// Copyright 2014, VIXL authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cmath>
#include "test-runner.h"
#include "test-utils-aarch64.h"
#include "aarch64/cpu-aarch64.h"
#include "aarch64/disasm-aarch64.h"
#include "aarch64/macro-assembler-aarch64.h"
#include "aarch64/simulator-aarch64.h"
#define __ masm->
namespace vixl {
namespace aarch64 {
// This value is a signalling NaN as both a double and as a float (taking the
// least-significant word).
const double kFP64SignallingNaN = RawbitsToDouble(UINT64_C(0x7ff000007f800001));
const float kFP32SignallingNaN = RawbitsToFloat(0x7f800001);
// A similar value, but as a quiet NaN.
const double kFP64QuietNaN = RawbitsToDouble(UINT64_C(0x7ff800007fc00001));
const float kFP32QuietNaN = RawbitsToFloat(0x7fc00001);
bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) {
if (result != expected) {
printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
expected,
result);
}
return expected == result;
}
bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) {
if (result != expected) {
printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
expected,
result);
}
return expected == result;
}
bool Equal128(vec128_t expected, const RegisterDump*, vec128_t result) {
if ((result.h != expected.h) || (result.l != expected.l)) {
printf("Expected 0x%016" PRIx64 "%016" PRIx64
"\t "
"Found 0x%016" PRIx64 "%016" PRIx64 "\n",
expected.h,
expected.l,
result.h,
result.l);
}
return ((expected.h == result.h) && (expected.l == result.l));
}
bool EqualFP32(float expected, const RegisterDump*, float result) {
if (FloatToRawbits(expected) == FloatToRawbits(result)) {
return true;
} else {
if (std::isnan(expected) || (expected == 0.0)) {
printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
FloatToRawbits(expected),
FloatToRawbits(result));
} else {
printf("Expected %.9f (0x%08" PRIx32
")\t "
"Found %.9f (0x%08" PRIx32 ")\n",
expected,
FloatToRawbits(expected),
result,
FloatToRawbits(result));
}
return false;
}
}
bool EqualFP64(double expected, const RegisterDump*, double result) {
if (DoubleToRawbits(expected) == DoubleToRawbits(result)) {
return true;
}
if (std::isnan(expected) || (expected == 0.0)) {
printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
DoubleToRawbits(expected),
DoubleToRawbits(result));
} else {
printf("Expected %.17f (0x%016" PRIx64
")\t "
"Found %.17f (0x%016" PRIx64 ")\n",
expected,
DoubleToRawbits(expected),
result,
DoubleToRawbits(result));
}
return false;
}
bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) {
VIXL_ASSERT(reg.Is32Bits());
// Retrieve the corresponding X register so we can check that the upper part
// was properly cleared.
int64_t result_x = core->xreg(reg.GetCode());
if ((result_x & 0xffffffff00000000) != 0) {
printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n",
expected,
result_x);
return false;
}
uint32_t result_w = core->wreg(reg.GetCode());
return Equal32(expected, core, result_w);
}
bool Equal64(uint64_t expected, const RegisterDump* core, const Register& reg) {
VIXL_ASSERT(reg.Is64Bits());
uint64_t result = core->xreg(reg.GetCode());
return Equal64(expected, core, result);
}
bool Equal128(uint64_t expected_h,
uint64_t expected_l,
const RegisterDump* core,
const VRegister& vreg) {
VIXL_ASSERT(vreg.Is128Bits());
vec128_t expected = {expected_l, expected_h};
vec128_t result = core->qreg(vreg.GetCode());
return Equal128(expected, core, result);
}
bool EqualFP32(float expected,
const RegisterDump* core,
const FPRegister& fpreg) {
VIXL_ASSERT(fpreg.Is32Bits());
// Retrieve the corresponding D register so we can check that the upper part
// was properly cleared.
uint64_t result_64 = core->dreg_bits(fpreg.GetCode());
if ((result_64 & 0xffffffff00000000) != 0) {
printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n",
FloatToRawbits(expected),
expected,
result_64);
return false;
}
return EqualFP32(expected, core, core->sreg(fpreg.GetCode()));
}
bool EqualFP64(double expected,
const RegisterDump* core,
const FPRegister& fpreg) {
VIXL_ASSERT(fpreg.Is64Bits());
return EqualFP64(expected, core, core->dreg(fpreg.GetCode()));
}
bool Equal64(const Register& reg0,
const RegisterDump* core,
const Register& reg1) {
VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits());
int64_t expected = core->xreg(reg0.GetCode());
int64_t result = core->xreg(reg1.GetCode());
return Equal64(expected, core, result);
}
bool Equal64(uint64_t expected,
const RegisterDump* core,
const VRegister& vreg) {
VIXL_ASSERT(vreg.Is64Bits());
uint64_t result = core->dreg_bits(vreg.GetCode());
return Equal64(expected, core, result);
}
static char FlagN(uint32_t flags) { return (flags & NFlag) ? 'N' : 'n'; }
static char FlagZ(uint32_t flags) { return (flags & ZFlag) ? 'Z' : 'z'; }
static char FlagC(uint32_t flags) { return (flags & CFlag) ? 'C' : 'c'; }
static char FlagV(uint32_t flags) { return (flags & VFlag) ? 'V' : 'v'; }
bool EqualNzcv(uint32_t expected, uint32_t result) {
VIXL_ASSERT((expected & ~NZCVFlag) == 0);
VIXL_ASSERT((result & ~NZCVFlag) == 0);
if (result != expected) {
printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n",
FlagN(expected),
FlagZ(expected),
FlagC(expected),
FlagV(expected),
FlagN(result),
FlagZ(result),
FlagC(result),
FlagV(result));
return false;
}
return true;
}
bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) {
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
if (a->xreg(i) != b->xreg(i)) {
printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
i,
a->xreg(i),
b->xreg(i));
return false;
}
}
for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
uint64_t a_bits = a->dreg_bits(i);
uint64_t b_bits = b->dreg_bits(i);
if (a_bits != b_bits) {
printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
i,
a_bits,
b_bits);
return false;
}
}
return true;
}
RegList PopulateRegisterArray(Register* w,
Register* x,
Register* r,
int reg_size,
int reg_count,
RegList allowed) {
RegList list = 0;
int i = 0;
for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) {
if (((UINT64_C(1) << n) & allowed) != 0) {
// Only assign allowed registers.
if (r) {
r[i] = Register(n, reg_size);
}
if (x) {
x[i] = Register(n, kXRegSize);
}
if (w) {
w[i] = Register(n, kWRegSize);
}
list |= (UINT64_C(1) << n);
i++;
}
}
// Check that we got enough registers.
VIXL_ASSERT(CountSetBits(list, kNumberOfRegisters) == reg_count);
return list;
}
RegList PopulateFPRegisterArray(FPRegister* s,
FPRegister* d,
FPRegister* v,
int reg_size,
int reg_count,
RegList allowed) {
RegList list = 0;
int i = 0;
for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) {
if (((UINT64_C(1) << n) & allowed) != 0) {
// Only assigned allowed registers.
if (v) {
v[i] = FPRegister(n, reg_size);
}
if (d) {
d[i] = FPRegister(n, kDRegSize);
}
if (s) {
s[i] = FPRegister(n, kSRegSize);
}
list |= (UINT64_C(1) << n);
i++;
}
}
// Check that we got enough registers.
VIXL_ASSERT(CountSetBits(list, kNumberOfFPRegisters) == reg_count);
return list;
}
void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) {
Register first = NoReg;
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
if (reg_list & (UINT64_C(1) << i)) {
Register xn(i, kXRegSize);
// We should never write into sp here.
VIXL_ASSERT(!xn.Is(sp));
if (!xn.IsZero()) {
if (!first.IsValid()) {
// This is the first register we've hit, so construct the literal.
__ Mov(xn, value);
first = xn;
} else {
// We've already loaded the literal, so re-use the value already
// loaded into the first register we hit.
__ Mov(xn, first);
}
}
}
}
}
void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) {
FPRegister first = NoFPReg;
for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
if (reg_list & (UINT64_C(1) << i)) {
FPRegister dn(i, kDRegSize);
if (!first.IsValid()) {
// This is the first register we've hit, so construct the literal.
__ Fmov(dn, value);
first = dn;
} else {
// We've already loaded the literal, so re-use the value already loaded
// into the first register we hit.
__ Fmov(dn, first);
}
}
}
}
void Clobber(MacroAssembler* masm, CPURegList reg_list) {
if (reg_list.GetType() == CPURegister::kRegister) {
// This will always clobber X registers.
Clobber(masm, reg_list.GetList());
} else if (reg_list.GetType() == CPURegister::kVRegister) {
// This will always clobber D registers.
ClobberFP(masm, reg_list.GetList());
} else {
VIXL_UNREACHABLE();
}
}
void RegisterDump::Dump(MacroAssembler* masm) {
VIXL_ASSERT(__ StackPointer().Is(sp));
// Ensure that we don't unintentionally clobber any registers.
UseScratchRegisterScope temps(masm);
temps.ExcludeAll();
// Preserve some temporary registers.
Register dump_base = x0;
Register dump = x1;
Register tmp = x2;
Register dump_base_w = dump_base.W();
Register dump_w = dump.W();
Register tmp_w = tmp.W();
// Offsets into the dump_ structure.
const int x_offset = offsetof(dump_t, x_);
const int w_offset = offsetof(dump_t, w_);
const int d_offset = offsetof(dump_t, d_);
const int s_offset = offsetof(dump_t, s_);
const int q_offset = offsetof(dump_t, q_);
const int sp_offset = offsetof(dump_t, sp_);
const int wsp_offset = offsetof(dump_t, wsp_);
const int flags_offset = offsetof(dump_t, flags_);
__ Push(xzr, dump_base, dump, tmp);
// Load the address where we will dump the state.
__ Mov(dump_base, reinterpret_cast<uintptr_t>(&dump_));
// Dump the stack pointer (sp and wsp).
// The stack pointer cannot be stored directly; it needs to be moved into
// another register first. Also, we pushed four X registers, so we need to
// compensate here.
__ Add(tmp, sp, 4 * kXRegSizeInBytes);
__ Str(tmp, MemOperand(dump_base, sp_offset));
__ Add(tmp_w, wsp, 4 * kXRegSizeInBytes);
__ Str(tmp_w, MemOperand(dump_base, wsp_offset));
// Dump X registers.
__ Add(dump, dump_base, x_offset);
for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
__ Stp(Register::GetXRegFromCode(i),
Register::GetXRegFromCode(i + 1),
MemOperand(dump, i * kXRegSizeInBytes));
}
// Dump W registers.
__ Add(dump, dump_base, w_offset);
for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
__ Stp(Register::GetWRegFromCode(i),
Register::GetWRegFromCode(i + 1),
MemOperand(dump, i * kWRegSizeInBytes));
}
// Dump D registers.
__ Add(dump, dump_base, d_offset);
for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
__ Stp(FPRegister::GetDRegFromCode(i),
FPRegister::GetDRegFromCode(i + 1),
MemOperand(dump, i * kDRegSizeInBytes));
}
// Dump S registers.
__ Add(dump, dump_base, s_offset);
for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
__ Stp(FPRegister::GetSRegFromCode(i),
FPRegister::GetSRegFromCode(i + 1),
MemOperand(dump, i * kSRegSizeInBytes));
}
// Dump Q registers.
__ Add(dump, dump_base, q_offset);
for (unsigned i = 0; i < kNumberOfVRegisters; i += 2) {
__ Stp(VRegister::GetQRegFromCode(i),
VRegister::GetQRegFromCode(i + 1),
MemOperand(dump, i * kQRegSizeInBytes));
}
// Dump the flags.
__ Mrs(tmp, NZCV);
__ Str(tmp, MemOperand(dump_base, flags_offset));
// To dump the values that were in tmp amd dump, we need a new scratch
// register. We can use any of the already dumped registers since we can
// easily restore them.
Register dump2_base = x10;
Register dump2 = x11;
VIXL_ASSERT(!AreAliased(dump_base, dump, tmp, dump2_base, dump2));
// Don't lose the dump_ address.
__ Mov(dump2_base, dump_base);
__ Pop(tmp, dump, dump_base, xzr);
__ Add(dump2, dump2_base, w_offset);
__ Str(dump_base_w,
MemOperand(dump2, dump_base.GetCode() * kWRegSizeInBytes));
__ Str(dump_w, MemOperand(dump2, dump.GetCode() * kWRegSizeInBytes));
__ Str(tmp_w, MemOperand(dump2, tmp.GetCode() * kWRegSizeInBytes));
__ Add(dump2, dump2_base, x_offset);
__ Str(dump_base, MemOperand(dump2, dump_base.GetCode() * kXRegSizeInBytes));
__ Str(dump, MemOperand(dump2, dump.GetCode() * kXRegSizeInBytes));
__ Str(tmp, MemOperand(dump2, tmp.GetCode() * kXRegSizeInBytes));
// Finally, restore dump2_base and dump2.
__ Ldr(dump2_base,
MemOperand(dump2, dump2_base.GetCode() * kXRegSizeInBytes));
__ Ldr(dump2, MemOperand(dump2, dump2.GetCode() * kXRegSizeInBytes));
completed_ = true;
}
} // namespace aarch64
} // namespace vixl