#!/bin/bash
# Copyright (c) 2011 The Chromium OS Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
# Sign the final build image using the "official" keys.
#
# Prerequisite tools needed in the system path:
#
# gbb_utility (from src/platform/vboot_reference)
# vbutil_kernel (from src/platform/vboot_reference)
# cgpt (from src/platform/vboot_reference)
# dump_kernel_config (from src/platform/vboot_reference)
# verity (from src/platform/verity)
# load_kernel_test (from src/platform/vboot_reference)
# dumpe2fs
# sha1sum
# Load common constants and variables.
. "$(dirname "$0")/common.sh"
# Print usage string
usage() {
cat <<EOF
Usage: $PROG <type> input_image /path/to/keys/dir [output_image] [version_file]
where <type> is one of:
ssd (sign an SSD image)
recovery (sign a USB recovery image)
factory (sign a factory install image)
install (old alias to "factory")
update_payload (sign a delta update hash)
firmware (sign a firmware image)
usb (sign an image to boot directly from USB)
verify (verify an image including rootfs hashes)
output_image: File name of the signed output image
version_file: File name of where to read the kernel and firmware versions.
If you are signing an image, you must specify an [output_image] and
optionally, a [version_file].
EOF
if [[ $# -gt 0 ]]; then
error "$*"
exit 1
fi
exit 0
}
# Verify we have as many arguments as we expect, else show usage & quit.
# Usage:
# check_argc <number args> <exact number>
# check_argc <number args> <lower bound> <upper bound>
check_argc() {
case $# in
2)
if [[ $1 -ne $2 ]]; then
usage "command takes exactly $2 args"
fi
;;
3)
if [[ $1 -lt $2 || $1 -gt $3 ]]; then
usage "command takes $2 to $3 args"
fi
;;
*)
die "check_argc: incorrect number of arguments"
esac
}
# Abort on errors.
set -e
# Add to the path since some tools reside here and may not be in the non-root
# system path.
PATH=$PATH:/usr/sbin:/sbin
# Make sure the tools we need are available.
for prereqs in gbb_utility vbutil_kernel cgpt dump_kernel_config verity \
load_kernel_test dumpe2fs sha1sum e2fsck; do
type -P "${prereqs}" &>/dev/null || \
{ echo "${prereqs} tool not found."; exit 1; }
done
TYPE=$1
INPUT_IMAGE=$2
KEY_DIR=$3
OUTPUT_IMAGE=$4
VERSION_FILE=$5
FIRMWARE_VERSION=1
KERNEL_VERSION=1
# Get current rootfs hash and kernel command line
# ARGS: IMAGE KERNELPART
grab_kernel_config() {
local image=$1
local kernelpart=$2 # Kernel partition number to grab.
# Grab the existing kernel partition and get the kernel config.
temp_kimage=$(make_temp_file)
extract_image_partition ${image} ${kernelpart} ${temp_kimage}
dump_kernel_config ${temp_kimage}
}
# TODO(gauravsh): These are duplicated from chromeos-setimage. We need
# to move all signing and rootfs code to one single place where it can be
# reused. crosbug.com/19543
# get_verity_arg <commandline> <key> -> <value>
get_verity_arg() {
echo "$1" | sed -n "s/.*\b$2=\([^ \"]*\).*/\1/p"
}
is_old_verity_argv() {
local depth=$(echo "$1" | cut -f7 -d' ')
if [ "$depth" = "0" ]; then
return 0
fi
return 1
}
# Get the dmparams parameters from a kernel config.
get_dmparams_from_config() {
local kernel_config=$1
echo ${kernel_config} | sed -nre 's/.*dm="([^"]*)".*/\1/p'
}
# Get the verity root digest hash from a kernel config command line.
get_hash_from_config() {
local kernel_config=$1
local dm_config=$(get_dmparams_from_config "${kernel_config}")
local vroot_dev=$(get_dm_slave "${dm_config}" vroot)
if is_old_verity_argv "${vroot_dev}"; then
echo ${vroot_dev} | cut -f9 -d ' '
else
echo $(get_verity_arg "${vroot_dev}" root_hexdigest)
fi
}
# Get the slave device and its args
# get_dm_ags $dm_config [vboot|vroot]
# Assumes we have only one slave device per device
get_dm_slave() {
local dm=$1
local device=$2
echo $(echo "${dm}" | sed -nre "s/.*${device}[^,]*,([^,]*).*/\1/p")
}
# Set the slave device and its args for a device
# get_dm_ags $dm_config [vboot|vroot] args
# Assumes we have only one slave device per device
set_dm_slave() {
local dm=$1
local device=$2
local slave=$3
echo $(echo "${dm}" |
sed -nre "s#(.*${device}[^,]*,)([^,]*)(.*)#\1${slave}\3#p")
}
CALCULATED_KERNEL_CONFIG=
CALCULATED_DM_ARGS=
# Calculate rootfs hash of an image
# Args: ROOTFS_IMAGE KERNEL_CONFIG HASH_IMAGE
#
# rootfs calculation parameters are grabbed from KERNEL_CONFIG
#
# Updated dm-verity arguments (to be replaced in kernel config command line)
# with the new hash is stored in $CALCULATED_DM_ARGS and the new hash image is
# written to the file HASH_IMAGE.
calculate_rootfs_hash() {
local rootfs_image=$1
local kernel_config=$2
local hash_image=$3
local dm_config=$(get_dmparams_from_config "${kernel_config}")
if [ -z "${dm_config}" ]; then
echo "WARNING: Couldn't grab dm_config. Aborting rootfs hash calculation."
return 1
fi
local vroot_dev=$(get_dm_slave "${dm_config}" vroot)
local rootfs_sectors
local verity_depth
local verity_algorithm
local root_dev
local hash_dev
local verity_bin="verity"
if is_old_verity_argv "${vroot_dev}"; then
# dm="0 2097152 verity ROOT_DEV HASH_DEV 2097152 1 \
# sha1 63b7ad16cb9db4b70b28593f825aa6b7825fdcf2"
rootfs_sectors=$(echo ${vroot_dev} | cut -f2 -d' ')
verity_depth=$(echo ${vroot_dev} | cut -f7 -d' ')
verity_algorithm=$(echo ${vroot_dev} | cut -f8 -d' ')
root_dev=$(echo ${vroot_dev} | cut -f4 -d ' ')
hash_dev=$(echo ${vroot_dev} | cut -f5 -d ' ')
# Hack around the fact that the signer needs to use the old version of
# verity to generate legacy verity kernel parameters. If we find it,
# we use it.
type -P "verity-old" &>/dev/null && verity_bin="verity-old"
else
# Key-value parameters.
rootfs_sectors=$(get_verity_arg "${vroot_dev}" hashstart)
verity_depth=0
verity_algorithm=$(get_verity_arg "${vroot_dev}" alg)
root_dev=$(get_verity_arg "${vroot_dev}" payload)
hash_dev=$(get_verity_arg "${vroot_dev}" hashtree)
salt=$(get_verity_arg "${vroot_dev}" salt)
fi
local salt_arg
if [ -n "$salt" ]; then
salt_arg="salt=$salt"
fi
# Run the verity tool on the rootfs partition.
local slave=$(sudo ${verity_bin} mode=create \
alg=${verity_algorithm} \
payload="${rootfs_image}" \
payload_blocks=$((rootfs_sectors / 8)) \
hashtree="${hash_image}" ${salt_arg})
# Reconstruct new kernel config command line and replace placeholders.
slave="$(echo "${slave}" |
sed -s "s|ROOT_DEV|${root_dev}|g;s|HASH_DEV|${hash_dev}|")"
CALCULATED_DM_ARGS="$(set_dm_slave "${dm_config}" vroot "${slave}")"
CALCULATED_KERNEL_CONFIG="$(echo "${kernel_config}" |
sed -e 's#\(.*dm="\)\([^"]*\)\(".*\)'"#\1${CALCULATED_DM_ARGS}\3#g")"
}
# Re-calculate rootfs hash, update rootfs and kernel command line(s).
# Args: IMAGE DM_PARTNO KERN_A_KEYBLOCK KERN_A_PRIVKEY KERN_B_KEYBLOCK \
# KERN_B_PRIVKEY
#
# The rootfs is hashed by tool 'verity', and the hash data is stored after the
# rootfs. A hash of those hash data (also known as final verity hash) may be
# contained in kernel 2 or kernel 4 command line.
#
# This function reads dm-verity configuration from DM_PARTNO, rebuilds rootfs
# hash, and then resigns kernel A & B by their keyblock and private key files.
update_rootfs_hash() {
local image=$1 # Input image.
local dm_partno="$2" # Partition number of kernel that contains verity args.
local kern_a_keyblock="$3" # Keyblock file for kernel A.
local kern_a_privkey="$4" # Private key file for kernel A.
local kern_b_keyblock="$5" # Keyblock file for kernel B.
local kern_b_privkey="$6" # Private key file for kernel A.
# Note even though there are two kernels, there is one place (after rootfs)
# for hash data, so we must assume both kernel use same hash algorithm (i.e.,
# DM config).
echo "Updating rootfs hash and updating config for Kernel partitions"
# If we can't find dm parameters in the kernel config, bail out now.
local kernel_config=$(grab_kernel_config "${image}" "${dm_partno}")
local dm_config=$(get_dmparams_from_config "${kernel_config}")
if [ -z "${dm_config}" ]; then
echo "ERROR: Couldn't grab dm_config from kernel partition ${dm_partno}"
echo " (config: ${kernel_config})"
return 1
fi
# check and clear need_to_resign tag
local rootfs_dir=$(make_temp_dir)
mount_image_partition_ro "${image}" 3 "${rootfs_dir}"
if has_needs_to_be_resigned_tag "${rootfs_dir}"; then
# remount as RW
sudo umount "${rootfs_dir}"
mount_image_partition "${image}" 3 "${rootfs_dir}"
sudo rm -f "${rootfs_dir}/${TAG_NEEDS_TO_BE_SIGNED}"
fi
sudo umount "${rootfs_dir}"
local rootfs_image=$(make_temp_file)
extract_image_partition ${image} 3 ${rootfs_image}
local hash_image=$(make_temp_file)
# Disable rw mount support prior to hashing.
disable_rw_mount "${rootfs_image}"
if ! calculate_rootfs_hash "${rootfs_image}" "${kernel_config}" \
"${hash_image}"; then
echo "calculate_rootfs_hash failed!"
echo "Aborting rootfs hash update!"
return 1
fi
local rootfs_blocks=$(sudo dumpe2fs "${rootfs_image}" 2> /dev/null |
grep "Block count" |
tr -d ' ' |
cut -f2 -d:)
local rootfs_sectors=$((rootfs_blocks * 8))
# Overwrite the appended hashes in the rootfs
dd if=${hash_image} of=${rootfs_image} bs=512 \
seek=${rootfs_sectors} conv=notrunc 2>/dev/null
replace_image_partition ${image} 3 ${rootfs_image}
# Update kernel command lines
local dm_args="${CALCULATED_DM_ARGS}"
local temp_config=$(make_temp_file)
local temp_kimage=$(make_temp_file)
local updated_kimage=$(make_temp_file)
local kernelpart=
local keyblock=
local priv_key=
local new_kernel_config=
for kernelpart in 2 4; do
if ! new_kernel_config="$(
grab_kernel_config "${image}" "${kernelpart}" 2>/dev/null)" &&
[[ "${kernelpart}" == 4 ]]; then
# Legacy images don't have partition 4.
echo "Skipping empty kernel partition 4 (legacy images)."
continue
fi
new_kernel_config="$(echo "${new_kernel_config}" |
sed -e 's#\(.*dm="\)\([^"]*\)\(".*\)'"#\1${dm_args}\3#g")"
echo "New config for kernel partition ${kernelpart} is:"
echo "${new_kernel_config}" | tee "${temp_config}"
extract_image_partition "${image}" "${kernelpart}" "${temp_kimage}"
# Re-calculate kernel partition signature and command line.
if [[ "$kernelpart" == 2 ]]; then
keyblock="${kern_a_keyblock}"
priv_key="${kern_a_privkey}"
else
keyblock="${kern_b_keyblock}"
priv_key="${kern_b_privkey}"
fi
vbutil_kernel --repack ${updated_kimage} \
--keyblock ${keyblock} \
--signprivate ${priv_key} \
--version "${KERNEL_VERSION}" \
--oldblob ${temp_kimage} \
--config ${temp_config}
replace_image_partition ${image} ${kernelpart} ${updated_kimage}
done
}
# Update the SSD install-able vblock file on stateful partition.
# ARGS: Image
# This is deprecated because all new images should have a SSD boot-able kernel
# in partition 4. However, the signer needs to be able to sign new & old images
# (crbug.com/449450#c13) so we will probably never remove this.
update_stateful_partition_vblock() {
local image="$1"
local kernb_image="$(make_temp_file)"
local temp_out_vb="$(make_temp_file)"
extract_image_partition "${image}" 4 "${kernb_image}"
if [[ "$(dump_kernel_config "${kernb_image}" 2>/dev/null)" == "" ]]; then
echo "Building vmlinuz_hd.vblock from legacy image partition 2."
extract_image_partition "${image}" 2 "${kernb_image}"
fi
# vblock should always use kernel keyblock.
vbutil_kernel --repack "${temp_out_vb}" \
--keyblock "${KEY_DIR}/kernel.keyblock" \
--signprivate "${KEY_DIR}/kernel_data_key.vbprivk" \
--oldblob "${kernb_image}" \
--vblockonly
# Copy the installer vblock to the stateful partition.
local stateful_dir=$(make_temp_dir)
mount_image_partition "${image}" 1 "${stateful_dir}"
sudo cp ${temp_out_vb} ${stateful_dir}/vmlinuz_hd.vblock
sudo umount "${stateful_dir}"
}
# Do a sanity check on the image's rootfs
# ARGS: Image
verify_image_rootfs() {
local image=$1
local rootfs_image=$(make_temp_file)
extract_image_partition ${image} 3 ${rootfs_image}
# This flips the read-only compatibility flag, so that e2fsck does not
# complain about unknown file system capabilities.
enable_rw_mount ${rootfs_image}
echo "Running e2fsck to check root file system for errors"
sudo e2fsck -fn "${rootfs_image}" ||
{ echo "Root file system has errors!" && exit 1;}
}
# Extracts a firmware updater bundle (for firmware image binaries) file
# (generated by src/platform/firmware/pack_firmware.sh).
# Args: INPUT_FILE OUTPUT_DIR
extract_firmware_bundle() {
local input="$(readlink -f "$1")"
local output_dir="$2"
if [ ! -s "${input}" ]; then
return 1
elif grep -q '^##CUTHERE##' "${input}"; then
# Bundle supports self-extraction.
"$input" --sb_extract "${output_dir}" ||
die "Extracting firmware autoupdate (--sb_extract) failed."
else
# Legacy bundle - try uudecode.
uudecode -o - ${input} | tar -C ${output_dir} -zxf - 2>/dev/null ||
die "Extracting firmware autoupdate failed."
fi
}
# Repacks firmware updater bundle content from given folder.
# Args: INPUT_DIR TARGET_SCRIPT
repack_firmware_bundle() {
local input_dir="$1"
local target="$(readlink -f "$2")"
if [ ! -s "${target}" ]; then
return 1
elif grep -q '^##CUTHERE##' "${target}"; then
# Bundle supports repacking.
# Workaround issue crosbug.com/p/33719
sed -i \
's/shar -Q -q -x -m -w/shar -Q -q -x -m --no-character-count/' \
"${target}"
"$target" --sb_repack "${input_dir}" ||
die "Updating firmware autoupdate (--sb_repack) failed."
else
# Legacy bundle using uuencode + tar.gz.
# Replace MD5 checksum in the firmware update payload.
local newfd_checksum="$(md5sum ${input_dir}/bios.bin | cut -f 1 -d ' ')"
local temp_version="$(make_temp_file)"
cat ${input_dir}/VERSION |
sed -e "s#\(.*\)\ \(.*bios.bin.*\)#${newfd_checksum}\ \2#" > ${temp_version}
mv ${temp_version} ${input_dir}/VERSION
# Re-generate firmware_update.tgz and copy over encoded archive in
# the original shell ball.
sed -ine '/^begin .*firmware_package/,/end/D' "$target"
tar zcf - -C "${input_dir}" . |
uuencode firmware_package.tgz >>"${target}"
fi
}
# Sign a firmware in-place with the given keys.
# Args: FIRMWARE_IMAGE KEY_DIR FIRMWARE_VERSION [LOEM_OUTPUT_DIR]
sign_firmware() {
local image=$1
local key_dir=$2
local firmware_version=$3
local loem_output_dir=${4:-}
local temp_firmware=$(make_temp_file)
# Resign the firmware with new keys, also replacing the root and recovery
# public keys in the GBB.
"${SCRIPT_DIR}/sign_firmware.sh" "${image}" "${key_dir}" "${temp_firmware}" \
"${firmware_version}" "${loem_output_dir}"
# Note: Although sign_firmware.sh may correctly handle specifying the same
# output file as the input file, we do not want to rely on it correctly
# handing that. Hence, the use of a temporary file.
mv ${temp_firmware} ${image}
echo "Signed firmware image output to ${image}"
}
# Sign a delta update payload (usually created by paygen).
# Args: INPUT_IMAGE KEY_DIR OUTPUT_IMAGE
sign_update_payload() {
local image=$1
local key_dir=$2
local output=$3
local key_size key_file="${key_dir}/update_key.pem"
# Maps key size to verified boot's algorithm id (for pad_digest_utility).
# Hashing algorithm is always SHA-256.
local algo algos=(
[1024]=1
[2048]=4
[4096]=7
[8192]=10
)
key_size=$(openssl rsa -text -noout -in "${key_file}" | \
sed -n -r '1{s/Private-Key: \(([0-9]*) bit\)/\1/p}')
algo=${algos[${key_size}]}
if [[ -z ${algo} ]]; then
die "Unknown algorithm specified by key_size=${key_size}"
fi
pad_digest_utility ${algo} "${image}" | \
openssl rsautl -sign -pkcs -inkey "${key_file}" -out "${output}"
}
# Re-sign the firmware AU payload inside the image rootfs with a new keys.
# Args: IMAGE
resign_firmware_payload() {
local image=$1
if [ -n "${NO_FWUPDATE}" ]; then
echo "Skipping firmware update."
return
fi
# Grab firmware image from the autoupdate bundle (shellball).
local rootfs_dir=$(make_temp_dir)
mount_image_partition ${image} 3 ${rootfs_dir}
local firmware_bundle="${rootfs_dir}/usr/sbin/chromeos-firmwareupdate"
local shellball_dir=$(make_temp_dir)
# extract_firmware_bundle can fail if the image has no firmware update.
if ! extract_firmware_bundle "${firmware_bundle}" "${shellball_dir}"; then
# Unmount now to prevent changes.
sudo umount "${rootfs_dir}"
echo "Didn't find a firmware update. Not signing firmware."
return
fi
echo "Found a valid firmware update shellball."
local image_file sign_args=() loem_sfx loem_output_dir
for image_file in "${shellball_dir}"/bios*.bin; do
if [[ -e "${KEY_DIR}/loem.ini" ]]; then
# Extract the extended details from "bios.bin" and use that in the
# subdir for the keyset.
loem_sfx=$(sed -r 's:.*/bios([^/]*)[.]bin$:\1:' <<<"${image_file}")
loem_output_dir="${shellball_dir}/keyset${loem_sfx}"
sign_args=( "${loem_output_dir}" )
mkdir -p "${loem_output_dir}"
fi
sign_firmware "${image_file}" "${KEY_DIR}" "${FIRMWARE_VERSION}" \
"${sign_args[@]}"
done
local signer_notes="${shellball_dir}/VERSION.signer"
echo "" >"$signer_notes"
echo "Signed with keyset in $(readlink -f "${KEY_DIR}") ." >>"$signer_notes"
new_shellball=$(make_temp_file)
cp -f "${firmware_bundle}" "${new_shellball}"
chmod a+rx "${new_shellball}"
repack_firmware_bundle "${shellball_dir}" "${new_shellball}"
sudo cp -f "${new_shellball}" "${firmware_bundle}"
sudo chmod a+rx "${firmware_bundle}"
# Unmount now to flush changes.
sudo umount "${rootfs_dir}"
echo "Re-signed firmware AU payload in $image"
}
# Verify an image including rootfs hash using the specified keys.
verify_image() {
local rootfs_image=$(make_temp_file)
extract_image_partition ${INPUT_IMAGE} 3 ${rootfs_image}
echo "Verifying RootFS hash..."
# What we get from image.
local kernel_config
# What we calculate from the rootfs.
local new_kernel_config
# Depending on the type of image, the verity parameters may
# exist in either kernel partition 2 or kernel partition 4
local partnum
for partnum in 2 4; do
echo "Considering Kernel partition $partnum"
kernel_config=$(grab_kernel_config ${INPUT_IMAGE} $partnum)
local hash_image=$(make_temp_file)
if ! calculate_rootfs_hash "${rootfs_image}" "${kernel_config}" \
"${hash_image}"; then
echo "Trying next kernel partition."
continue
fi
new_kernel_config="$CALCULATED_KERNEL_CONFIG"
break
done
# Note: If calculate_rootfs_hash succeeded above, these should
# be non-empty.
expected_hash=$(get_hash_from_config "${new_kernel_config}")
got_hash=$(get_hash_from_config "${kernel_config}")
if [ -z "${expected_hash}" ] || [ -z "${got_hash}" ]; then
echo "FAILURE: Couldn't verify RootFS hash on the image."
exit 1
fi
if [ ! "${got_hash}" = "${expected_hash}" ]; then
cat <<EOF
FAILED: RootFS hash is incorrect.
Expected: ${expected_hash}
Got: ${got_hash}
EOF
exit 1
else
echo "PASS: RootFS hash is correct (${expected_hash})"
fi
# Now try and verify kernel partition signature.
set +e
local try_key=${KEY_DIR}/recovery_key.vbpubk
echo "Testing key verification..."
# The recovery key is only used in the recovery mode.
echo -n "With Recovery Key (Recovery Mode ON, Dev Mode OFF): " && \
{ load_kernel_test "${INPUT_IMAGE}" "${try_key}" -b 2 >/dev/null 2>&1 && \
echo "YES"; } || echo "NO"
echo -n "With Recovery Key (Recovery Mode ON, Dev Mode ON): " && \
{ load_kernel_test "${INPUT_IMAGE}" "${try_key}" -b 3 >/dev/null 2>&1 && \
echo "YES"; } || echo "NO"
try_key=${KEY_DIR}/kernel_subkey.vbpubk
# The SSD key is only used in non-recovery mode.
echo -n "With SSD Key (Recovery Mode OFF, Dev Mode OFF): " && \
{ load_kernel_test "${INPUT_IMAGE}" "${try_key}" -b 0 >/dev/null 2>&1 && \
echo "YES"; } || echo "NO"
echo -n "With SSD Key (Recovery Mode OFF, Dev Mode ON): " && \
{ load_kernel_test "${INPUT_IMAGE}" "${try_key}" -b 1 >/dev/null 2>&1 && \
echo "YES"; } || echo "NO"
set -e
verify_image_rootfs "${INPUT_IMAGE}"
# TODO(gauravsh): Check embedded firmware AU signatures.
}
# Re-calculate recovery kernel hash.
# Args: IMAGE_BIN
update_recovery_kernel_hash() {
image_bin=$1
# Update the Kernel B hash in Kernel A command line
local old_kerna_config=$(grab_kernel_config "${image_bin}" 2)
local new_kernb=$(make_temp_file)
extract_image_partition ${image_bin} 4 ${new_kernb}
local new_kernb_hash=$(sha1sum ${new_kernb} | cut -f1 -d' ')
new_kerna_config=$(make_temp_file)
echo "$old_kerna_config" |
sed -e "s#\(kern_b_hash=\)[a-z0-9]*#\1${new_kernb_hash}#" \
> ${new_kerna_config}
echo "New config for kernel partition 2 is"
cat ${new_kerna_config}
local temp_kimagea=$(make_temp_file)
extract_image_partition ${image_bin} 2 ${temp_kimagea}
# Re-calculate kernel partition signature and command line.
local updated_kimagea=$(make_temp_file)
vbutil_kernel --repack ${updated_kimagea} \
--keyblock ${KEY_DIR}/recovery_kernel.keyblock \
--signprivate ${KEY_DIR}/recovery_kernel_data_key.vbprivk \
--version "${KERNEL_VERSION}" \
--oldblob ${temp_kimagea} \
--config ${new_kerna_config}
replace_image_partition ${image_bin} 2 ${updated_kimagea}
}
# Sign an image file with proper keys.
# Args: IMAGE_TYPE INPUT OUTPUT DM_PARTNO KERN_A_KEYBLOCK KERN_A_PRIVKEY \
# KERN_B_KEYBLOCK KERN_B_PRIVKEY
#
# A ChromiumOS image file (INPUT) always contains 2 partitions (kernel A & B).
# This function will rebuild hash data by DM_PARTNO, resign kernel partitions by
# their KEYBLOCK and PRIVKEY files, and then write to OUTPUT file. Note some
# special images (specified by IMAGE_TYPE, like 'recovery' or 'factory_install')
# may have additional steps (ex, tweaking verity hash or not stripping files)
# when generating output file.
sign_image_file() {
local image_type="$1"
local input="$2"
local output="$3"
local dm_partno="$4"
local kernA_keyblock="$5"
local kernA_privkey="$6"
local kernB_keyblock="$7"
local kernB_privkey="$8"
echo "Preparing ${image_type} image..."
cp "${input}" "${output}"
resign_firmware_payload "${output}"
# We do NOT strip /boot for factory installer, since some devices need it to
# boot EFI. crbug.com/260512 would obsolete this requirement.
if [[ "${image_type}" != "factory_install" ]]; then
"${SCRIPT_DIR}/strip_boot_from_image.sh" --image "${output}"
fi
update_rootfs_hash "${output}" "${dm_partno}" \
"${kernA_keyblock}" "${kernA_privkey}" \
"${kernB_keyblock}" "${kernB_privkey}"
update_stateful_partition_vblock "${output}"
if [[ "${image_type}" == "recovery" ]]; then
update_recovery_kernel_hash "${output}"
fi
echo "Signed ${image_type} image output to ${output}"
}
# Verification
case ${TYPE} in
dump_config)
check_argc $# 2
for partnum in 2 4; do
echo "kernel config in partition number ${partnum}:"
grab_kernel_config "${INPUT_IMAGE}" ${partnum}
echo
done
exit 0
;;
verify)
check_argc $# 2
verify_image
exit 0
;;
*)
# All other signing commands take 4 to 5 args.
if [ -z "${OUTPUT_IMAGE}" ]; then
# Friendlier message.
usage "Missing output image name"
fi
check_argc $# 4 5
;;
esac
# If a version file was specified, read the firmware and kernel
# versions from there.
if [ -n "${VERSION_FILE}" ]; then
FIRMWARE_VERSION=$(sed -n 's#^firmware_version=\(.*\)#\1#pg' ${VERSION_FILE})
KERNEL_VERSION=$(sed -n 's#^kernel_version=\(.*\)#\1#pg' ${VERSION_FILE})
fi
echo "Using firmware version: ${FIRMWARE_VERSION}"
echo "Using kernel version: ${KERNEL_VERSION}"
# Make all modifications on output copy.
if [[ "${TYPE}" == "ssd" ]]; then
sign_image_file "SSD" "${INPUT_IMAGE}" "${OUTPUT_IMAGE}" 2 \
"${KEY_DIR}/kernel.keyblock" "${KEY_DIR}/kernel_data_key.vbprivk" \
"${KEY_DIR}/kernel.keyblock" "${KEY_DIR}/kernel_data_key.vbprivk"
elif [[ "${TYPE}" == "usb" ]]; then
sign_image_file "USB" "${INPUT_IMAGE}" "${OUTPUT_IMAGE}" 2 \
"${KEY_DIR}/recovery_kernel.keyblock" \
"${KEY_DIR}/recovery_kernel_data_key.vbprivk" \
"${KEY_DIR}/kernel.keyblock" \
"${KEY_DIR}/kernel_data_key.vbprivk"
elif [[ "${TYPE}" == "recovery" ]]; then
sign_image_file "recovery" "${INPUT_IMAGE}" "${OUTPUT_IMAGE}" 4 \
"${KEY_DIR}/recovery_kernel.keyblock" \
"${KEY_DIR}/recovery_kernel_data_key.vbprivk" \
"${KEY_DIR}/kernel.keyblock" \
"${KEY_DIR}/kernel_data_key.vbprivk"
elif [[ "${TYPE}" == "factory" ]] || [[ "${TYPE}" == "install" ]]; then
sign_image_file "factory_install" "${INPUT_IMAGE}" "${OUTPUT_IMAGE}" 2 \
"${KEY_DIR}/installer_kernel.keyblock" \
"${KEY_DIR}/installer_kernel_data_key.vbprivk" \
"${KEY_DIR}/kernel.keyblock" \
"${KEY_DIR}/kernel_data_key.vbprivk"
elif [[ "${TYPE}" == "firmware" ]]; then
if [[ -e "${KEY_DIR}/loem.ini" ]]; then
echo "LOEM signing not implemented yet for firmware images"
exit 1
fi
cp ${INPUT_IMAGE} ${OUTPUT_IMAGE}
sign_firmware ${OUTPUT_IMAGE} ${KEY_DIR} ${FIRMWARE_VERSION}
elif [[ "${TYPE}" == "update_payload" ]]; then
sign_update_payload ${INPUT_IMAGE} ${KEY_DIR} ${OUTPUT_IMAGE}
else
echo "Invalid type ${TYPE}"
exit 1
fi