/* Copyright (C) 2012 IBM
Author: Maynard Johnson <maynardj@us.ibm.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#if defined(HAS_DFP)
register double f14 __asm__ ("fr14");
register double f15 __asm__ ("fr15");
register double f16 __asm__ ("fr16");
register double f17 __asm__ ("fr17");
register double f18 __asm__ ("fr18");
register double f19 __asm__ ("fr19");
typedef unsigned char Bool;
#define True 1
#define False 0
#define ALLCR "cr0","cr1","cr2","cr3","cr4","cr5","cr6","cr7"
#define SET_CR(_arg) \
__asm__ __volatile__ ("mtcr %0" : : "b"(_arg) : ALLCR );
#define SET_XER(_arg) \
__asm__ __volatile__ ("mtxer %0" : : "b"(_arg) : "xer" );
#define GET_CR(_lval) \
__asm__ __volatile__ ("mfcr %0" : "=b"(_lval) )
#define GET_XER(_lval) \
__asm__ __volatile__ ("mfxer %0" : "=b"(_lval) )
#define GET_CR_XER(_lval_cr,_lval_xer) \
do { GET_CR(_lval_cr); GET_XER(_lval_xer); } while (0)
#define SET_CR_ZERO \
SET_CR(0)
#define SET_XER_ZERO \
SET_XER(0)
#define SET_CR_XER_ZERO \
do { SET_CR_ZERO; SET_XER_ZERO; } while (0)
#define SET_FPSCR_ZERO \
do { double _d = 0.0; \
__asm__ __volatile__ ("mtfsf 0xFF, %0" : : "f"(_d) ); \
} while (0)
#define GET_FPSCR(_arg) \
__asm__ __volatile__ ("mffs %0" : "=f"(_arg) )
#define SET_FPSCR_DRN \
__asm__ __volatile__ ("mtfsf 1, %0, 0, 1" : : "f"(f14) )
// The assembly-level instructions being tested
static Bool do_dot;
static void _test_dadd (void)
{
if (do_dot)
__asm__ __volatile__ ("dadd. %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
else
__asm__ __volatile__ ("dadd %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
}
static void _test_dsub (void)
{
if (do_dot)
__asm__ __volatile__ ("dsub. %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
else
__asm__ __volatile__ ("dsub %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
}
static void _test_dmul (void)
{
if (do_dot)
__asm__ __volatile__ ("dmul. %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
else
__asm__ __volatile__ ("dmul %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
}
static void _test_ddiv (void)
{
if (do_dot)
__asm__ __volatile__ ("ddiv. %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
else
__asm__ __volatile__ ("ddiv %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
}
// Quad DFP arith instructions
static void _test_daddq (void)
{
if (do_dot)
__asm__ __volatile__ ("daddq. %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
else
__asm__ __volatile__ ("daddq %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
}
static void _test_dsubq (void)
{
if (do_dot)
__asm__ __volatile__ ("dsubq. %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
else
__asm__ __volatile__ ("dsubq %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
}
static void _test_dmulq (void)
{
if (do_dot)
__asm__ __volatile__ ("dmulq. %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
else
__asm__ __volatile__ ("dmulq %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
}
static void _test_ddivq (void)
{
if (do_dot)
__asm__ __volatile__ ("ddivq. %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
else
__asm__ __volatile__ ("ddivq %0, %1, %2" : "=f" (f18) : "f" (f14),"f" (f16));
}
static void _test_mffs (void)
{
__asm__ __volatile__ ("mffs %0" : "=f"(f14));
}
static void _test_mtfsf (int upper)
{
if (upper)
__asm__ __volatile__ ("mtfsf 1, %0, 0, 1" : : "f"(f14) );
else
__asm__ __volatile__ ("mtfsf 1, %0, 0, 0" : : "f"(f14) );
}
typedef void (*test_func_t)(void);
typedef struct test_table
{
test_func_t test_category;
char * name;
} test_table_t;
/*
* 345.0DD (0x2207c00000000000 0xe50)
* 1.2300e+5DD (0x2207c00000000000 0x14c000)
* -16.0DD (0xa207c00000000000 0xe0)
* 0.00189DD (0x2206c00000000000 0xcf)
* -4.1235DD (0xa205c00000000000 0x10a395bcf)
* 9.8399e+20DD (0x2209400000000000 0x253f1f534acdd4)
* 0DD (0x2208000000000000 0x0)
* 0DD (0x2208000000000000 0x0)
* infDD (0x7800000000000000 0x0)
* nanDD (0x7c00000000000000 0x0
*/
static unsigned long long dfp128_vals[] = {
// Some finite numbers
0x2207c00000000000ULL, 0x0000000000000e50ULL,
0x2207c00000000000ULL, 0x000000000014c000ULL,
0xa207c00000000000ULL, 0x00000000000000e0ULL,
0x2206c00000000000ULL, 0x00000000000000cfULL,
0xa205c00000000000ULL, 0x000000010a395bcfULL,
0x6209400000fd0000ULL, 0x00253f1f534acdd4ULL, // huge number
0x000400000089b000ULL, 0x0a6000d000000049ULL, // very small number
// flavors of zero
0x2208000000000000ULL, 0x0000000000000000ULL,
0xa208000000000000ULL, 0x0000000000000000ULL, // negative
0xa248000000000000ULL, 0x0000000000000000ULL,
// flavors of NAN
0x7c00000000000000ULL, 0x0000000000000000ULL, // quiet
0xfc00000000000000ULL, 0xc00100035b007700ULL,
0x7e00000000000000ULL, 0xfe000000d0e0a0d0ULL, // signaling
// flavors of Infinity
0x7800000000000000ULL, 0x0000000000000000ULL,
0xf800000000000000ULL, 0x0000000000000000ULL, // negative
0xf900000000000000ULL, 0x0000000000000000ULL
};
static unsigned long long dfp64_vals[] = {
// various finite numbers
0x2234000000000e50ULL,
0x223400000014c000ULL,
0xa2340000000000e0ULL,// negative
0x22240000000000cfULL,
0xa21400010a395bcfULL,// negative
0x6e4d3f1f534acdd4ULL,// huge number
0x000400000089b000ULL,// very small number
// flavors of zero
0x2238000000000000ULL,
0xa238000000000000ULL,
0x4248000000000000ULL,
// flavors of NAN
0x7e34000000000111ULL,
0xfe000000d0e0a0d0ULL,//signaling
0xfc00000000000000ULL,//quiet
// flavors of Infinity
0x7800000000000000ULL,
0xf800000000000000ULL,//negative
0x7a34000000000000ULL,
};
typedef struct dfp_test_args {
int fra_idx;
int frb_idx;
} dfp_test_args_t;
// Index pairs from dfp64_vals or dfp128_vals array to be used with dfp_two_arg_tests
static dfp_test_args_t dfp_2args_x2[] = {
{0, 1},
{2, 1},
{3, 4},
{0, 6},
{2, 4},
{5, 1},
{5, 2},
{7, 8},
{7, 1},
{9, 15},
{8, 12},
{7, 11},
{13, 2},
{13, 14},
{15, 12},
{14, 11},
{12, 12},
{12, 11},
{11, 11}
};
// Index pairs from dfp64_vals array to be used with dfp_two_arg_tests
static dfp_test_args_t dfp_2args_x1[] = {
{0, 1},
{2, 1},
{3, 4},
{0, 6},
{2, 4},
{5, 1},
{5, 2},
{7, 1},
{7, 2},
{8, 0},
{8, 1},
{8, 2},
{7, 8},
{12, 14},
{12, 1},
{12, 13},
{12, 12},
{12, 11},
{11, 14},
{11, 0},
{11, 13},
{11, 11},
{14, 14},
{14, 3},
{14, 15},
};
typedef enum {
LONG_TEST,
QUAD_TEST
} precision_type_t;
typedef struct dfp_test
{
test_func_t test_func;
const char * name;
dfp_test_args_t * targs;
int num_tests;
precision_type_t precision;
const char * op;
Bool cr_supported;
} dfp_test_t;
static dfp_test_t
dfp_two_arg_tests[] = {
{ &_test_dadd, "dadd", dfp_2args_x1, 25, LONG_TEST, "+", False},
{ &_test_dsub, "dsub", dfp_2args_x1, 25, LONG_TEST, "-", False},
{ &_test_dmul, "dmul", dfp_2args_x2, 19, LONG_TEST, "*", False},
{ &_test_ddiv, "ddiv", dfp_2args_x2, 19, LONG_TEST, "/", False},
{ &_test_daddq, "daddq", dfp_2args_x1, 25, QUAD_TEST, "+", False},
{ &_test_dsubq, "dsubq", dfp_2args_x1, 25, QUAD_TEST, "-", False},
{ &_test_dmulq, "dmulq", dfp_2args_x2, 19, QUAD_TEST, "*", False},
{ &_test_ddivq, "ddivq", dfp_2args_x2, 19, QUAD_TEST, "/", False},
{ NULL, NULL, NULL, 0, 0, NULL}
};
static void test_dfp_two_arg_ops(void)
{
test_func_t func;
unsigned long long u0, u0x, u1, u1x;
double res, d0, d1, *d0p, *d1p;
double d0x, d1x, *d0xp, *d1xp;
int k = 0;
u0x = u1x = 0;
d0p = &d0;
d0xp = &d0x;
d1p = &d1;
d1xp = &d1x;
while ((func = dfp_two_arg_tests[k].test_func)) {
int i, repeat = 1;
dfp_test_t test_group = dfp_two_arg_tests[k];
do_dot = False;
again:
for (i = 0; i < test_group.num_tests; i++) {
unsigned int condreg;
unsigned int flags;
if (test_group.precision == LONG_TEST) {
u0 = dfp64_vals[test_group.targs[i].fra_idx];
u1 = dfp64_vals[test_group.targs[i].frb_idx];
} else {
u0 = dfp128_vals[test_group.targs[i].fra_idx * 2];
u0x = dfp128_vals[(test_group.targs[i].fra_idx * 2) + 1];
u1 = dfp128_vals[test_group.targs[i].frb_idx * 2];
u1x = dfp128_vals[(test_group.targs[i].frb_idx * 2) + 1];
}
*(unsigned long long *)d0p = u0;
*(unsigned long long *)d1p = u1;
f14 = d0;
f16 = d1;
if (test_group.precision == QUAD_TEST) {
*(unsigned long long *)d0xp = u0x;
*(unsigned long long *)d1xp = u1x;
f15 = d0x;
f17 = d1x;
}
SET_FPSCR_ZERO;
SET_CR_XER_ZERO;
(*func)();
GET_CR(flags);
res = f18;
condreg = (flags & 0x000000f0) >> 4;
printf("%s%s %016llx", test_group.name, do_dot? "." : "", u0);
if (test_group.precision == LONG_TEST) {
printf(" %s %016llx => %016llx",
test_group.op, u1, *((unsigned long long *)(&res)));
} else {
double resx = f19;
printf(" %016llx %s %016llx %016llx ==> %016llx %016llx",
u0x, test_group.op, u1, u1x,
*((unsigned long long *)(&res)), *((unsigned long long *)(&resx)));
}
if (test_group.cr_supported)
printf(" (cr = %08x)\n", condreg);
else
printf("\n");
}
printf("\n");
if (repeat) {
repeat = 0;
do_dot = True;
goto again;
}
k++;
printf( "\n" );
}
}
void test_move_toFrom_fpscr(void)
{
#define BFP_MAX_RM 3
int shift = 0;
unsigned long long i, max_rm, expected_val;
double fpscr_in, fpscr_out;
unsigned long long * hex_fpscr_in = (unsigned long long *)&fpscr_in;
unsigned long long * hex_fpscr_out = (unsigned long long *)&fpscr_out;
max_rm = 4;
again:
/* NOTE: The first time through this loop is for setting the binary
* floating point rounding mode (bits 62:63 of FPSCR). The second time
* through is for setting the decimal floating point rounding mode
* (bits 29:31 of FPSCR). In the second time through this loop, the value
* returned should include the final binary FP rounding mode, along with
* the decimal FP rounding modes.
*/
for (i = 0; i < max_rm; i++) {
*hex_fpscr_in = (i << shift);
f14 = fpscr_in;
_test_mtfsf(max_rm/8);
*hex_fpscr_in = 0ULL;
f14= fpscr_in;
_test_mffs();
fpscr_out = f14;
if (max_rm == 4) {
*hex_fpscr_out &= (max_rm - 1) << shift;
expected_val = i << shift;
} else {
*hex_fpscr_out &= BFP_MAX_RM | ((max_rm - 1) << shift);
expected_val = (i << shift) | BFP_MAX_RM;
}
printf("FPSCR %s floating point rounding mode %016llx == %016llx? %s\n",
(max_rm == 8) ? "decimal" : "binary",
*hex_fpscr_out, expected_val,
(expected_val == *hex_fpscr_out) ? "yes" : "no");
}
if (max_rm == 4) {
max_rm = 8;
shift = 32;
goto again;
}
}
void test_rounding_modes(void)
{
int j;
unsigned long long u0, u1, rm_idx;
double res, d0, d1, *d0p, *d1p, fpscr;
unsigned long long * hex_fpscr = (unsigned long long *)&fpscr;
u0 = 0x26cc3f1f534acdd4ULL;
u1 = 0x27feff197a42ba06ULL;
d0p = &d0;
d1p = &d1;
for (j = 0; j < 12; j++) {
for (rm_idx = 0; rm_idx < 8; rm_idx++) {
*hex_fpscr = 0ULL;
__asm__ __volatile__ ("mffs %0" : "=f"(f14));
fpscr = f14;
*hex_fpscr &= 0xFFFFFFF0FFFFFFFFULL;
*hex_fpscr |= (rm_idx << 32);
f14 = fpscr;
SET_FPSCR_DRN;
*(unsigned long long *)d0p = u0;
*(unsigned long long *)d1p = u1;
f14 = d0;
f16 = d1;
_test_dmul();
res = f18;
printf("test #%d: dmul with rounding mode %d: %016llx * %016llx => %016llx\n",
j, (int)rm_idx, u0, u1, *((unsigned long long *)(&res)));
printf("\n");
}
// Changing the least significant bit of one of the dmul arguments give us more
// opportunities for different rounding modes to yield different results which
// can then be validated.
u0++;
}
}
static test_table_t
all_tests[] =
{
{ &test_dfp_two_arg_ops,
"Test DFP arithmetic instructions"},
{ &test_rounding_modes,
"Test DFP rounding modes"},
{ &test_move_toFrom_fpscr,
"Test move to/from FPSCR"},
{ NULL, NULL }
};
#endif // HAS_DFP
int main() {
#if defined(HAS_DFP)
test_table_t aTest;
test_func_t func;
int i = 0;
while ((func = all_tests[i].test_category)) {
aTest = all_tests[i];
printf( "%s\n", aTest.name );
(*func)();
i++;
}
#endif // HAS_DFP
return 0;
}