普通文本  |  769行  |  18.98 KB

// Copyright 2016, VIXL authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//   * Neither the name of ARM Limited nor the names of its contributors may be
//     used to endorse or promote products derived from this software without
//     specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "test-runner.h"

#ifdef VIXL_INCLUDE_TARGET_AARCH32
#include "aarch32/macro-assembler-aarch32.h"
#endif

#ifdef VIXL_INCLUDE_TARGET_AARCH64
#include "aarch64/macro-assembler-aarch64.h"
#endif

#define TEST(name) TEST_(SCOPES_##name)

#ifdef VIXL_INCLUDE_TARGET_A32
#define TEST_A32(name) TEST(name)
#else
// Do not add this test to the harness.
#define TEST_A32(name) void Test##name()
#endif

#define __ masm.

namespace vixl {

// This file contains tests for code generation scopes.

#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST(CodeBufferCheckScope_basic_32) {
  aarch32::MacroAssembler masm;

  {
    CodeBufferCheckScope scope(&masm, aarch32::kA32InstructionSizeInBytes);
    __ Mov(aarch32::r0, 0);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(CodeBufferCheckScope_basic_64) {
  aarch64::MacroAssembler masm;

  {
    CodeBufferCheckScope scope(&masm, aarch64::kInstructionSize);
    __ Mov(aarch64::x0, 0);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST(CodeBufferCheckScope_assembler_use_32) {
  aarch32::MacroAssembler masm;

  {
    CodeBufferCheckScope scope(&masm, 2 * aarch32::kA32InstructionSizeInBytes);
    __ Mov(aarch32::r0, 0);
    __ mov(aarch32::r1, 1);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(CodeBufferCheckScope_assembler_use_64) {
  aarch64::MacroAssembler masm;

  {
    CodeBufferCheckScope scope(&masm, 2 * aarch64::kInstructionSize);
    __ Mov(aarch64::x0, 0);
    __ movz(aarch64::x1, 1);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST(CodeBufferCheckScope_Open_32) {
  aarch32::MacroAssembler masm;

  {
    CodeBufferCheckScope scope;
    __ Mov(aarch32::r0, 0);
    scope.Open(&masm, aarch32::kA32InstructionSizeInBytes);
    __ Mov(aarch32::r1, 1);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(CodeBufferCheckScope_Open_64) {
  aarch64::MacroAssembler masm;

  {
    CodeBufferCheckScope scope;
    __ Mov(aarch64::x0, 0);
    scope.Open(&masm, aarch64::kInstructionSize);
    __ Mov(aarch64::x1, 1);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST(CodeBufferCheckScope_Close_32) {
  aarch32::MacroAssembler masm;

  {
    CodeBufferCheckScope scope(&masm, aarch32::kA32InstructionSizeInBytes);
    __ Mov(aarch32::r0, 0);
    scope.Close();
    __ Mov(aarch32::r1, 1);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(CodeBufferCheckScope_Close_64) {
  aarch64::MacroAssembler masm;

  {
    CodeBufferCheckScope scope(&masm, aarch64::kInstructionSize);
    __ Mov(aarch64::x0, 0);
    scope.Close();
    __ Mov(aarch64::x1, 1);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST(CodeBufferCheckScope_Open_Close_32) {
  aarch32::MacroAssembler masm;

  {
    CodeBufferCheckScope scope;
    __ Mov(aarch32::r0, 0);
    scope.Open(&masm, aarch32::kA32InstructionSizeInBytes);
    __ Mov(aarch32::r1, 1);
    scope.Close();
    __ Mov(aarch32::r2, 2);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(CodeBufferCheckScope_Open_Close_64) {
  aarch64::MacroAssembler masm;

  {
    CodeBufferCheckScope scope;
    __ Mov(aarch64::x0, 0);
    scope.Open(&masm, aarch64::kInstructionSize);
    __ Mov(aarch64::x1, 1);
    scope.Close();
    __ Mov(aarch64::x2, 2);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST(EmissionCheckScope_basic_32) {
  aarch32::MacroAssembler masm;

  {
    EmissionCheckScope scope(&masm, aarch32::kA32InstructionSizeInBytes);
    __ Mov(aarch32::r0, 0);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(EmissionCheckScope_basic_64) {
  aarch64::MacroAssembler masm;

  {
    EmissionCheckScope scope(&masm, aarch64::kInstructionSize);
    __ Mov(aarch64::x0, 0);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST(EmissionCheckScope_Open_32) {
  aarch32::MacroAssembler masm;

  {
    EmissionCheckScope scope;
    __ Mov(aarch32::r0, 0);
    scope.Open(&masm, aarch32::kA32InstructionSizeInBytes);
    __ Mov(aarch32::r1, 1);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(EmissionCheckScope_Open_64) {
  aarch64::MacroAssembler masm;

  {
    EmissionCheckScope scope;
    __ Mov(aarch64::x0, 0);
    scope.Open(&masm, aarch64::kInstructionSize);
    __ Mov(aarch64::x1, 1);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST(EmissionCheckScope_Close_32) {
  aarch32::MacroAssembler masm;

  {
    EmissionCheckScope scope(&masm, aarch32::kA32InstructionSizeInBytes);
    __ Mov(aarch32::r0, 0);
    scope.Close();
    __ Mov(aarch32::r1, 1);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(EmissionCheckScope_Close_64) {
  aarch64::MacroAssembler masm;

  {
    EmissionCheckScope scope(&masm, aarch64::kInstructionSize);
    __ Mov(aarch64::x0, 0);
    scope.Close();
    __ Mov(aarch64::x1, 1);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST(EmissionCheckScope_Open_Close_32) {
  aarch32::MacroAssembler masm;

  {
    EmissionCheckScope scope;
    __ Mov(aarch32::r0, 0);
    scope.Open(&masm, aarch32::kA32InstructionSizeInBytes);
    __ Mov(aarch32::r1, 1);
    scope.Close();
    __ Mov(aarch32::r2, 2);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(EmissionCheckScope_Open_Close_64) {
  aarch64::MacroAssembler masm;

  {
    EmissionCheckScope scope;
    __ Mov(aarch64::x0, 0);
    scope.Open(&masm, aarch64::kInstructionSize);
    __ Mov(aarch64::x1, 1);
    scope.Close();
    __ Mov(aarch64::x2, 2);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32

#define ASSERT_LITERAL_POOL_SIZE_32(expected) \
  VIXL_CHECK((expected) == masm.GetLiteralPoolSize())

TEST_A32(EmissionCheckScope_emit_pool_32) {
  aarch32::MacroAssembler masm;

  // Make sure the pool is empty;
  masm.EmitLiteralPool(aarch32::MacroAssembler::kBranchRequired);
  ASSERT_LITERAL_POOL_SIZE_32(0);

  __ Ldrd(aarch32::r0, aarch32::r1, 0x1234567890abcdef);
  ASSERT_LITERAL_POOL_SIZE_32(8);

  const int kLdrdRange = 255;
  const int kLessThanLdrdRange = 100;

  {
    // Check that opening the scope with a reserved space well below the limit
    // at which can generate the literal pool does not force the emission of
    // the pool.
    EmissionCheckScope scope(&masm,
                             kLessThanLdrdRange,
                             EmissionCheckScope::kMaximumSize);
    ASSERT_LITERAL_POOL_SIZE_32(8);
  }

  {
    // Check that the scope forces emission of the pool if necessary.
    EmissionCheckScope scope(&masm,
                             kLdrdRange + 1,
                             EmissionCheckScope::kMaximumSize);
    ASSERT_LITERAL_POOL_SIZE_32(0);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64

#define ASSERT_LITERAL_POOL_SIZE_64(expected)          \
  VIXL_CHECK((expected + aarch64::kInstructionSize) == \
             masm.GetLiteralPoolSize())

TEST(EmissionCheckScope_emit_pool_64) {
  aarch64::MacroAssembler masm;

  // Make sure the pool is empty;
  masm.EmitLiteralPool(aarch64::LiteralPool::kBranchRequired);
  ASSERT_LITERAL_POOL_SIZE_64(0);

  __ Ldr(aarch64::x0, 0x1234567890abcdef);
  ASSERT_LITERAL_POOL_SIZE_64(8);

  {
    // Check that opening the scope with a reserved space well below the limit
    // at which can generate the literal pool does not force the emission of
    // the pool.
    EmissionCheckScope scope(&masm,
                             10 * aarch64::kInstructionSize,
                             EmissionCheckScope::kMaximumSize);
    ASSERT_LITERAL_POOL_SIZE_64(8);
  }

  {
    // Check that the scope forces emission of the pool if necessary.
    EmissionCheckScope scope(&masm,
                             aarch64::kMaxLoadLiteralRange + 1,
                             EmissionCheckScope::kMaximumSize);
    ASSERT_LITERAL_POOL_SIZE_64(0);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST_A32(EmissionCheckScope_emit_pool_on_Open_32) {
  aarch32::MacroAssembler masm;

  // Make sure the pool is empty;
  masm.EmitLiteralPool(aarch32::MacroAssembler::kBranchRequired);
  ASSERT_LITERAL_POOL_SIZE_32(0);

  __ Ldrd(aarch32::r0, aarch32::r1, 0x1234567890abcdef);
  ASSERT_LITERAL_POOL_SIZE_32(8);

  const int kLdrdRange = 255;
  const int kLessThanLdrdRange = 100;

  {
    // Check that opening the scope with a reserved space well below the limit
    // at which can generate the literal pool does not force the emission of
    // the pool.
    EmissionCheckScope scope(&masm,
                             kLessThanLdrdRange,
                             EmissionCheckScope::kMaximumSize);
    ASSERT_LITERAL_POOL_SIZE_32(8);
  }

  {
    // Check that the scope forces emission of the pool if necessary.
    EmissionCheckScope scope(&masm,
                             kLdrdRange + 1,
                             EmissionCheckScope::kMaximumSize);
    ASSERT_LITERAL_POOL_SIZE_32(0);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(EmissionCheckScope_emit_pool_on_Open_64) {
  aarch64::MacroAssembler masm;

  // Make sure the pool is empty;
  masm.EmitLiteralPool(aarch64::LiteralPool::kBranchRequired);
  ASSERT_LITERAL_POOL_SIZE_64(0);

  __ Ldr(aarch64::x0, 0x1234567890abcdef);
  ASSERT_LITERAL_POOL_SIZE_64(8);

  {
    // Check that opening the scope with a reserved space well below the limit
    // at which can generate the literal pool does not force the emission of
    // the pool.
    EmissionCheckScope scope;
    scope.Open(&masm,
               10 * aarch64::kInstructionSize,
               EmissionCheckScope::kMaximumSize);
    ASSERT_LITERAL_POOL_SIZE_64(8);
  }

  {
    // Check that the scope forces emission of the pool if necessary.
    EmissionCheckScope scope;
    scope.Open(&masm,
               aarch64::kMaxLoadLiteralRange + 1,
               EmissionCheckScope::kMaximumSize);
    ASSERT_LITERAL_POOL_SIZE_64(0);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST_A32(ExactAssemblyScope_basic_32) {
  aarch32::MacroAssembler masm;

  {
    ExactAssemblyScope scope(&masm, aarch32::kA32InstructionSizeInBytes);
    __ nop();
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(ExactAssemblyScope_basic_64) {
  aarch64::MacroAssembler masm;

  {
    ExactAssemblyScope scope(&masm, aarch64::kInstructionSize);
    __ nop();
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST_A32(ExactAssemblyScope_Open_32) {
  aarch32::MacroAssembler masm;

  {
    ExactAssemblyScope scope;
    __ Mov(aarch32::r0, 0);
    scope.Open(&masm, aarch32::kA32InstructionSizeInBytes);
    __ mov(aarch32::r1, 1);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(ExactAssemblyScope_Open_64) {
  aarch64::MacroAssembler masm;

  {
    ExactAssemblyScope scope;
    __ Mov(aarch64::x0, 0);
    scope.Open(&masm, aarch64::kInstructionSize);
    __ movz(aarch64::x1, 1);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST_A32(ExactAssemblyScope_Close_32) {
  aarch32::MacroAssembler masm;

  {
    ExactAssemblyScope scope(&masm, aarch32::kA32InstructionSizeInBytes);
    __ mov(aarch32::r0, 0);
    scope.Close();
    __ Mov(aarch32::r1, 1);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(ExactAssemblyScope_Close_64) {
  aarch64::MacroAssembler masm;

  {
    ExactAssemblyScope scope(&masm, aarch64::kInstructionSize);
    __ movz(aarch64::x0, 0);
    scope.Close();
    __ Mov(aarch64::x1, 1);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST_A32(ExactAssemblyScope_Open_Close_32) {
  aarch32::MacroAssembler masm;

  {
    ExactAssemblyScope scope;
    __ Mov(aarch32::r0, 0);
    scope.Open(&masm, aarch32::kA32InstructionSizeInBytes);
    __ mov(aarch32::r1, 1);
    scope.Close();
    __ Mov(aarch32::r2, 2);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(ExactAssemblyScope_Open_Close_64) {
  aarch64::MacroAssembler masm;

  {
    ExactAssemblyScope scope;
    __ Mov(aarch64::x0, 0);
    scope.Open(&masm, aarch64::kInstructionSize);
    __ movz(aarch64::x1, 1);
    scope.Close();
    __ Mov(aarch64::x2, 2);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST_A32(ExactAssemblyScope_32) {
  aarch32::MacroAssembler masm;

  // By default macro instructions are allowed.
  VIXL_CHECK(!masm.ArePoolsBlocked());
  VIXL_ASSERT(!masm.AllowAssembler());
  VIXL_ASSERT(masm.AllowMacroInstructions());
  {
    ExactAssemblyScope scope1(&masm, 2 * aarch32::kA32InstructionSizeInBytes);
    VIXL_CHECK(masm.ArePoolsBlocked());
    VIXL_ASSERT(masm.AllowAssembler());
    VIXL_ASSERT(!masm.AllowMacroInstructions());
    __ nop();
    {
      ExactAssemblyScope scope2(&masm, 1 * aarch32::kA32InstructionSizeInBytes);
      VIXL_CHECK(masm.ArePoolsBlocked());
      VIXL_ASSERT(masm.AllowAssembler());
      VIXL_ASSERT(!masm.AllowMacroInstructions());
      __ nop();
    }
    VIXL_CHECK(masm.ArePoolsBlocked());
    VIXL_ASSERT(masm.AllowAssembler());
    VIXL_ASSERT(!masm.AllowMacroInstructions());
  }
  VIXL_CHECK(!masm.ArePoolsBlocked());
  VIXL_ASSERT(!masm.AllowAssembler());
  VIXL_ASSERT(masm.AllowMacroInstructions());

  {
    ExactAssemblyScope scope(&masm, 2 * aarch32::kA32InstructionSizeInBytes);
    __ add(aarch32::r0, aarch32::r0, aarch32::r0);
    __ sub(aarch32::r0, aarch32::r0, aarch32::r0);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(ExactAssemblyScope_64) {
  aarch64::MacroAssembler masm;

  // By default macro instructions are allowed.
  VIXL_CHECK(!masm.ArePoolsBlocked());
  VIXL_ASSERT(!masm.AllowAssembler());
  VIXL_ASSERT(masm.AllowMacroInstructions());
  {
    ExactAssemblyScope scope1(&masm, 2 * aarch64::kInstructionSize);
    VIXL_CHECK(masm.ArePoolsBlocked());
    VIXL_ASSERT(masm.AllowAssembler());
    VIXL_ASSERT(!masm.AllowMacroInstructions());
    __ nop();
    {
      ExactAssemblyScope scope2(&masm, 1 * aarch64::kInstructionSize);
      VIXL_CHECK(masm.ArePoolsBlocked());
      VIXL_ASSERT(masm.AllowAssembler());
      VIXL_ASSERT(!masm.AllowMacroInstructions());
      __ nop();
    }
    VIXL_CHECK(masm.ArePoolsBlocked());
    VIXL_ASSERT(masm.AllowAssembler());
    VIXL_ASSERT(!masm.AllowMacroInstructions());
  }
  VIXL_CHECK(!masm.ArePoolsBlocked());
  VIXL_ASSERT(!masm.AllowAssembler());
  VIXL_ASSERT(masm.AllowMacroInstructions());

  {
    ExactAssemblyScope scope(&masm, 2 * aarch64::kInstructionSize);
    __ add(aarch64::x0, aarch64::x0, aarch64::x0);
    __ sub(aarch64::x0, aarch64::x0, aarch64::x0);
  }

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


#ifdef VIXL_INCLUDE_TARGET_AARCH32
TEST_A32(ExactAssemblyScope_scope_with_pools_32) {
  aarch32::MacroAssembler masm;

  ASSERT_LITERAL_POOL_SIZE_32(0);

  __ Ldrd(aarch32::r0, aarch32::r1, 0x1234567890abcdef);

  ASSERT_LITERAL_POOL_SIZE_32(8);

  const int32_t kLdrdRange = 255;
  const int32_t n_nops = (kLdrdRange / aarch32::kA32InstructionSizeInBytes) + 1;
  {
    // The literal pool should be generated when opening this scope, as
    // otherwise the `Ldrd` will run out of range when we generate the `nop`
    // instructions below.
    ExactAssemblyScope scope(&masm,
                             n_nops * aarch32::kA32InstructionSizeInBytes);

    // Although it must be, we do not check that the literal pool size is zero
    // here, because we want this regression test to fail while or after we
    // generate the nops.

    for (int32_t i = 0; i < n_nops; ++i) {
      __ nop();
    }
  }

  ASSERT_LITERAL_POOL_SIZE_32(0);

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH32


#ifdef VIXL_INCLUDE_TARGET_AARCH64
TEST(ExactAssemblyScope_scope_with_pools_64) {
  aarch64::MacroAssembler masm;

  ASSERT_LITERAL_POOL_SIZE_64(0);

  __ Ldr(aarch64::x10, 0x1234567890abcdef);

  ASSERT_LITERAL_POOL_SIZE_64(8);

  const int64_t n_nops =
      aarch64::kMaxLoadLiteralRange / aarch64::kInstructionSize;
  {
    // The literal pool should be generated when opening this scope, as
    // otherwise the `Ldr` will run out of range when we generate the `nop`
    // instructions below.
    ExactAssemblyScope scope(&masm, n_nops * aarch64::kInstructionSize);

    // Although it must be, we do not check that the literal pool size is zero
    // here, because we want this regression test to fail while or after we
    // generate the nops.

    for (int64_t i = 0; i < n_nops; ++i) {
      __ nop();
    }
  }

  ASSERT_LITERAL_POOL_SIZE_64(0);

  masm.FinalizeCode();
}
#endif  // VIXL_INCLUDE_TARGET_AARCH64


}  // namespace vixl