/** @brief Unit-test for DRD's bitmap implementation. */
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "coregrind/m_xarray.c"
#include "coregrind/m_poolalloc.c"
#include "coregrind/m_oset.c"
#include "drd/drd_bitmap.c"
#include "drd/pub_drd_bitmap.h"
#ifndef MIN
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#endif
#ifndef MAX
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#endif
/* Replacements for Valgrind core functionality. */
void* VG_(malloc)(const HChar* cc, SizeT nbytes)
{ return malloc(nbytes); }
void VG_(free)(void* p)
{ return free(p); }
void VG_(assert_fail)(Bool isCore, const HChar* assertion, const HChar* file,
Int line, const HChar* function, const HChar* format,
...)
{
fprintf(stderr,
"%s:%u: %s%sAssertion `%s' failed.\n",
file,
line,
function ? (char*)function : "",
function ? ": " : "",
assertion);
fflush(stdout);
fflush(stderr);
abort();
}
void* VG_(memset)(void *s, Int c, SizeT sz)
{ return memset(s, c, sz); }
void* VG_(memcpy)(void *d, const void *s, SizeT sz)
{ return memcpy(d, s, sz); }
void* VG_(memmove)(void *d, const void *s, SizeT sz)
{ return memmove(d, s, sz); }
Int VG_(memcmp)(const void* s1, const void* s2, SizeT n)
{ return memcmp(s1, s2, n); }
UInt VG_(printf)(const HChar *format, ...)
{ UInt ret; va_list vargs; va_start(vargs, format); ret = vprintf(format, vargs); va_end(vargs); return ret; }
UInt VG_(message)(VgMsgKind kind, const HChar* format, ...)
{ UInt ret; va_list vargs; va_start(vargs, format); ret = vprintf(format, vargs); va_end(vargs); printf("\n"); return ret; }
Bool DRD_(is_suppressed)(const Addr a1, const Addr a2)
{ assert(0); }
void VG_(vcbprintf)(void(*char_sink)(HChar, void* opaque),
void* opaque,
const HChar* format, va_list vargs)
{ assert(0); }
void VG_(ssort)( void* base, SizeT nmemb, SizeT size,
Int (*compar)(const void*, const void*) )
{ assert(0); }
/* Actual unit test */
static int s_verbose = 1;
static
struct { Addr address; SizeT size; BmAccessTypeT access_type; }
s_test1_args[] = {
{ 0, 0, eLoad },
{ 0, 1, eLoad },
{ 666, 4, eLoad },
{ 667, 2, eStore },
{ 1024, 1, eStore },
{ 0xffffULL, 1, eStore },
{ 0x0001ffffULL, 1, eLoad },
{ 0x00ffffffULL, 1, eLoad },
{ 0xffffffffULL - (((1 << ADDR_LSB_BITS) + 1) << ADDR_IGNORED_BITS),
1, eStore },
#if defined(VGP_amd64_linux) || defined(VGP_ppc64be_linux) \
|| defined(VGP_ppc64le_linux)
{ 0xffffffffULL - (1 << ADDR_LSB_BITS << ADDR_IGNORED_BITS),
1, eStore },
{ 0xffffffffULL, 1, eStore },
{ 0x100000000ULL, 1, eStore },
{ -2ULL - (1 << ADDR_LSB_BITS << ADDR_IGNORED_BITS),
1, eStore },
#endif
};
/**
* Compare two bitmaps and if different, print the differences.
*/
int bm_equal_print_diffs(struct bitmap* bm1, struct bitmap* bm2)
{
int equal;
equal = DRD_(bm_equal)(bm1, bm2);
if (s_verbose && ! equal)
{
unsigned i;
VG_(printf)("Bitmaps are different.\n");
for (i = 0; i < 0x10000; i++)
{
if (DRD_(bm_has_1)(bm1, i, eLoad) != DRD_(bm_has_1)(bm2, i, eLoad)
|| DRD_(bm_has_1)(bm1, i, eStore) != DRD_(bm_has_1)(bm2, i, eStore))
{
printf("0x%x %c %c %c %c\n",
i,
DRD_(bm_has_1)(bm1, i, eLoad) ? 'R' : ' ',
DRD_(bm_has_1)(bm1, i, eStore) ? 'W' : ' ',
DRD_(bm_has_1)(bm2, i, eLoad) ? 'R' : ' ',
DRD_(bm_has_1)(bm2, i, eStore) ? 'W' : ' '
);
}
}
fflush(stdout);
}
return equal;
}
void bm_test1(void)
{
struct bitmap* bm;
struct bitmap* bm2;
unsigned i, j;
bm = DRD_(bm_new)();
for (i = 0; i < sizeof(s_test1_args)/sizeof(s_test1_args[0]); i++)
{
DRD_(bm_access_range)(bm,
s_test1_args[i].address,
s_test1_args[i].address + s_test1_args[i].size,
s_test1_args[i].access_type);
}
for (i = 0; i < sizeof(s_test1_args)/sizeof(s_test1_args[0]); i++)
{
for (j = 0;
first_address_with_higher_lsb(j) <= s_test1_args[i].size;
j = first_address_with_higher_lsb(j))
{
tl_assert(DRD_(bm_has_1)(bm,
s_test1_args[i].address + j,
s_test1_args[i].access_type));
}
}
bm2 = DRD_(bm_new)();
DRD_(bm_merge2)(bm2, bm);
DRD_(bm_merge2)(bm2, bm);
assert(bm_equal_print_diffs(bm2, bm));
if (s_verbose)
VG_(printf)("Deleting bitmap bm\n");
DRD_(bm_delete)(bm);
if (s_verbose)
VG_(printf)("Deleting bitmap bm2\n");
DRD_(bm_delete)(bm2);
}
/** Test whether bm_equal() works correctly. */
void bm_test2()
{
struct bitmap* bm1;
struct bitmap* bm2;
bm1 = DRD_(bm_new)();
bm2 = DRD_(bm_new)();
DRD_(bm_access_load_1)(bm1, 7);
DRD_(bm_access_load_1)(bm2, make_address(1, 0) + 7);
assert(! DRD_(bm_equal)(bm1, bm2));
assert(! DRD_(bm_equal)(bm2, bm1));
DRD_(bm_access_load_1)(bm2, 7);
assert(! DRD_(bm_equal)(bm1, bm2));
assert(! DRD_(bm_equal)(bm2, bm1));
DRD_(bm_access_store_1)(bm1, make_address(1, 0) + 7);
assert(! DRD_(bm_equal)(bm1, bm2));
assert(! DRD_(bm_equal)(bm2, bm1));
DRD_(bm_delete)(bm2);
DRD_(bm_delete)(bm1);
}
/** Torture test of the functions that set or clear a range of bits. */
void bm_test3(const int outer_loop_step, const int inner_loop_step)
{
unsigned i, j;
struct bitmap* bm1;
struct bitmap* bm2;
const Addr lb = make_address(2, 0) - 2 * BITS_PER_UWORD;
const Addr ub = make_address(2, 0) + 2 * BITS_PER_UWORD;
assert(outer_loop_step >= 1);
assert((outer_loop_step % ADDR_GRANULARITY) == 0);
assert(inner_loop_step >= 1);
assert((inner_loop_step % ADDR_GRANULARITY) == 0);
bm1 = DRD_(bm_new)();
bm2 = DRD_(bm_new)();
for (i = lb; i < ub; i += outer_loop_step)
{
for (j = i + ADDR_GRANULARITY; j < ub; j += inner_loop_step)
{
DRD_(bm_access_range_load)(bm1, i, j);
DRD_(bm_clear_load)(bm1, i, j);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_1)(bm1, i);
DRD_(bm_clear_load)(bm1, i, i + MAX(1, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_2)(bm1, i);
DRD_(bm_clear_load)(bm1, i, i + MAX(2, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_4)(bm1, i);
DRD_(bm_clear_load)(bm1, i, i + MAX(4, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_8)(bm1, i);
DRD_(bm_clear_load)(bm1, i, i + MAX(8, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_range_store)(bm1, i, j);
DRD_(bm_clear_store)(bm1, i, j);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_store_1)(bm1, i);
DRD_(bm_clear_store)(bm1, i, i + MAX(1, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_store_2)(bm1, i);
DRD_(bm_clear_store)(bm1, i, i + MAX(2, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_store_4)(bm1, i);
DRD_(bm_clear_store)(bm1, i, i + MAX(4, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_store_8)(bm1, i);
DRD_(bm_clear_store)(bm1, i, i + MAX(8, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_range_load)(bm1, i, j);
DRD_(bm_access_range_store)(bm1, i, j);
DRD_(bm_clear)(bm1, i, j);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_1)(bm1, i);
DRD_(bm_access_store_1)(bm1, i);
DRD_(bm_clear)(bm1, i, i + MAX(1, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_2)(bm1, i);
DRD_(bm_access_store_2)(bm1, i);
DRD_(bm_clear)(bm1, i, i + MAX(2, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_4)(bm1, i);
DRD_(bm_access_store_4)(bm1, i);
DRD_(bm_clear)(bm1, i, i + MAX(4, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_8)(bm1, i);
DRD_(bm_access_store_8)(bm1, i);
DRD_(bm_clear)(bm1, i, i + MAX(8, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
}
}
DRD_(bm_access_range_load)(bm1, 0, make_address(2, 0) + 2 * BITS_PER_UWORD);
DRD_(bm_access_range_store)(bm1, 0, make_address(2, 0) + 2 * BITS_PER_UWORD);
DRD_(bm_access_range_load)(bm2, 0, make_address(2, 0) + 2 * BITS_PER_UWORD);
DRD_(bm_access_range_store)(bm2, 0, make_address(2, 0) + 2 * BITS_PER_UWORD);
for (i = make_address(1, 0) - 2 * BITS_PER_UWORD;
i < make_address(1, 0) + 2 * BITS_PER_UWORD;
i += outer_loop_step)
{
for (j = i + 1; j < ub; j += inner_loop_step)
{
DRD_(bm_clear_load)(bm1, i, j);
DRD_(bm_access_range_load)(bm1, i, j);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_load)(bm1, i, i+1);
DRD_(bm_access_load_1)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_load)(bm1, i, i+2);
DRD_(bm_access_load_2)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_load)(bm1, i, i+4);
DRD_(bm_access_load_4)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_load)(bm1, i, i+8);
DRD_(bm_access_load_8)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_store)(bm1, i, j);
DRD_(bm_access_range_store)(bm1, i, j);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_store)(bm1, i, i+1);
DRD_(bm_access_store_1)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_store)(bm1, i, i+2);
DRD_(bm_access_store_2)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_store)(bm1, i, i+4);
DRD_(bm_access_store_4)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_store)(bm1, i, i+8);
DRD_(bm_access_store_8)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear)(bm1, i, j);
DRD_(bm_access_range_load)(bm1, i, j);
DRD_(bm_access_range_store)(bm1, i, j);
assert(bm_equal_print_diffs(bm1, bm2));
}
}
DRD_(bm_delete)(bm2);
DRD_(bm_delete)(bm1);
}
int main(int argc, char** argv)
{
int outer_loop_step = ADDR_GRANULARITY;
int inner_loop_step = ADDR_GRANULARITY;
int optchar;
while ((optchar = getopt(argc, argv, "s:t:q")) != EOF)
{
switch (optchar)
{
case 's':
outer_loop_step = atoi(optarg);
break;
case 't':
inner_loop_step = atoi(optarg);
break;
case 'q':
s_verbose = 0;
break;
default:
fprintf(stderr,
"Usage: %s [-s<outer_loop_step>] [-t<inner_loop_step>] [-q].\n",
argv[0]);
break;
}
}
fprintf(stderr, "Start of DRD BM unit test.\n");
DRD_(bm_module_init)();
bm_test1();
bm_test2();
bm_test3(outer_loop_step, inner_loop_step);
DRD_(bm_module_cleanup)();
fprintf(stderr, "End of DRD BM unit test.\n");
return 0;
}