in individual layers
layer_node = cJSON_GetObjectItem(json, "layer");
if (layer_node == NULL) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Can't find \"layer\" object in manifest JSON file %s, "
"skipping this file",
filename);
return;
}
// Loop through all "layer" objects in the file to get a count of them
// first.
uint16_t layer_count = 0;
cJSON *tempNode = layer_node;
do {
tempNode = tempNode->next;
layer_count++;
} while (tempNode != NULL);
/*
* Throw a warning if we encounter multiple "layer" objects in file
* versions newer than 1.0.0. Having multiple objects with the same
* name at the same level is actually a JSON standard violation.
*/
if (layer_count > 1 &&
(file_major_vers > 1 ||
!(file_minor_vers == 0 && file_patch_vers == 0))) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Multiple \"layer\" nodes are deprecated starting in "
"file version \"1.0.1\". Please use \"layers\" : [] "
"array instead in %s.",
filename);
} else {
do {
loader_read_json_layer(inst, layer_instance_list, layer_node,
item, disable_environment, is_implicit,
filename);
layer_node = layer_node->next;
} while (layer_node != NULL);
}
}
return;
}
/**
* Find the Vulkan library manifest files.
*
* This function scans the "location" or "env_override" directories/files
* for a list of JSON manifest files. If env_override is non-NULL
* and has a valid value. Then the location is ignored. Otherwise
* location is used to look for manifest files. The location
* is interpreted as Registry path on Windows and a directory path(s)
* on Linux. "home_location" is an additional directory in the users home
* directory to look at. It is expanded into the dir path
* $XDG_DATA_HOME/home_location or $HOME/.local/share/home_location depending
* on environment variables. This "home_location" is only used on Linux.
*
* \returns
* VKResult
* A string list of manifest files to be opened in out_files param.
* List has a pointer to string for each manifest filename.
* When done using the list in out_files, pointers should be freed.
* Location or override string lists can be either files or directories as
*follows:
* | location | override
* --------------------------------
* Win ICD | files | files
* Win Layer | files | dirs
* Linux ICD | dirs | files
* Linux Layer| dirs | dirs
*/
static VkResult loader_get_manifest_files(
const struct loader_instance *inst, const char *env_override,
char *source_override, bool is_layer, const char *location,
const char *home_location, struct loader_manifest_files *out_files) {
char * override = NULL;
char *loc, *orig_loc = NULL;
char *reg = NULL;
char *file, *next_file, *name;
size_t alloced_count = 64;
char full_path[2048];
DIR *sysdir = NULL;
bool list_is_dirs = false;
struct dirent *dent;
VkResult res = VK_SUCCESS;
out_files->count = 0;
out_files->filename_list = NULL;
if (source_override != NULL) {
override = source_override;
} else if (env_override != NULL &&
(override = loader_getenv(env_override, inst))) {
#if !defined(_WIN32)
if (geteuid() != getuid() || getegid() != getgid()) {
/* Don't allow setuid apps to use the env var: */
loader_free_getenv(override, inst);
override = NULL;
}
#endif
}
#if !defined(_WIN32)
if (location == NULL && home_location == NULL) {
#else
home_location = NULL;
if (location == NULL) {
#endif
loader_log(
inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Can't get manifest files with NULL location, env_override=%s",
env_override);
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
#if defined(_WIN32)
list_is_dirs = (is_layer && override != NULL) ? true : false;
#else
list_is_dirs = (override == NULL || is_layer) ? true : false;
#endif
// Make a copy of the input we are using so it is not modified
// Also handle getting the location(s) from registry on Windows
if (override == NULL) {
loc = loader_stack_alloc(strlen(location) + 1);
if (loc == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Out of memory can't get manifest files");
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
strcpy(loc, location);
#if defined(_WIN32)
reg = loader_get_registry_files(inst, loc);
if (reg == NULL) {
if (!is_layer) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Registry lookup failed can't get ICD manifest "
"files, do you have a Vulkan driver installed");
// This typically only fails when out of memory, which is
// critical
// if this is for the loader.
res = VK_ERROR_OUT_OF_HOST_MEMORY;
} else {
// warning only for layers
loader_log(
inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Registry lookup failed can't get layer manifest files");
// Return success for now since it's not critical for layers
res = VK_SUCCESS;
}
goto out;
}
orig_loc = loc;
loc = reg;
#endif
} else {
loc = loader_stack_alloc(strlen(override) + 1);
if (loc == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Out of memory can't get manifest files");
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
strcpy(loc, override);
if (source_override == NULL) {
loader_free_getenv(override, inst);
}
}
// Print out the paths being searched if debugging is enabled
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"Searching the following paths for manifest files: %s\n", loc);
file = loc;
while (*file) {
next_file = loader_get_next_path(file);
if (list_is_dirs) {
sysdir = opendir(file);
name = NULL;
if (sysdir) {
dent = readdir(sysdir);
if (dent == NULL)
break;
name = &(dent->d_name[0]);
loader_get_fullpath(name, file, sizeof(full_path), full_path);
name = full_path;
}
} else {
#if defined(_WIN32)
name = file;
#else
// only Linux has relative paths
char *dir;
// make a copy of location so it isn't modified
dir = loader_stack_alloc(strlen(loc) + 1);
if (dir == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Out of memory can't get manifest files");
goto out;
}
strcpy(dir, loc);
loader_get_fullpath(file, dir, sizeof(full_path), full_path);
name = full_path;
#endif
}
while (name) {
/* Look for files ending with ".json" suffix */
uint32_t nlen = (uint32_t)strlen(name);
const char *suf = name + nlen - 5;
if ((nlen > 5) && !strncmp(suf, ".json", 5)) {
if (out_files->count == 0) {
out_files->filename_list = loader_instance_heap_alloc(
inst, alloced_count * sizeof(char *),
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
} else if (out_files->count == alloced_count) {
out_files->filename_list = loader_instance_heap_realloc(
inst, out_files->filename_list,
alloced_count * sizeof(char *),
alloced_count * sizeof(char *) * 2,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
alloced_count *= 2;
}
if (out_files->filename_list == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Out of memory can't alloc manifest file list");
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
out_files->filename_list[out_files->count] =
loader_instance_heap_alloc(
inst, strlen(name) + 1,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (out_files->filename_list[out_files->count] == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Out of memory can't get manifest files");
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
strcpy(out_files->filename_list[out_files->count], name);
out_files->count++;
} else if (!list_is_dirs) {
loader_log(
inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Skipping manifest file %s, file name must end in .json",
name);
}
if (list_is_dirs) {
dent = readdir(sysdir);
if (dent == NULL) {
break;
}
name = &(dent->d_name[0]);
loader_get_fullpath(name, file, sizeof(full_path), full_path);
name = full_path;
} else {
break;
}
}
if (sysdir) {
closedir(sysdir);
sysdir = NULL;
}
file = next_file;
#if !defined(_WIN32)
if (home_location != NULL &&
(next_file == NULL || *next_file == '\0') && override == NULL) {
char *xdgdatahome = secure_getenv("XDG_DATA_HOME");
size_t len;
if (xdgdatahome != NULL) {
char *home_loc = loader_stack_alloc(strlen(xdgdatahome) + 2 +
strlen(home_location));
if (home_loc == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Out of memory can't get manifest files");
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
strcpy(home_loc, xdgdatahome);
// Add directory separator if needed
if (home_location[0] != DIRECTORY_SYMBOL) {
len = strlen(home_loc);
home_loc[len] = DIRECTORY_SYMBOL;
home_loc[len + 1] = '\0';
}
strcat(home_loc, home_location);
file = home_loc;
next_file = loader_get_next_path(file);
home_location = NULL;
loader_log(
inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"Searching the following path for manifest files: %s\n",
home_loc);
list_is_dirs = true;
} else {
char *home = secure_getenv("HOME");
if (home != NULL) {
char *home_loc = loader_stack_alloc(strlen(home) + 16 +
strlen(home_location));
if (home_loc == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Out of memory can't get manifest files");
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
strcpy(home_loc, home);
len = strlen(home);
if (home[len] != DIRECTORY_SYMBOL) {
home_loc[len] = DIRECTORY_SYMBOL;
home_loc[len + 1] = '\0';
}
strcat(home_loc, ".local/share");
if (home_location[0] != DIRECTORY_SYMBOL) {
len = strlen(home_loc);
home_loc[len] = DIRECTORY_SYMBOL;
home_loc[len + 1] = '\0';
}
strcat(home_loc, home_location);
file = home_loc;
next_file = loader_get_next_path(file);
home_location = NULL;
loader_log(
inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"Searching the following path for manifest files: %s\n",
home_loc);
list_is_dirs = true;
} else {
// without knowing HOME, we just.. give up
}
}
}
#endif
}
out:
if (VK_SUCCESS != res && NULL != out_files->filename_list) {
for (uint32_t remove = 0; remove < out_files->count; remove++) {
loader_instance_heap_free(inst, out_files->filename_list[remove]);
}
loader_instance_heap_free(inst, out_files->filename_list);
out_files->count = 0;
out_files->filename_list = NULL;
}
if (NULL != sysdir) {
closedir(sysdir);
}
if (NULL != reg && reg != orig_loc) {
loader_instance_heap_free(inst, reg);
}
return res;
}
void loader_init_icd_lib_list() {}
void loader_destroy_icd_lib_list() {}
/**
* Try to find the Vulkan ICD driver(s).
*
* This function scans the default system loader path(s) or path
* specified by the \c VK_ICD_FILENAMES environment variable in
* order to find loadable VK ICDs manifest files. From these
* manifest files it finds the ICD libraries.
*
* \returns
* Vulkan result
* (on result == VK_SUCCESS) a list of icds that were discovered
*/
VkResult loader_icd_scan(const struct loader_instance *inst,
struct loader_icd_libs *icds) {
char *file_str;
uint16_t file_major_vers = 0;
uint16_t file_minor_vers = 0;
uint16_t file_patch_vers = 0;
char *vers_tok;
struct loader_manifest_files manifest_files;
VkResult res = VK_SUCCESS;
bool lockedMutex = false;
cJSON *json = NULL;
uint32_t num_good_icds = 0;
memset(&manifest_files, 0, sizeof(struct loader_manifest_files));
res = loader_scanned_icd_init(inst, icds);
if (VK_SUCCESS != res) {
goto out;
}
// Get a list of manifest files for ICDs
res = loader_get_manifest_files(inst, "VK_ICD_FILENAMES", NULL, false,
DEFAULT_VK_DRIVERS_INFO,
HOME_VK_DRIVERS_INFO, &manifest_files);
if (VK_SUCCESS != res || manifest_files.count == 0) {
goto out;
}
loader_platform_thread_lock_mutex(&loader_json_lock);
lockedMutex = true;
for (uint32_t i = 0; i < manifest_files.count; i++) {
file_str = manifest_files.filename_list[i];
if (file_str == NULL) {
continue;
}
res = loader_get_json(inst, file_str, &json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
break;
} else if (VK_SUCCESS != res || NULL == json) {
continue;
}
cJSON *item, *itemICD;
item = cJSON_GetObjectItem(json, "file_format_version");
if (item == NULL) {
if (num_good_icds == 0) {
res = VK_ERROR_INITIALIZATION_FAILED;
}
cJSON_Delete(json);
json = NULL;
continue;
}
char *file_vers = cJSON_Print(item);
if (NULL == file_vers) {
// Only reason the print can fail is if there was an allocation
// issue
if (num_good_icds == 0) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
}
cJSON_Delete(json);
json = NULL;
continue;
}
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"Found manifest file %s, version %s", file_str, file_vers);
// Get the major/minor/and patch as integers for easier comparison
vers_tok = strtok(file_vers, ".\"\n\r");
if (NULL != vers_tok) {
file_major_vers = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
if (NULL != vers_tok) {
file_minor_vers = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
if (NULL != vers_tok) {
file_patch_vers = (uint16_t)atoi(vers_tok);
}
}
}
if (file_major_vers != 1 || file_minor_vers != 0 || file_patch_vers > 1)
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Unexpected manifest file version (expected 1.0.0 or "
"1.0.1), may "
"cause errors");
cJSON_Free(file_vers);
itemICD = cJSON_GetObjectItem(json, "ICD");
if (itemICD != NULL) {
item = cJSON_GetObjectItem(itemICD, "library_path");
if (item != NULL) {
char *temp = cJSON_Print(item);
if (!temp || strlen(temp) == 0) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Can't find \"library_path\" in ICD JSON file "
"%s, skipping",
file_str);
if (num_good_icds == 0) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
}
cJSON_Free(temp);
cJSON_Delete(json);
json = NULL;
continue;
}
// strip out extra quotes
temp[strlen(temp) - 1] = '\0';
char *library_path = loader_stack_alloc(strlen(temp) + 1);
if (NULL == library_path) {
loader_log(
inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Can't allocate space for \"library_path\" in ICD "
"JSON file %s, skipping",
file_str);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
cJSON_Free(temp);
cJSON_Delete(json);
json = NULL;
goto out;
}
strcpy(library_path, &temp[1]);
cJSON_Free(temp);
if (strlen(library_path) == 0) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Can't find \"library_path\" in ICD JSON file "
"%s, skipping",
file_str);
cJSON_Delete(json);
json = NULL;
continue;
}
char fullpath[MAX_STRING_SIZE];
// Print out the paths being searched if debugging is enabled
loader_log(
inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"Searching for ICD drivers named %s default dir %s\n",
library_path, DEFAULT_VK_DRIVERS_PATH);
if (loader_platform_is_path(library_path)) {
// a relative or absolute path
char *name_copy = loader_stack_alloc(strlen(file_str) + 1);
char *rel_base;
strcpy(name_copy, file_str);
rel_base = loader_platform_dirname(name_copy);
loader_expand_path(library_path, rel_base, sizeof(fullpath),
fullpath);
} else {
// a filename which is assumed in a system directory
loader_get_fullpath(library_path, DEFAULT_VK_DRIVERS_PATH,
sizeof(fullpath), fullpath);
}
uint32_t vers = 0;
item = cJSON_GetObjectItem(itemICD, "api_version");
if (item != NULL) {
temp = cJSON_Print(item);
if (NULL == temp) {
// Only reason the print can fail is if there was an
// allocation issue
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
vers = loader_make_version(temp);
cJSON_Free(temp);
}
res = loader_scanned_icd_add(inst, icds, fullpath, vers);
if (VK_SUCCESS != res) {
goto out;
}
num_good_icds++;
} else {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Can't find \"library_path\" object in ICD JSON "
"file %s, skipping",
file_str);
}
} else {
loader_log(
inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Can't find \"ICD\" object in ICD JSON file %s, skipping",
file_str);
}
cJSON_Delete(json);
json = NULL;
}
out:
if (NULL != json) {
cJSON_Delete(json);
}
if (NULL != manifest_files.filename_list) {
for (uint32_t i = 0; i < manifest_files.count; i++) {
if (NULL != manifest_files.filename_list[i]) {
loader_instance_heap_free(inst,
manifest_files.filename_list[i]);
}
}
loader_instance_heap_free(inst, manifest_files.filename_list);
}
if (lockedMutex) {
loader_platform_thread_unlock_mutex(&loader_json_lock);
}
return res;
}
void loader_layer_scan(const struct loader_instance *inst,
struct loader_layer_list *instance_layers) {
char *file_str;
struct loader_manifest_files
manifest_files[2]; // [0] = explicit, [1] = implicit
cJSON *json;
uint32_t implicit;
bool lockedMutex = false;
memset(manifest_files, 0, sizeof(struct loader_manifest_files) * 2);
// Get a list of manifest files for explicit layers
if (VK_SUCCESS !=
loader_get_manifest_files(inst, LAYERS_PATH_ENV, LAYERS_SOURCE_PATH,
true, DEFAULT_VK_ELAYERS_INFO,
HOME_VK_ELAYERS_INFO, &manifest_files[0])) {
goto out;
}
// Get a list of manifest files for any implicit layers
// Pass NULL for environment variable override - implicit layers are not
// overridden by LAYERS_PATH_ENV
if (VK_SUCCESS != loader_get_manifest_files(
inst, NULL, NULL, true, DEFAULT_VK_ILAYERS_INFO,
HOME_VK_ILAYERS_INFO, &manifest_files[1])) {
goto out;
}
// Make sure we have at least one layer, if not, go ahead and return
if (manifest_files[0].count == 0 && manifest_files[1].count == 0) {
goto out;
}
// cleanup any previously scanned libraries
loader_delete_layer_properties(inst, instance_layers);
loader_platform_thread_lock_mutex(&loader_json_lock);
lockedMutex = true;
for (implicit = 0; implicit < 2; implicit++) {
for (uint32_t i = 0; i < manifest_files[implicit].count; i++) {
file_str = manifest_files[implicit].filename_list[i];
if (file_str == NULL)
continue;
// parse file into JSON struct
VkResult res = loader_get_json(inst, file_str, &json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
break;
} else if (VK_SUCCESS != res || NULL == json) {
continue;
}
loader_add_layer_properties(inst, instance_layers, json,
(implicit == 1), file_str);
cJSON_Delete(json);
}
}
// add a meta layer for validation if the validation layers are all present
loader_add_layer_property_meta(inst, sizeof(std_validation_names) /
sizeof(std_validation_names[0]),
std_validation_names, instance_layers);
out:
for (uint32_t manFile = 0; manFile < 2; manFile++) {
if (NULL != manifest_files[manFile].filename_list) {
for (uint32_t i = 0; i < manifest_files[manFile].count; i++) {
if (NULL != manifest_files[manFile].filename_list[i]) {
loader_instance_heap_free(
inst, manifest_files[manFile].filename_list[i]);
}
}
loader_instance_heap_free(inst,
manifest_files[manFile].filename_list);
}
}
if (lockedMutex) {
loader_platform_thread_unlock_mutex(&loader_json_lock);
}
}
void loader_implicit_layer_scan(const struct loader_instance *inst,
struct loader_layer_list *instance_layers) {
char *file_str;
struct loader_manifest_files manifest_files;
cJSON *json;
uint32_t i;
// Pass NULL for environment variable override - implicit layers are not
// overridden by LAYERS_PATH_ENV
VkResult res = loader_get_manifest_files(
inst, NULL, NULL, true, DEFAULT_VK_ILAYERS_INFO, HOME_VK_ILAYERS_INFO,
&manifest_files);
if (VK_SUCCESS != res || manifest_files.count == 0) {
return;
}
/* cleanup any previously scanned libraries */
loader_delete_layer_properties(inst, instance_layers);
loader_platform_thread_lock_mutex(&loader_json_lock);
for (i = 0; i < manifest_files.count; i++) {
file_str = manifest_files.filename_list[i];
if (file_str == NULL) {
continue;
}
// parse file into JSON struct
res = loader_get_json(inst, file_str, &json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
break;
} else if (VK_SUCCESS != res || NULL == json) {
continue;
}
loader_add_layer_properties(inst, instance_layers, json, true,
file_str);
loader_instance_heap_free(inst, file_str);
cJSON_Delete(json);
}
loader_instance_heap_free(inst, manifest_files.filename_list);
// add a meta layer for validation if the validation layers are all present
loader_add_layer_property_meta(inst, sizeof(std_validation_names) /
sizeof(std_validation_names[0]),
std_validation_names, instance_layers);
loader_platform_thread_unlock_mutex(&loader_json_lock);
}
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
loader_gpa_instance_internal(VkInstance inst, const char *pName) {
if (!strcmp(pName, "vkGetInstanceProcAddr"))
return (void *)loader_gpa_instance_internal;
if (!strcmp(pName, "vkCreateInstance"))
return (void *)terminator_CreateInstance;
if (!strcmp(pName, "vkCreateDevice"))
return (void *)terminator_CreateDevice;
// inst is not wrapped
if (inst == VK_NULL_HANDLE) {
return NULL;
}
VkLayerInstanceDispatchTable *disp_table =
*(VkLayerInstanceDispatchTable **)inst;
void *addr;
if (disp_table == NULL)
return NULL;
bool found_name;
addr =
loader_lookup_instance_dispatch_table(disp_table, pName, &found_name);
if (found_name) {
return addr;
}
// Don't call down the chain, this would be an infinite loop
loader_log(NULL, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loader_gpa_instance_internal() unrecognized name %s", pName);
return NULL;
}
void loader_override_terminating_device_proc(
VkDevice device, struct loader_dev_dispatch_table *disp_table) {
struct loader_device *dev;
struct loader_icd *icd = loader_get_icd_and_device(device, &dev, NULL);
// Certain device entry-points still need to go through a terminator before
// hitting the ICD. This could be for several reasons, but the main one
// is currently unwrapping an object before passing the appropriate info
// along to the ICD.
if ((PFN_vkVoidFunction)disp_table->core_dispatch.CreateSwapchainKHR ==
(PFN_vkVoidFunction)icd->GetDeviceProcAddr(device,
"vkCreateSwapchainKHR")) {
disp_table->core_dispatch.CreateSwapchainKHR =
terminator_vkCreateSwapchainKHR;
}
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
loader_gpa_device_internal(VkDevice device, const char *pName) {
struct loader_device *dev;
struct loader_icd *icd = loader_get_icd_and_device(device, &dev, NULL);
// Certain device entry-points still need to go through a terminator before
// hitting the ICD. This could be for several reasons, but the main one
// is currently unwrapping an object before passing the appropriate info
// along to the ICD.
if (!strcmp(pName, "vkCreateSwapchainKHR")) {
return (PFN_vkVoidFunction)terminator_vkCreateSwapchainKHR;
}
return icd->GetDeviceProcAddr(device, pName);
}
/**
* Initialize device_ext dispatch table entry as follows:
* If dev == NULL find all logical devices created within this instance and
* init the entry (given by idx) in the ext dispatch table.
* If dev != NULL only initialize the entry in the given dev's dispatch table.
* The initialization value is gotten by calling down the device chain with
* GDPA.
* If GDPA returns NULL then don't initialize the dispatch table entry.
*/
static void loader_init_dispatch_dev_ext_entry(struct loader_instance *inst,
struct loader_device *dev,
uint32_t idx,
const char *funcName)
{
void *gdpa_value;
if (dev != NULL) {
gdpa_value = dev->loader_dispatch.core_dispatch.GetDeviceProcAddr(
dev->device, funcName);
if (gdpa_value != NULL)
dev->loader_dispatch.ext_dispatch.dev_ext[idx] =
(PFN_vkDevExt)gdpa_value;
} else {
for (uint32_t i = 0; i < inst->total_icd_count; i++) {
struct loader_icd *icd = &inst->icds[i];
struct loader_device *ldev = icd->logical_device_list;
while (ldev) {
gdpa_value =
ldev->loader_dispatch.core_dispatch.GetDeviceProcAddr(
ldev->device, funcName);
if (gdpa_value != NULL)
ldev->loader_dispatch.ext_dispatch.dev_ext[idx] =
(PFN_vkDevExt)gdpa_value;
ldev = ldev->next;
}
}
}
}
/**
* Find all dev extension in the hash table and initialize the dispatch table
* for dev for each of those extension entrypoints found in hash table.
*/
void loader_init_dispatch_dev_ext(struct loader_instance *inst,
struct loader_device *dev) {
for (uint32_t i = 0; i < MAX_NUM_DEV_EXTS; i++) {
if (inst->disp_hash[i].func_name != NULL)
loader_init_dispatch_dev_ext_entry(inst, dev, i,
inst->disp_hash[i].func_name);
}
}
static bool loader_check_icds_for_address(struct loader_instance *inst,
const char *funcName) {
struct loader_icd *icd;
icd = inst->icds;
while (icd) {
if (icd->this_icd_lib->GetInstanceProcAddr(icd->instance, funcName))
// this icd supports funcName
return true;
icd = icd->next;
}
return false;
}
static bool loader_check_layer_list_for_address(
const struct loader_layer_list *const layers, const char *funcName) {
// Iterate over the layers.
for (uint32_t layer = 0; layer < layers->count; ++layer) {
// Iterate over the extensions.
const struct loader_device_extension_list *const extensions =
&(layers->list[layer].device_extension_list);
for (uint32_t extension = 0; extension < extensions->count;
++extension) {
// Iterate over the entry points.
const struct loader_dev_ext_props *const property =
&(extensions->list[extension]);
for (uint32_t entry = 0; entry < property->entrypoint_count;
++entry) {
if (strcmp(property->entrypoints[entry], funcName) == 0) {
return true;
}
}
}
}
return false;
}
static void loader_free_dev_ext_table(struct loader_instance *inst) {
for (uint32_t i = 0; i < MAX_NUM_DEV_EXTS; i++) {
loader_instance_heap_free(inst, inst->disp_hash[i].func_name);
loader_instance_heap_free(inst, inst->disp_hash[i].list.index);
}
memset(inst->disp_hash, 0, sizeof(inst->disp_hash));
}
static bool loader_add_dev_ext_table(struct loader_instance *inst,
uint32_t *ptr_idx, const char *funcName) {
uint32_t i;
uint32_t idx = *ptr_idx;
struct loader_dispatch_hash_list *list = &inst->disp_hash[idx].list;
if (!inst->disp_hash[idx].func_name) {
// no entry here at this idx, so use it
assert(list->capacity == 0);
inst->disp_hash[idx].func_name = (char *)loader_instance_heap_alloc(
inst, strlen(funcName) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (inst->disp_hash[idx].func_name == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_dev_ext_table() can't allocate memory for "
"func_name");
return false;
}
strncpy(inst->disp_hash[idx].func_name, funcName, strlen(funcName) + 1);
return true;
}
// check for enough capacity
if (list->capacity == 0) {
list->index = loader_instance_heap_alloc(inst, 8 * sizeof(*(list->index)),
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list->index == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_dev_ext_table() can't allocate list memory");
return false;
}
list->capacity = 8 * sizeof(*(list->index));
} else if (list->capacity < (list->count + 1) * sizeof(*(list->index))) {
list->index = loader_instance_heap_realloc(inst, list->index, list->capacity,
list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list->index == NULL) {
loader_log(
inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_dev_ext_table() can't reallocate list memory");
return false;
}
list->capacity *= 2;
}
// find an unused index in the hash table and use it
i = (idx + 1) % MAX_NUM_DEV_EXTS;
do {
if (!inst->disp_hash[i].func_name) {
assert(inst->disp_hash[i].list.capacity == 0);
inst->disp_hash[i].func_name =
(char *)loader_instance_heap_alloc(inst, strlen(funcName) + 1,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (inst->disp_hash[i].func_name == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_dev_ext_table() can't rallocate "
"func_name memory");
return false;
}
strncpy(inst->disp_hash[i].func_name, funcName,
strlen(funcName) + 1);
list->index[list->count] = i;
list->count++;
*ptr_idx = i;
return true;
}
i = (i + 1) % MAX_NUM_DEV_EXTS;
} while (i != idx);
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_dev_ext_table() couldn't insert into hash table; is "
"it full?");
return false;
}
static bool loader_name_in_dev_ext_table(struct loader_instance *inst,
uint32_t *idx, const char *funcName) {
uint32_t alt_idx;
if (inst->disp_hash[*idx].func_name &&
!strcmp(inst->disp_hash[*idx].func_name, funcName))
return true;
// funcName wasn't at the primary spot in the hash table
// search the list of secondary locations (shallow search, not deep search)
for (uint32_t i = 0; i < inst->disp_hash[*idx].list.count; i++) {
alt_idx = inst->disp_hash[*idx].list.index[i];
if (!strcmp(inst->disp_hash[*idx].func_name, funcName)) {
*idx = alt_idx;
return true;
}
}
return false;
}
/**
* This function returns generic trampoline code address for unknown entry
* points.
* Presumably, these unknown entry points (as given by funcName) are device
* extension entrypoints. A hash table is used to keep a list of unknown entry
* points and their mapping to the device extension dispatch table
* (struct loader_dev_ext_dispatch_table).
* \returns
* For a given entry point string (funcName), if an existing mapping is found
* the
* trampoline address for that mapping is returned. Otherwise, this unknown
* entry point
* has not been seen yet. Next check if a layer or ICD supports it. If so then
* a
* new entry in the hash table is initialized and that trampoline address for
* the new entry is returned. Null is returned if the hash table is full or
* if no discovered layer or ICD returns a non-NULL GetProcAddr for it.
*/
void *loader_dev_ext_gpa(struct loader_instance *inst, const char *funcName) {
uint32_t idx;
uint32_t seed = 0;
idx = murmurhash(funcName, strlen(funcName), seed) % MAX_NUM_DEV_EXTS;
if (loader_name_in_dev_ext_table(inst, &idx, funcName))
// found funcName already in hash
return loader_get_dev_ext_trampoline(idx);
// Check if funcName is supported in either ICDs or a layer library
if (!loader_check_icds_for_address(inst, funcName) &&
!loader_check_layer_list_for_address(&inst->instance_layer_list, funcName)) {
// if support found in layers continue on
return NULL;
}
if (loader_add_dev_ext_table(inst, &idx, funcName)) {
// successfully added new table entry
// init any dev dispatch table entrys as needed
loader_init_dispatch_dev_ext_entry(inst, NULL, idx, funcName);
return loader_get_dev_ext_trampoline(idx);
}
return NULL;
}
struct loader_instance *loader_get_instance(const VkInstance instance) {
/* look up the loader_instance in our list by comparing dispatch tables, as
* there is no guarantee the instance is still a loader_instance* after any
* layers which wrap the instance object.
*/
const VkLayerInstanceDispatchTable *disp;
struct loader_instance *ptr_instance = NULL;
disp = loader_get_instance_dispatch(instance);
for (struct loader_instance *inst = loader.instances; inst;
inst = inst->next) {
if (inst->disp == disp) {
ptr_instance = inst;
break;
}
}
return ptr_instance;
}
static loader_platform_dl_handle
loader_open_layer_lib(const struct loader_instance *inst, const char *chain_type,
struct loader_layer_properties *prop) {
if ((prop->lib_handle = loader_platform_open_library(prop->lib_name)) ==
NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
loader_platform_open_library_error(prop->lib_name));
} else {
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"Chain: %s: Loading layer library %s", chain_type,
prop->lib_name);
}
return prop->lib_handle;
}
static void
loader_close_layer_lib(const struct loader_instance *inst,
struct loader_layer_properties *prop) {
if (prop->lib_handle) {
loader_platform_close_library(prop->lib_handle);
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"Unloading layer library %s", prop->lib_name);
prop->lib_handle = NULL;
}
}
void loader_deactivate_layers(const struct loader_instance *instance,
struct loader_device *device,
struct loader_layer_list *list) {
/* delete instance list of enabled layers and close any layer libraries */
for (uint32_t i = 0; i < list->count; i++) {
struct loader_layer_properties *layer_prop = &list->list[i];
loader_close_layer_lib(instance, layer_prop);
}
loader_destroy_layer_list(instance, device, list);
}
/**
* Go through the search_list and find any layers which match type. If layer
* type match is found in then add it to ext_list.
*/
static void
loader_add_layer_implicit(const struct loader_instance *inst,
const enum layer_type type,
struct loader_layer_list *list,
const struct loader_layer_list *search_list) {
bool enable;
char *env_value;
uint32_t i;
for (i = 0; i < search_list->count; i++) {
const struct loader_layer_properties *prop = &search_list->list[i];
if (prop->type & type) {
/* Found an implicit layer, see if it should be enabled */
enable = false;
// if no enable_environment variable is specified, this implicit
// layer
// should always be enabled. Otherwise check if the variable is set
if (prop->enable_env_var.name[0] == 0) {
enable = true;
} else {
env_value = loader_getenv(prop->enable_env_var.name, inst);
if (env_value && !strcmp(prop->enable_env_var.value, env_value))
enable = true;
loader_free_getenv(env_value, inst);
}
// disable_environment has priority, i.e. if both enable and disable
// environment variables are set, the layer is disabled. Implicit
// layers
// are required to have a disable_environment variables
env_value = loader_getenv(prop->disable_env_var.name, inst);
if (env_value) {
enable = false;
}
loader_free_getenv(env_value, inst);
if (enable) {
loader_add_to_layer_list(inst, list, 1, prop);
}
}
}
}
/**
* Get the layer name(s) from the env_name environment variable. If layer
* is found in search_list then add it to layer_list. But only add it to
* layer_list if type matches.
*/
static void loader_add_layer_env(struct loader_instance *inst,
const enum layer_type type,
const char *env_name,
struct loader_layer_list *layer_list,
const struct loader_layer_list *search_list) {
char *layerEnv;
char *next, *name;
layerEnv = loader_getenv(env_name, inst);
if (layerEnv == NULL) {
return;
}
name = loader_stack_alloc(strlen(layerEnv) + 1);
if (name == NULL) {
return;
}
strcpy(name, layerEnv);
loader_free_getenv(layerEnv, inst);
while (name && *name) {
next = loader_get_next_path(name);
if (!strcmp(std_validation_str, name)) {
/* add meta list of layers
don't attempt to remove duplicate layers already added by app or
env var
*/
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"Expanding meta layer %s found in environment variable",
std_validation_str);
if (type == VK_LAYER_TYPE_INSTANCE_EXPLICIT)
inst->activated_layers_are_std_val = true;
for (uint32_t i = 0; i < sizeof(std_validation_names) /
sizeof(std_validation_names[0]);
i++) {
loader_find_layer_name_add_list(inst, std_validation_names[i],
type, search_list, layer_list);
}
} else {
loader_find_layer_name_add_list(inst, name, type, search_list,
layer_list);
}
name = next;
}
return;
}
VkResult
loader_enable_instance_layers(struct loader_instance *inst,
const VkInstanceCreateInfo *pCreateInfo,
const struct loader_layer_list *instance_layers) {
VkResult err;
assert(inst && "Cannot have null instance");
if (!loader_init_layer_list(inst, &inst->activated_layer_list)) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Failed to alloc Instance activated layer list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
/* Add any implicit layers first */
loader_add_layer_implicit(inst, VK_LAYER_TYPE_INSTANCE_IMPLICIT,
&inst->activated_layer_list, instance_layers);
/* Add any layers specified via environment variable next */
loader_add_layer_env(inst, VK_LAYER_TYPE_INSTANCE_EXPLICIT,
"VK_INSTANCE_LAYERS", &inst->activated_layer_list,
instance_layers);
/* Add layers specified by the application */
err = loader_add_layer_names_to_list(
inst, &inst->activated_layer_list, pCreateInfo->enabledLayerCount,
pCreateInfo->ppEnabledLayerNames, instance_layers);
return err;
}
/*
* Given the list of layers to activate in the loader_instance
* structure. This function will add a VkLayerInstanceCreateInfo
* structure to the VkInstanceCreateInfo.pNext pointer.
* Each activated layer will have it's own VkLayerInstanceLink
* structure that tells the layer what Get*ProcAddr to call to
* get function pointers to the next layer down.
* Once the chain info has been created this function will
* execute the CreateInstance call chain. Each layer will
* then have an opportunity in it's CreateInstance function
* to setup it's dispatch table when the lower layer returns
* successfully.
* Each layer can wrap or not-wrap the returned VkInstance object
* as it sees fit.
* The instance chain is terminated by a loader function
* that will call CreateInstance on all available ICD's and
* cache those VkInstance objects for future use.
*/
VkResult loader_create_instance_chain(const VkInstanceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
struct loader_instance *inst,
VkInstance *created_instance) {
uint32_t activated_layers = 0;
VkLayerInstanceCreateInfo chain_info;
VkLayerInstanceLink *layer_instance_link_info = NULL;
VkInstanceCreateInfo loader_create_info;
VkResult res;
PFN_vkGetInstanceProcAddr nextGIPA = loader_gpa_instance_internal;
PFN_vkGetInstanceProcAddr fpGIPA = loader_gpa_instance_internal;
memcpy(&loader_create_info, pCreateInfo, sizeof(VkInstanceCreateInfo));
if (inst->activated_layer_list.count > 0) {
chain_info.u.pLayerInfo = NULL;
chain_info.pNext = pCreateInfo->pNext;
chain_info.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO;
chain_info.function = VK_LAYER_LINK_INFO;
loader_create_info.pNext = &chain_info;
layer_instance_link_info = loader_stack_alloc(
sizeof(VkLayerInstanceLink) * inst->activated_layer_list.count);
if (!layer_instance_link_info) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Failed to alloc Instance objects for layer");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
/* Create instance chain of enabled layers */
for (int32_t i = inst->activated_layer_list.count - 1; i >= 0; i--) {
struct loader_layer_properties *layer_prop =
&inst->activated_layer_list.list[i];
loader_platform_dl_handle lib_handle;
lib_handle = loader_open_layer_lib(inst, "instance", layer_prop);
if (!lib_handle)
continue;
if ((fpGIPA = layer_prop->functions.get_instance_proc_addr) ==
NULL) {
if (layer_prop->functions.str_gipa == NULL ||
strlen(layer_prop->functions.str_gipa) == 0) {
fpGIPA = (PFN_vkGetInstanceProcAddr)
loader_platform_get_proc_address(
lib_handle, "vkGetInstanceProcAddr");
layer_prop->functions.get_instance_proc_addr = fpGIPA;
} else
fpGIPA = (PFN_vkGetInstanceProcAddr)
loader_platform_get_proc_address(
lib_handle, layer_prop->functions.str_gipa);
if (!fpGIPA) {
loader_log(
inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Failed to find vkGetInstanceProcAddr in layer %s",
layer_prop->lib_name);
continue;
}
}
layer_instance_link_info[activated_layers].pNext =
chain_info.u.pLayerInfo;
layer_instance_link_info[activated_layers]
.pfnNextGetInstanceProcAddr = nextGIPA;
chain_info.u.pLayerInfo =
&layer_instance_link_info[activated_layers];
nextGIPA = fpGIPA;
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"Insert instance layer %s (%s)",
layer_prop->info.layerName, layer_prop->lib_name);
activated_layers++;
}
}
PFN_vkCreateInstance fpCreateInstance =
(PFN_vkCreateInstance)nextGIPA(*created_instance, "vkCreateInstance");
if (fpCreateInstance) {
VkLayerInstanceCreateInfo create_info_disp;
create_info_disp.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO;
create_info_disp.function = VK_LOADER_DATA_CALLBACK;
create_info_disp.u.pfnSetInstanceLoaderData = vkSetInstanceDispatch;
create_info_disp.pNext = loader_create_info.pNext;
loader_create_info.pNext = &create_info_disp;
res =
fpCreateInstance(&loader_create_info, pAllocator, created_instance);
} else {
// Couldn't find CreateInstance function!
res = VK_ERROR_INITIALIZATION_FAILED;
}
if (res != VK_SUCCESS) {
// TODO: Need to clean up here
} else {
loader_init_instance_core_dispatch_table(inst->disp, nextGIPA,
*created_instance);
inst->instance = *created_instance;
}
return res;
}
void loader_activate_instance_layer_extensions(struct loader_instance *inst,
VkInstance created_inst) {
loader_init_instance_extension_dispatch_table(
inst->disp, inst->disp->GetInstanceProcAddr, created_inst);
}
VkResult
loader_create_device_chain(const struct loader_physical_device_tramp *pd,
const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
const struct loader_instance *inst,
struct loader_device *dev) {
uint32_t activated_layers = 0;
VkLayerDeviceLink *layer_device_link_info;
VkLayerDeviceCreateInfo chain_info;
VkDeviceCreateInfo loader_create_info;
VkResult res;
PFN_vkGetDeviceProcAddr fpGDPA, nextGDPA = loader_gpa_device_internal;
PFN_vkGetInstanceProcAddr fpGIPA, nextGIPA = loader_gpa_instance_internal;
memcpy(&loader_create_info, pCreateInfo, sizeof(VkDeviceCreateInfo));
layer_device_link_info = loader_stack_alloc(
sizeof(VkLayerDeviceLink) * dev->activated_layer_list.count);
if (!layer_device_link_info) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Failed to alloc Device objects for layer");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
if (dev->activated_layer_list.count > 0) {
chain_info.sType = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO;
chain_info.function = VK_LAYER_LINK_INFO;
chain_info.u.pLayerInfo = NULL;
chain_info.pNext = pCreateInfo->pNext;
loader_create_info.pNext = &chain_info;
/* Create instance chain of enabled layers */
for (int32_t i = dev->activated_layer_list.count - 1; i >= 0; i--) {
struct loader_layer_properties *layer_prop =
&dev->activated_layer_list.list[i];
loader_platform_dl_handle lib_handle;
lib_handle = loader_open_layer_lib(inst, "device", layer_prop);
if (!lib_handle)
continue;
if ((fpGIPA = layer_prop->functions.get_instance_proc_addr) ==
NULL) {
if (layer_prop->functions.str_gipa == NULL ||
strlen(layer_prop->functions.str_gipa) == 0) {
fpGIPA = (PFN_vkGetInstanceProcAddr)
loader_platform_get_proc_address(
lib_handle, "vkGetInstanceProcAddr");
layer_prop->functions.get_instance_proc_addr = fpGIPA;
} else
fpGIPA = (PFN_vkGetInstanceProcAddr)
loader_platform_get_proc_address(
lib_handle, layer_prop->functions.str_gipa);
if (!fpGIPA) {
loader_log(
inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Failed to find vkGetInstanceProcAddr in layer %s",
layer_prop->lib_name);
continue;
}
}
if ((fpGDPA = layer_prop->functions.get_device_proc_addr) == NULL) {
if (layer_prop->functions.str_gdpa == NULL ||
strlen(layer_prop->functions.str_gdpa) == 0) {
fpGDPA = (PFN_vkGetDeviceProcAddr)
loader_platform_get_proc_address(lib_handle,
"vkGetDeviceProcAddr");
layer_prop->functions.get_device_proc_addr = fpGDPA;
} else
fpGDPA = (PFN_vkGetDeviceProcAddr)
loader_platform_get_proc_address(
lib_handle, layer_prop->functions.str_gdpa);
if (!fpGDPA) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"Failed to find vkGetDeviceProcAddr in layer %s",
layer_prop->lib_name);
continue;
}
}
layer_device_link_info[activated_layers].pNext =
chain_info.u.pLayerInfo;
layer_device_link_info[activated_layers]
.pfnNextGetInstanceProcAddr = nextGIPA;
layer_device_link_info[activated_layers].pfnNextGetDeviceProcAddr =
nextGDPA;
chain_info.u.pLayerInfo = &layer_device_link_info[activated_layers];
nextGIPA = fpGIPA;
nextGDPA = fpGDPA;
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"Insert device layer %s (%s)",
layer_prop->info.layerName, layer_prop->lib_name);
activated_layers++;
}
}
VkDevice created_device = (VkDevice)dev;
PFN_vkCreateDevice fpCreateDevice =
(PFN_vkCreateDevice)nextGIPA(inst->instance, "vkCreateDevice");
if (fpCreateDevice) {
VkLayerDeviceCreateInfo create_info_disp;
create_info_disp.sType = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO;
create_info_disp.function = VK_LOADER_DATA_CALLBACK;
create_info_disp.u.pfnSetDeviceLoaderData = vkSetDeviceDispatch;
create_info_disp.pNext = loader_create_info.pNext;
loader_create_info.pNext = &create_info_disp;
res = fpCreateDevice(pd->phys_dev, &loader_create_info, pAllocator,
&created_device);
if (res != VK_SUCCESS) {
return res;
}
dev->device = created_device;
} else {
// Couldn't find CreateDevice function!
return VK_ERROR_INITIALIZATION_FAILED;
}
/* Initialize device dispatch table */
loader_init_device_dispatch_table(&dev->loader_dispatch, nextGDPA,
dev->device);
return res;
}
VkResult loader_validate_layers(const struct loader_instance *inst,
const uint32_t layer_count,
const char *const *ppEnabledLayerNames,
const struct loader_layer_list *list) {
struct loader_layer_properties *prop;
for (uint32_t i = 0; i < layer_count; i++) {
VkStringErrorFlags result =
vk_string_validate(MaxLoaderStringLength, ppEnabledLayerNames[i]);
if (result != VK_STRING_ERROR_NONE) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Loader: Device ppEnabledLayerNames contains string "
"that is too long or is badly formed");
return VK_ERROR_LAYER_NOT_PRESENT;
}
prop = loader_get_layer_property(ppEnabledLayerNames[i], list);
if (!prop) {
return VK_ERROR_LAYER_NOT_PRESENT;
}
}
return VK_SUCCESS;
}
VkResult loader_validate_instance_extensions(
const struct loader_instance *inst,
const struct loader_extension_list *icd_exts,
const struct loader_layer_list *instance_layer,
const VkInstanceCreateInfo *pCreateInfo) {
VkExtensionProperties *extension_prop;
struct loader_layer_properties *layer_prop;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
VkStringErrorFlags result = vk_string_validate(
MaxLoaderStringLength, pCreateInfo->ppEnabledExtensionNames[i]);
if (result != VK_STRING_ERROR_NONE) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Loader: Instance ppEnabledExtensionNames contains "
"string that is too long or is badly formed");
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
extension_prop = get_extension_property(
pCreateInfo->ppEnabledExtensionNames[i], icd_exts);
if (extension_prop) {
continue;
}
extension_prop = NULL;
/* Not in global list, search layer extension lists */
for (uint32_t j = 0; j < pCreateInfo->enabledLayerCount; j++) {
layer_prop = loader_get_layer_property(
pCreateInfo->ppEnabledLayerNames[j], instance_layer);
if (!layer_prop) {
/* Should NOT get here, loader_validate_layers
* should have already filtered this case out.
*/
continue;
}
extension_prop =
get_extension_property(pCreateInfo->ppEnabledExtensionNames[i],
&layer_prop->instance_extension_list);
if (extension_prop) {
/* Found the extension in one of the layers enabled by the app.
*/
break;
}
}
if (!extension_prop) {
/* Didn't find extension name in any of the global layers, error out
*/
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}
return VK_SUCCESS;
}
VkResult loader_validate_device_extensions(
struct loader_physical_device_tramp *phys_dev,
const struct loader_layer_list *activated_device_layers,
const struct loader_extension_list *icd_exts,
const VkDeviceCreateInfo *pCreateInfo) {
VkExtensionProperties *extension_prop;
struct loader_layer_properties *layer_prop;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
VkStringErrorFlags result = vk_string_validate(
MaxLoaderStringLength, pCreateInfo->ppEnabledExtensionNames[i]);
if (result != VK_STRING_ERROR_NONE) {
loader_log(phys_dev->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT,
0, "Loader: Device ppEnabledExtensionNames contains "
"string that is too long or is badly formed");
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i];
extension_prop = get_extension_property(extension_name, icd_exts);
if (extension_prop) {
continue;
}
/* Not in global list, search activated layer extension lists */
for (uint32_t j = 0; j < activated_device_layers->count; j++) {
layer_prop = &activated_device_layers->list[j];
extension_prop = get_dev_extension_property(
extension_name, &layer_prop->device_extension_list);
if (extension_prop) {
/* Found the extension in one of the layers enabled by the app.
*/
break;
}
}
if (!extension_prop) {
/* Didn't find extension name in any of the device layers, error out
*/
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}
return VK_SUCCESS;
}
/**
* Terminator functions for the Instance chain
* All named terminator_<Vulakn API name>
*/
VKAPI_ATTR VkResult VKAPI_CALL terminator_CreateInstance(
const VkInstanceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkInstance *pInstance) {
struct loader_icd *icd;
VkExtensionProperties *prop;
char **filtered_extension_names = NULL;
VkInstanceCreateInfo icd_create_info;
VkResult res = VK_SUCCESS;
struct loader_instance *ptr_instance = (struct loader_instance *)*pInstance;
memcpy(&icd_create_info, pCreateInfo, sizeof(icd_create_info));
icd_create_info.enabledLayerCount = 0;
icd_create_info.ppEnabledLayerNames = NULL;
/*
* NOTE: Need to filter the extensions to only those
* supported by the ICD.
* No ICD will advertise support for layers. An ICD
* library could support a layer, but it would be
* independent of the actual ICD, just in the same library.
*/
filtered_extension_names =
loader_stack_alloc(pCreateInfo->enabledExtensionCount * sizeof(char *));
if (!filtered_extension_names) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
icd_create_info.ppEnabledExtensionNames =
(const char *const *)filtered_extension_names;
for (uint32_t i = 0; i < ptr_instance->icd_libs.count; i++) {
icd = loader_icd_add(ptr_instance, &ptr_instance->icd_libs.list[i]);
if (NULL == icd) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
icd_create_info.enabledExtensionCount = 0;
struct loader_extension_list icd_exts;
loader_log(ptr_instance, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"Build ICD instance extension list");
// traverse scanned icd list adding non-duplicate extensions to the
// list
res = loader_init_generic_list(ptr_instance,
(struct loader_generic_list *)&icd_exts,
sizeof(VkExtensionProperties));
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
// If out of memory, bail immediately.
goto out;
} else if (VK_SUCCESS != res) {
// Something bad happened with this ICD, so free it and try the
// next.
ptr_instance->icds = icd->next;
icd->next = NULL;
loader_icd_destroy(ptr_instance, icd, pAllocator);
continue;
}
res = loader_add_instance_extensions(
ptr_instance,
icd->this_icd_lib->EnumerateInstanceExtensionProperties,
icd->this_icd_lib->lib_name, &icd_exts);
if (VK_SUCCESS != res) {
loader_destroy_generic_list(ptr_instance,
(struct loader_generic_list *)&icd_exts);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
// If out of memory, bail immediately.
goto out;
} else {
// Something bad happened with this ICD, so free it and try
// the next.
ptr_instance->icds = icd->next;
icd->next = NULL;
loader_icd_destroy(ptr_instance, icd, pAllocator);
continue;
}
}
for (uint32_t j = 0; j < pCreateInfo->enabledExtensionCount; j++) {
prop = get_extension_property(
pCreateInfo->ppEnabledExtensionNames[j], &icd_exts);
if (prop) {
filtered_extension_names[icd_create_info
.enabledExtensionCount] =
(char *)pCreateInfo->ppEnabledExtensionNames[j];
icd_create_info.enabledExtensionCount++;
}
}
loader_destroy_generic_list(ptr_instance,
(struct loader_generic_list *)&icd_exts);
res = ptr_instance->icd_libs.list[i].CreateInstance(
&icd_create_info, pAllocator, &(icd->instance));
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
// If out of memory, bail immediately.
goto out;
} else if (VK_SUCCESS != res) {
loader_log(ptr_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"ICD ignored: failed to CreateInstance in ICD %d", i);
ptr_instance->icds = icd->next;
icd->next = NULL;
loader_icd_destroy(ptr_instance, icd, pAllocator);
continue;
}
if (!loader_icd_init_entrys(
icd, icd->instance,
ptr_instance->icd_libs.list[i].GetInstanceProcAddr)) {
loader_log(ptr_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"ICD ignored: failed to CreateInstance and find "
"entrypoints with ICD");
continue;
}
}
/*
* If no ICDs were added to instance list and res is unchanged
* from it's initial value, the loader was unable to find
* a suitable ICD.
*/
if (VK_SUCCESS == res && ptr_instance->icds == NULL) {
res = VK_ERROR_INCOMPATIBLE_DRIVER;
}
out:
if (VK_SUCCESS != res) {
while (NULL != ptr_instance->icds) {
icd = ptr_instance->icds;
ptr_instance->icds = icd->next;
if (NULL != icd->instance) {
icd->DestroyInstance(icd->instance, pAllocator);
}
loader_icd_destroy(ptr_instance, icd, pAllocator);
}
}
return res;
}
VKAPI_ATTR void VKAPI_CALL terminator_DestroyInstance(
VkInstance instance, const VkAllocationCallbacks *pAllocator) {
struct loader_instance *ptr_instance = loader_instance(instance);
struct loader_icd *icds = ptr_instance->icds;
struct loader_icd *next_icd;
// Remove this instance from the list of instances:
struct loader_instance *prev = NULL;
struct loader_instance *next = loader.instances;
while (next != NULL) {
if (next == ptr_instance) {
// Remove this instance from the list:
if (prev)
prev->next = next->next;
else
loader.instances = next->next;
break;
}
prev = next;
next = next->next;
}
while (icds) {
if (icds->instance) {
icds->DestroyInstance(icds->instance, pAllocator);
}
next_icd = icds->next;
icds->instance = VK_NULL_HANDLE;
loader_icd_destroy(ptr_instance, icds, pAllocator);
icds = next_icd;
}
loader_delete_layer_properties(ptr_instance,
&ptr_instance->instance_layer_list);
loader_scanned_icd_clear(ptr_instance, &ptr_instance->icd_libs);
loader_destroy_generic_list(
ptr_instance, (struct loader_generic_list *)&ptr_instance->ext_list);
if (ptr_instance->phys_devs_term)
loader_instance_heap_free(ptr_instance, ptr_instance->phys_devs_term);
loader_free_dev_ext_table(ptr_instance);
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_CreateDevice(
VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice) {
VkResult res = VK_SUCCESS;
struct loader_physical_device *phys_dev;
phys_dev = (struct loader_physical_device *)physicalDevice;
struct loader_device *dev = (struct loader_device *)*pDevice;
PFN_vkCreateDevice fpCreateDevice = phys_dev->this_icd->CreateDevice;
struct loader_extension_list icd_exts;
icd_exts.list = NULL;
if (fpCreateDevice == NULL) {
loader_log(phys_dev->this_icd->this_instance,
VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"No vkCreateDevice command exposed by ICD %s",
phys_dev->this_icd->this_icd_lib->lib_name);
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
VkDeviceCreateInfo localCreateInfo;
memcpy(&localCreateInfo, pCreateInfo, sizeof(localCreateInfo));
/*
* NOTE: Need to filter the extensions to only those
* supported by the ICD.
* No ICD will advertise support for layers. An ICD
* library could support a layer, but it would be
* independent of the actual ICD, just in the same library.
*/
char **filtered_extension_names = NULL;
filtered_extension_names =
loader_stack_alloc(pCreateInfo->enabledExtensionCount * sizeof(char *));
if (!filtered_extension_names) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
localCreateInfo.enabledLayerCount = 0;
localCreateInfo.ppEnabledLayerNames = NULL;
localCreateInfo.enabledExtensionCount = 0;
localCreateInfo.ppEnabledExtensionNames =
(const char *const *)filtered_extension_names;
/* Get the physical device (ICD) extensions */
res = loader_init_generic_list(phys_dev->this_icd->this_instance,
(struct loader_generic_list *)&icd_exts,
sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
goto out;
}
res = loader_add_device_extensions(
phys_dev->this_icd->this_instance,
phys_dev->this_icd->EnumerateDeviceExtensionProperties,
phys_dev->phys_dev, phys_dev->this_icd->this_icd_lib->lib_name,
&icd_exts);
if (res != VK_SUCCESS) {
goto out;
}
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i];
VkExtensionProperties *prop =
get_extension_property(extension_name, &icd_exts);
if (prop) {
filtered_extension_names[localCreateInfo.enabledExtensionCount] =
(char *)extension_name;
localCreateInfo.enabledExtensionCount++;
} else {
loader_log(phys_dev->this_icd->this_instance,
VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkCreateDevice extension %s not available for "
"devices associated with ICD %s",
extension_name,
phys_dev->this_icd->this_icd_lib->lib_name);
}
}
res = fpCreateDevice(phys_dev->phys_dev, &localCreateInfo, pAllocator,
&dev->device);
if (res != VK_SUCCESS) {
loader_log(phys_dev->this_icd->this_instance,
VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"vkCreateDevice call failed in ICD %s",
phys_dev->this_icd->this_icd_lib->lib_name);
goto out;
}
*pDevice = dev->device;
loader_add_logical_device(phys_dev->this_icd->this_instance,
phys_dev->this_icd, dev);
/* Init dispatch pointer in new device object */
loader_init_dispatch(*pDevice, &dev->loader_dispatch);
out:
if (NULL != icd_exts.list) {
loader_destroy_generic_list(phys_dev->this_icd->this_instance,
(struct loader_generic_list *)&icd_exts);
}
return res;
}
VKAPI_ATTR VkResult VKAPI_CALL
terminator_EnumeratePhysicalDevices(VkInstance instance,
uint32_t *pPhysicalDeviceCount,
VkPhysicalDevice *pPhysicalDevices) {
uint32_t i;
struct loader_instance *inst = (struct loader_instance *)instance;
VkResult res = VK_SUCCESS;
struct loader_icd *icd;
struct loader_phys_dev_per_icd *phys_devs;
inst->total_gpu_count = 0;
phys_devs = (struct loader_phys_dev_per_icd *)loader_stack_alloc(
sizeof(struct loader_phys_dev_per_icd) * inst->total_icd_count);
if (!phys_devs)
return VK_ERROR_OUT_OF_HOST_MEMORY;
icd = inst->icds;
for (i = 0; i < inst->total_icd_count; i++) {
assert(icd);
res = icd->EnumeratePhysicalDevices(icd->instance, &phys_devs[i].count,
NULL);
if (res != VK_SUCCESS)
return res;
icd = icd->next;
}
icd = inst->icds;
for (i = 0; i < inst->total_icd_count; i++) {
assert(icd);
phys_devs[i].phys_devs = (VkPhysicalDevice *)loader_stack_alloc(
phys_devs[i].count * sizeof(VkPhysicalDevice));
if (!phys_devs[i].phys_devs) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
res = icd->EnumeratePhysicalDevices(
icd->instance, &(phys_devs[i].count), phys_devs[i].phys_devs);
if ((res == VK_SUCCESS)) {
inst->total_gpu_count += phys_devs[i].count;
} else {
return res;
}
phys_devs[i].this_icd = icd;
icd = icd->next;
}
uint32_t copy_count = inst->total_gpu_count;
if (NULL != pPhysicalDevices) {
// Initialize the output pPhysicalDevices with wrapped loader
// terminator physicalDevice objects; save this list of
// wrapped objects in instance struct for later cleanup and
// use by trampoline code
uint32_t j, idx = 0;
if (copy_count > *pPhysicalDeviceCount) {
copy_count = *pPhysicalDeviceCount;
}
if (inst->phys_devs_term) {
loader_instance_heap_free(inst, inst->phys_devs_term);
inst->phys_devs_term = NULL;
}
if (inst->total_gpu_count > 0) {
inst->phys_devs_term = loader_instance_heap_alloc(
inst, sizeof(struct loader_physical_device) * inst->total_gpu_count,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!inst->phys_devs_term) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
for (i = 0; idx < inst->total_gpu_count && i < inst->total_icd_count; i++) {
for (j = 0; j < phys_devs[i].count && idx < inst->total_gpu_count; j++) {
loader_set_dispatch((void *)&inst->phys_devs_term[idx],
inst->disp);
inst->phys_devs_term[idx].this_icd = phys_devs[i].this_icd;
inst->phys_devs_term[idx].icd_index = (uint8_t)(i);
inst->phys_devs_term[idx].phys_dev = phys_devs[i].phys_devs[j];
if (idx < copy_count) {
pPhysicalDevices[idx] =
(VkPhysicalDevice)&inst->phys_devs_term[idx];
}
idx++;
}
}
if (copy_count < inst->total_gpu_count) {
res = VK_INCOMPLETE;
}
}
*pPhysicalDeviceCount = copy_count;
return res;
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceProperties(
VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties *pProperties) {
struct loader_physical_device *phys_dev =
(struct loader_physical_device *)physicalDevice;
struct loader_icd *icd = phys_dev->this_icd;
if (icd->GetPhysicalDeviceProperties)
icd->GetPhysicalDeviceProperties(phys_dev->phys_dev, pProperties);
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceQueueFamilyProperties(
VkPhysicalDevice physicalDevice, uint32_t *pQueueFamilyPropertyCount,
VkQueueFamilyProperties *pProperties) {
struct loader_physical_device *phys_dev =
(struct loader_physical_device *)physicalDevice;
struct loader_icd *icd = phys_dev->this_icd;
if (icd->GetPhysicalDeviceQueueFamilyProperties)
icd->GetPhysicalDeviceQueueFamilyProperties(
phys_dev->phys_dev, pQueueFamilyPropertyCount, pProperties);
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceMemoryProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties *pProperties) {
struct loader_physical_device *phys_dev =
(struct loader_physical_device *)physicalDevice;
struct loader_icd *icd = phys_dev->this_icd;
if (icd->GetPhysicalDeviceMemoryProperties)
icd->GetPhysicalDeviceMemoryProperties(phys_dev->phys_dev, pProperties);
}
VKAPI_ATTR void VKAPI_CALL
terminator_GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures *pFeatures) {
struct loader_physical_device *phys_dev =
(struct loader_physical_device *)physicalDevice;
struct loader_icd *icd = phys_dev->this_icd;
if (icd->GetPhysicalDeviceFeatures)
icd->GetPhysicalDeviceFeatures(phys_dev->phys_dev, pFeatures);
}
VKAPI_ATTR void VKAPI_CALL
terminator_GetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice,
VkFormat format,
VkFormatProperties *pFormatInfo) {
struct loader_physical_device *phys_dev =
(struct loader_physical_device *)physicalDevice;
struct loader_icd *icd = phys_dev->this_icd;
if (icd->GetPhysicalDeviceFormatProperties)
icd->GetPhysicalDeviceFormatProperties(phys_dev->phys_dev, format,
pFormatInfo);
}
VKAPI_ATTR VkResult VKAPI_CALL
terminator_GetPhysicalDeviceImageFormatProperties(
VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type,
VkImageTiling tiling, VkImageUsageFlags usage, VkImageCreateFlags flags,
VkImageFormatProperties *pImageFormatProperties) {
struct loader_physical_device *phys_dev =
(struct loader_physical_device *)physicalDevice;
struct loader_icd *icd = phys_dev->this_icd;
if (!icd->GetPhysicalDeviceImageFormatProperties)
return VK_ERROR_INITIALIZATION_FAILED;
return icd->GetPhysicalDeviceImageFormatProperties(
phys_dev->phys_dev, format, type, tiling, usage, flags,
pImageFormatProperties);
}
VKAPI_ATTR void VKAPI_CALL
terminator_GetPhysicalDeviceSparseImageFormatProperties(
VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type,
VkSampleCountFlagBits samples, VkImageUsageFlags usage,
VkImageTiling tiling, uint32_t *pNumProperties,
VkSparseImageFormatProperties *pProperties) {
struct loader_physical_device *phys_dev =
(struct loader_physical_device *)physicalDevice;
struct loader_icd *icd = phys_dev->this_icd;
if (icd->GetPhysicalDeviceSparseImageFormatProperties)
icd->GetPhysicalDeviceSparseImageFormatProperties(
phys_dev->phys_dev, format, type, samples, usage, tiling,
pNumProperties, pProperties);
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateDeviceExtensionProperties(
VkPhysicalDevice physicalDevice, const char *pLayerName,
uint32_t *pPropertyCount, VkExtensionProperties *pProperties) {
struct loader_physical_device *phys_dev;
struct loader_layer_list implicit_layer_list = {0};
struct loader_extension_list all_exts = {0};
struct loader_extension_list icd_exts = {0};
assert(pLayerName == NULL || strlen(pLayerName) == 0);
/* Any layer or trampoline wrapping should be removed at this point in time
* can just cast to the expected type for VkPhysicalDevice. */
phys_dev = (struct loader_physical_device *)physicalDevice;
/* this case is during the call down the instance chain with pLayerName
* == NULL*/
struct loader_icd *icd = phys_dev->this_icd;
uint32_t icd_ext_count = *pPropertyCount;
VkResult res;
/* get device extensions */
res = icd->EnumerateDeviceExtensionProperties(phys_dev->phys_dev, NULL,
&icd_ext_count, pProperties);
if (res != VK_SUCCESS) {
goto out;
}
if (!loader_init_layer_list(icd->this_instance, &implicit_layer_list)) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
loader_add_layer_implicit(
icd->this_instance, VK_LAYER_TYPE_INSTANCE_IMPLICIT,
&implicit_layer_list, &icd->this_instance->instance_layer_list);
/* we need to determine which implicit layers are active,
* and then add their extensions. This can't be cached as
* it depends on results of environment variables (which can change).
*/
if (pProperties != NULL) {
/* initialize dev_extension list within the physicalDevice object */
res = loader_init_device_extensions(icd->this_instance, phys_dev,
icd_ext_count, pProperties,
&icd_exts);
if (res != VK_SUCCESS) {
goto out;
}
/* we need to determine which implicit layers are active,
* and then add their extensions. This can't be cached as
* it depends on results of environment variables (which can
* change).
*/
res = loader_add_to_ext_list(icd->this_instance, &all_exts,
icd_exts.count, icd_exts.list);
if (res != VK_SUCCESS) {
goto out;
}
loader_add_layer_implicit(
icd->this_instance, VK_LAYER_TYPE_INSTANCE_IMPLICIT,
&implicit_layer_list, &icd->this_instance->instance_layer_list);
for (uint32_t i = 0; i < implicit_layer_list.count; i++) {
for (uint32_t j = 0;
j < implicit_layer_list.list[i].device_extension_list.count;
j++) {
res = loader_add_to_ext_list(icd->this_instance, &all_exts, 1,
&implicit_layer_list.list[i]
.device_extension_list.list[j]
.props);
if (res != VK_SUCCESS) {
goto out;
}
}
}
uint32_t capacity = *pPropertyCount;
VkExtensionProperties *props = pProperties;
for (uint32_t i = 0; i < all_exts.count && i < capacity; i++) {
props[i] = all_exts.list[i];
}
/* wasn't enough space for the extensions, we did partial copy now
* return VK_INCOMPLETE */
if (capacity < all_exts.count) {
res = VK_INCOMPLETE;
} else {
*pPropertyCount = all_exts.count;
}
} else {
/* just return the count; need to add in the count of implicit layer
* extensions
* don't worry about duplicates being added in the count */
*pPropertyCount = icd_ext_count;
for (uint32_t i = 0; i < implicit_layer_list.count; i++) {
*pPropertyCount +=
implicit_layer_list.list[i].device_extension_list.count;
}
res = VK_SUCCESS;
}
out:
if (NULL != implicit_layer_list.list) {
loader_destroy_generic_list(
icd->this_instance,
(struct loader_generic_list *)&implicit_layer_list);
}
if (NULL != all_exts.list) {
loader_destroy_generic_list(icd->this_instance,
(struct loader_generic_list *)&all_exts);
}
if (NULL != icd_exts.list) {
loader_destroy_generic_list(icd->this_instance,
(struct loader_generic_list *)&icd_exts);
}
return res;
}
VKAPI_ATTR VkResult VKAPI_CALL
terminator_EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice,
uint32_t *pPropertyCount,
VkLayerProperties *pProperties) {
// should never get here this call isn't dispatched down the chain
return VK_ERROR_INITIALIZATION_FAILED;
}
VkStringErrorFlags vk_string_validate(const int max_length, const char *utf8) {
VkStringErrorFlags result = VK_STRING_ERROR_NONE;
int num_char_bytes = 0;
int i, j;
for (i = 0; i < max_length; i++) {
if (utf8[i] == 0) {
break;
} else if ((utf8[i] >= 0x20) && (utf8[i] < 0x7f)) {
num_char_bytes = 0;
} else if ((utf8[i] & UTF8_ONE_BYTE_MASK) == UTF8_ONE_BYTE_CODE) {
num_char_bytes = 1;
} else if ((utf8[i] & UTF8_TWO_BYTE_MASK) == UTF8_TWO_BYTE_CODE) {
num_char_bytes = 2;
} else if ((utf8[i] & UTF8_THREE_BYTE_MASK) == UTF8_THREE_BYTE_CODE) {
num_char_bytes = 3;
} else {
result = VK_STRING_ERROR_BAD_DATA;
}
// Validate the following num_char_bytes of data
for (j = 0; (j < num_char_bytes) && (i < max_length); j++) {
if (++i == max_length) {
result |= VK_STRING_ERROR_LENGTH;
break;
}
if ((utf8[i] & UTF8_DATA_BYTE_MASK) != UTF8_DATA_BYTE_CODE) {
result |= VK_STRING_ERROR_BAD_DATA;
}
}
}
return result;
}