// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
#define V8_X64_MACRO_ASSEMBLER_X64_H_
#include "src/assembler.h"
#include "src/bailout-reason.h"
#include "src/base/flags.h"
#include "src/frames.h"
#include "src/globals.h"
#include "src/x64/frames-x64.h"
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
const Register kReturnRegister0 = {Register::kCode_rax};
const Register kReturnRegister1 = {Register::kCode_rdx};
const Register kReturnRegister2 = {Register::kCode_r8};
const Register kJSFunctionRegister = {Register::kCode_rdi};
const Register kContextRegister = {Register::kCode_rsi};
const Register kAllocateSizeRegister = {Register::kCode_rdx};
const Register kInterpreterAccumulatorRegister = {Register::kCode_rax};
const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r12};
const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r14};
const Register kInterpreterDispatchTableRegister = {Register::kCode_r15};
const Register kJavaScriptCallArgCountRegister = {Register::kCode_rax};
const Register kJavaScriptCallNewTargetRegister = {Register::kCode_rdx};
const Register kRuntimeCallFunctionRegister = {Register::kCode_rbx};
const Register kRuntimeCallArgCountRegister = {Register::kCode_rax};
// Default scratch register used by MacroAssembler (and other code that needs
// a spare register). The register isn't callee save, and not used by the
// function calling convention.
const Register kScratchRegister = {10}; // r10.
const XMMRegister kScratchDoubleReg = {15}; // xmm15.
const Register kRootRegister = {13}; // r13 (callee save).
// Actual value of root register is offset from the root array's start
// to take advantage of negitive 8-bit displacement values.
const int kRootRegisterBias = 128;
// Convenience for platform-independent signatures.
typedef Operand MemOperand;
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum PointersToHereCheck {
kPointersToHereMaybeInteresting,
kPointersToHereAreAlwaysInteresting
};
enum class SmiOperationConstraint {
kPreserveSourceRegister = 1 << 0,
kBailoutOnNoOverflow = 1 << 1,
kBailoutOnOverflow = 1 << 2
};
enum class ReturnAddressState { kOnStack, kNotOnStack };
typedef base::Flags<SmiOperationConstraint> SmiOperationConstraints;
DEFINE_OPERATORS_FOR_FLAGS(SmiOperationConstraints)
#ifdef DEBUG
bool AreAliased(Register reg1,
Register reg2,
Register reg3 = no_reg,
Register reg4 = no_reg,
Register reg5 = no_reg,
Register reg6 = no_reg,
Register reg7 = no_reg,
Register reg8 = no_reg);
#endif
// Forward declaration.
class JumpTarget;
struct SmiIndex {
SmiIndex(Register index_register, ScaleFactor scale)
: reg(index_register),
scale(scale) {}
Register reg;
ScaleFactor scale;
};
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
public:
MacroAssembler(Isolate* isolate, void* buffer, int size,
CodeObjectRequired create_code_object);
// Prevent the use of the RootArray during the lifetime of this
// scope object.
class NoRootArrayScope BASE_EMBEDDED {
public:
explicit NoRootArrayScope(MacroAssembler* assembler)
: variable_(&assembler->root_array_available_),
old_value_(assembler->root_array_available_) {
assembler->root_array_available_ = false;
}
~NoRootArrayScope() {
*variable_ = old_value_;
}
private:
bool* variable_;
bool old_value_;
};
// Operand pointing to an external reference.
// May emit code to set up the scratch register. The operand is
// only guaranteed to be correct as long as the scratch register
// isn't changed.
// If the operand is used more than once, use a scratch register
// that is guaranteed not to be clobbered.
Operand ExternalOperand(ExternalReference reference,
Register scratch = kScratchRegister);
// Loads and stores the value of an external reference.
// Special case code for load and store to take advantage of
// load_rax/store_rax if possible/necessary.
// For other operations, just use:
// Operand operand = ExternalOperand(extref);
// operation(operand, ..);
void Load(Register destination, ExternalReference source);
void Store(ExternalReference destination, Register source);
// Loads the address of the external reference into the destination
// register.
void LoadAddress(Register destination, ExternalReference source);
// Returns the size of the code generated by LoadAddress.
// Used by CallSize(ExternalReference) to find the size of a call.
int LoadAddressSize(ExternalReference source);
// Pushes the address of the external reference onto the stack.
void PushAddress(ExternalReference source);
// Operations on roots in the root-array.
void LoadRoot(Register destination, Heap::RootListIndex index);
void LoadRoot(const Operand& destination, Heap::RootListIndex index) {
LoadRoot(kScratchRegister, index);
movp(destination, kScratchRegister);
}
void StoreRoot(Register source, Heap::RootListIndex index);
// Load a root value where the index (or part of it) is variable.
// The variable_offset register is added to the fixed_offset value
// to get the index into the root-array.
void LoadRootIndexed(Register destination,
Register variable_offset,
int fixed_offset);
void CompareRoot(Register with, Heap::RootListIndex index);
void CompareRoot(const Operand& with, Heap::RootListIndex index);
void PushRoot(Heap::RootListIndex index);
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
Label::Distance if_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(equal, if_equal, if_equal_distance);
}
void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
Label* if_equal,
Label::Distance if_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(equal, if_equal, if_equal_distance);
}
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(Register with, Heap::RootListIndex index,
Label* if_not_equal,
Label::Distance if_not_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(not_equal, if_not_equal, if_not_equal_distance);
}
void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
Label* if_not_equal,
Label::Distance if_not_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(not_equal, if_not_equal, if_not_equal_distance);
}
// These functions do not arrange the registers in any particular order so
// they are not useful for calls that can cause a GC. The caller can
// exclude up to 3 registers that do not need to be saved and restored.
void PushCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
void PopCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// ---------------------------------------------------------------------------
// GC Support
enum RememberedSetFinalAction {
kReturnAtEnd,
kFallThroughAtEnd
};
// Record in the remembered set the fact that we have a pointer to new space
// at the address pointed to by the addr register. Only works if addr is not
// in new space.
void RememberedSetHelper(Register object, // Used for debug code.
Register addr,
Register scratch,
SaveFPRegsMode save_fp,
RememberedSetFinalAction and_then);
void CheckPageFlag(Register object,
Register scratch,
int mask,
Condition cc,
Label* condition_met,
Label::Distance condition_met_distance = Label::kFar);
// Check if object is in new space. Jumps if the object is not in new space.
// The register scratch can be object itself, but scratch will be clobbered.
void JumpIfNotInNewSpace(Register object,
Register scratch,
Label* branch,
Label::Distance distance = Label::kFar) {
InNewSpace(object, scratch, zero, branch, distance);
}
// Check if object is in new space. Jumps if the object is in new space.
// The register scratch can be object itself, but it will be clobbered.
void JumpIfInNewSpace(Register object,
Register scratch,
Label* branch,
Label::Distance distance = Label::kFar) {
InNewSpace(object, scratch, not_zero, branch, distance);
}
// Check if an object has the black incremental marking color. Also uses rcx!
void JumpIfBlack(Register object, Register bitmap_scratch,
Register mask_scratch, Label* on_black,
Label::Distance on_black_distance);
// Checks the color of an object. If the object is white we jump to the
// incremental marker.
void JumpIfWhite(Register value, Register scratch1, Register scratch2,
Label* value_is_white, Label::Distance distance);
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
void RecordWriteField(
Register object,
int offset,
Register value,
Register scratch,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// As above, but the offset has the tag presubtracted. For use with
// Operand(reg, off).
void RecordWriteContextSlot(
Register context,
int offset,
Register value,
Register scratch,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting) {
RecordWriteField(context,
offset + kHeapObjectTag,
value,
scratch,
save_fp,
remembered_set_action,
smi_check,
pointers_to_here_check_for_value);
}
// Notify the garbage collector that we wrote a pointer into a fixed array.
// |array| is the array being stored into, |value| is the
// object being stored. |index| is the array index represented as a non-smi.
// All registers are clobbered by the operation RecordWriteArray
// filters out smis so it does not update the write barrier if the
// value is a smi.
void RecordWriteArray(
Register array,
Register value,
Register index,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// Notify the garbage collector that we wrote a code entry into a
// JSFunction. Only scratch is clobbered by the operation.
void RecordWriteCodeEntryField(Register js_function, Register code_entry,
Register scratch);
void RecordWriteForMap(
Register object,
Register map,
Register dst,
SaveFPRegsMode save_fp);
// For page containing |object| mark region covering |address|
// dirty. |object| is the object being stored into, |value| is the
// object being stored. The address and value registers are clobbered by the
// operation. RecordWrite filters out smis so it does not update
// the write barrier if the value is a smi.
void RecordWrite(
Register object,
Register address,
Register value,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// ---------------------------------------------------------------------------
// Debugger Support
void DebugBreak();
// Generates function and stub prologue code.
void StubPrologue(StackFrame::Type type);
void Prologue(bool code_pre_aging);
// Enter specific kind of exit frame; either in normal or
// debug mode. Expects the number of arguments in register rax and
// sets up the number of arguments in register rdi and the pointer
// to the first argument in register rsi.
//
// Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
// accessible via StackSpaceOperand.
void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false,
StackFrame::Type frame_type = StackFrame::EXIT);
// Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
// memory (not GCed) on the stack accessible via StackSpaceOperand.
void EnterApiExitFrame(int arg_stack_space);
// Leave the current exit frame. Expects/provides the return value in
// register rax:rdx (untouched) and the pointer to the first
// argument in register rsi (if pop_arguments == true).
void LeaveExitFrame(bool save_doubles = false, bool pop_arguments = true);
// Leave the current exit frame. Expects/provides the return value in
// register rax (untouched).
void LeaveApiExitFrame(bool restore_context);
// Push and pop the registers that can hold pointers.
void PushSafepointRegisters() { Pushad(); }
void PopSafepointRegisters() { Popad(); }
// Store the value in register src in the safepoint register stack
// slot for register dst.
void StoreToSafepointRegisterSlot(Register dst, const Immediate& imm);
void StoreToSafepointRegisterSlot(Register dst, Register src);
void LoadFromSafepointRegisterSlot(Register dst, Register src);
void InitializeRootRegister() {
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
Move(kRootRegister, roots_array_start);
addp(kRootRegister, Immediate(kRootRegisterBias));
}
// ---------------------------------------------------------------------------
// JavaScript invokes
// Removes current frame and its arguments from the stack preserving
// the arguments and a return address pushed to the stack for the next call.
// |ra_state| defines whether return address is already pushed to stack or
// not. Both |callee_args_count| and |caller_args_count_reg| do not include
// receiver. |callee_args_count| is not modified, |caller_args_count_reg|
// is trashed.
void PrepareForTailCall(const ParameterCount& callee_args_count,
Register caller_args_count_reg, Register scratch0,
Register scratch1, ReturnAddressState ra_state);
// Invoke the JavaScript function code by either calling or jumping.
void InvokeFunctionCode(Register function, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag,
const CallWrapper& call_wrapper);
void FloodFunctionIfStepping(Register fun, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function,
Register new_target,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
void InvokeFunction(Register function,
Register new_target,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
void InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
// ---------------------------------------------------------------------------
// Smi tagging, untagging and operations on tagged smis.
// Support for constant splitting.
bool IsUnsafeInt(const int32_t x);
void SafeMove(Register dst, Smi* src);
void SafePush(Smi* src);
// Conversions between tagged smi values and non-tagged integer values.
// Tag an integer value. The result must be known to be a valid smi value.
// Only uses the low 32 bits of the src register. Sets the N and Z flags
// based on the value of the resulting smi.
void Integer32ToSmi(Register dst, Register src);
// Stores an integer32 value into a memory field that already holds a smi.
void Integer32ToSmiField(const Operand& dst, Register src);
// Adds constant to src and tags the result as a smi.
// Result must be a valid smi.
void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
// Convert smi to 32-bit integer. I.e., not sign extended into
// high 32 bits of destination.
void SmiToInteger32(Register dst, Register src);
void SmiToInteger32(Register dst, const Operand& src);
// Convert smi to 64-bit integer (sign extended if necessary).
void SmiToInteger64(Register dst, Register src);
void SmiToInteger64(Register dst, const Operand& src);
// Convert smi to double.
void SmiToDouble(XMMRegister dst, Register src) {
SmiToInteger32(kScratchRegister, src);
Cvtlsi2sd(dst, kScratchRegister);
}
// Multiply a positive smi's integer value by a power of two.
// Provides result as 64-bit integer value.
void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
Register src,
int power);
// Divide a positive smi's integer value by a power of two.
// Provides result as 32-bit integer value.
void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
Register src,
int power);
// Perform the logical or of two smi values and return a smi value.
// If either argument is not a smi, jump to on_not_smis and retain
// the original values of source registers. The destination register
// may be changed if it's not one of the source registers.
void SmiOrIfSmis(Register dst,
Register src1,
Register src2,
Label* on_not_smis,
Label::Distance near_jump = Label::kFar);
// Simple comparison of smis. Both sides must be known smis to use these,
// otherwise use Cmp.
void SmiCompare(Register smi1, Register smi2);
void SmiCompare(Register dst, Smi* src);
void SmiCompare(Register dst, const Operand& src);
void SmiCompare(const Operand& dst, Register src);
void SmiCompare(const Operand& dst, Smi* src);
// Compare the int32 in src register to the value of the smi stored at dst.
void SmiCompareInteger32(const Operand& dst, Register src);
// Sets sign and zero flags depending on value of smi in register.
void SmiTest(Register src);
// Functions performing a check on a known or potential smi. Returns
// a condition that is satisfied if the check is successful.
// Is the value a tagged smi.
Condition CheckSmi(Register src);
Condition CheckSmi(const Operand& src);
// Is the value a non-negative tagged smi.
Condition CheckNonNegativeSmi(Register src);
// Are both values tagged smis.
Condition CheckBothSmi(Register first, Register second);
// Are both values non-negative tagged smis.
Condition CheckBothNonNegativeSmi(Register first, Register second);
// Are either value a tagged smi.
Condition CheckEitherSmi(Register first,
Register second,
Register scratch = kScratchRegister);
// Checks whether an 32-bit integer value is a valid for conversion
// to a smi.
Condition CheckInteger32ValidSmiValue(Register src);
// Checks whether an 32-bit unsigned integer value is a valid for
// conversion to a smi.
Condition CheckUInteger32ValidSmiValue(Register src);
// Check whether src is a Smi, and set dst to zero if it is a smi,
// and to one if it isn't.
void CheckSmiToIndicator(Register dst, Register src);
void CheckSmiToIndicator(Register dst, const Operand& src);
// Test-and-jump functions. Typically combines a check function
// above with a conditional jump.
// Jump if the value can be represented by a smi.
void JumpIfValidSmiValue(Register src, Label* on_valid,
Label::Distance near_jump = Label::kFar);
// Jump if the value cannot be represented by a smi.
void JumpIfNotValidSmiValue(Register src, Label* on_invalid,
Label::Distance near_jump = Label::kFar);
// Jump if the unsigned integer value can be represented by a smi.
void JumpIfUIntValidSmiValue(Register src, Label* on_valid,
Label::Distance near_jump = Label::kFar);
// Jump if the unsigned integer value cannot be represented by a smi.
void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid,
Label::Distance near_jump = Label::kFar);
// Jump to label if the value is a tagged smi.
void JumpIfSmi(Register src,
Label* on_smi,
Label::Distance near_jump = Label::kFar);
// Jump to label if the value is not a tagged smi.
void JumpIfNotSmi(Register src,
Label* on_not_smi,
Label::Distance near_jump = Label::kFar);
// Jump to label if the value is not a non-negative tagged smi.
void JumpUnlessNonNegativeSmi(Register src,
Label* on_not_smi,
Label::Distance near_jump = Label::kFar);
// Jump to label if the value, which must be a tagged smi, has value equal
// to the constant.
void JumpIfSmiEqualsConstant(Register src,
Smi* constant,
Label* on_equals,
Label::Distance near_jump = Label::kFar);
// Jump if either or both register are not smi values.
void JumpIfNotBothSmi(Register src1,
Register src2,
Label* on_not_both_smi,
Label::Distance near_jump = Label::kFar);
// Jump if either or both register are not non-negative smi values.
void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
Label* on_not_both_smi,
Label::Distance near_jump = Label::kFar);
// Operations on tagged smi values.
// Smis represent a subset of integers. The subset is always equivalent to
// a two's complement interpretation of a fixed number of bits.
// Add an integer constant to a tagged smi, giving a tagged smi as result.
// No overflow testing on the result is done.
void SmiAddConstant(Register dst, Register src, Smi* constant);
// Add an integer constant to a tagged smi, giving a tagged smi as result.
// No overflow testing on the result is done.
void SmiAddConstant(const Operand& dst, Smi* constant);
// Add an integer constant to a tagged smi, giving a tagged smi as result,
// or jumping to a label if the result cannot be represented by a smi.
void SmiAddConstant(Register dst, Register src, Smi* constant,
SmiOperationConstraints constraints, Label* bailout_label,
Label::Distance near_jump = Label::kFar);
// Subtract an integer constant from a tagged smi, giving a tagged smi as
// result. No testing on the result is done. Sets the N and Z flags
// based on the value of the resulting integer.
void SmiSubConstant(Register dst, Register src, Smi* constant);
// Subtract an integer constant from a tagged smi, giving a tagged smi as
// result, or jumping to a label if the result cannot be represented by a smi.
void SmiSubConstant(Register dst, Register src, Smi* constant,
SmiOperationConstraints constraints, Label* bailout_label,
Label::Distance near_jump = Label::kFar);
// Negating a smi can give a negative zero or too large positive value.
// NOTICE: This operation jumps on success, not failure!
void SmiNeg(Register dst,
Register src,
Label* on_smi_result,
Label::Distance near_jump = Label::kFar);
// Adds smi values and return the result as a smi.
// If dst is src1, then src1 will be destroyed if the operation is
// successful, otherwise kept intact.
void SmiAdd(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump = Label::kFar);
void SmiAdd(Register dst,
Register src1,
const Operand& src2,
Label* on_not_smi_result,
Label::Distance near_jump = Label::kFar);
void SmiAdd(Register dst,
Register src1,
Register src2);
// Subtracts smi values and return the result as a smi.
// If dst is src1, then src1 will be destroyed if the operation is
// successful, otherwise kept intact.
void SmiSub(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump = Label::kFar);
void SmiSub(Register dst,
Register src1,
const Operand& src2,
Label* on_not_smi_result,
Label::Distance near_jump = Label::kFar);
void SmiSub(Register dst,
Register src1,
Register src2);
void SmiSub(Register dst,
Register src1,
const Operand& src2);
// Multiplies smi values and return the result as a smi,
// if possible.
// If dst is src1, then src1 will be destroyed, even if
// the operation is unsuccessful.
void SmiMul(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump = Label::kFar);
// Divides one smi by another and returns the quotient.
// Clobbers rax and rdx registers.
void SmiDiv(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump = Label::kFar);
// Divides one smi by another and returns the remainder.
// Clobbers rax and rdx registers.
void SmiMod(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump = Label::kFar);
// Bitwise operations.
void SmiNot(Register dst, Register src);
void SmiAnd(Register dst, Register src1, Register src2);
void SmiOr(Register dst, Register src1, Register src2);
void SmiXor(Register dst, Register src1, Register src2);
void SmiAndConstant(Register dst, Register src1, Smi* constant);
void SmiOrConstant(Register dst, Register src1, Smi* constant);
void SmiXorConstant(Register dst, Register src1, Smi* constant);
void SmiShiftLeftConstant(Register dst,
Register src,
int shift_value,
Label* on_not_smi_result = NULL,
Label::Distance near_jump = Label::kFar);
void SmiShiftLogicalRightConstant(Register dst,
Register src,
int shift_value,
Label* on_not_smi_result,
Label::Distance near_jump = Label::kFar);
void SmiShiftArithmeticRightConstant(Register dst,
Register src,
int shift_value);
// Shifts a smi value to the left, and returns the result if that is a smi.
// Uses and clobbers rcx, so dst may not be rcx.
void SmiShiftLeft(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result = NULL,
Label::Distance near_jump = Label::kFar);
// Shifts a smi value to the right, shifting in zero bits at the top, and
// returns the unsigned intepretation of the result if that is a smi.
// Uses and clobbers rcx, so dst may not be rcx.
void SmiShiftLogicalRight(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump = Label::kFar);
// Shifts a smi value to the right, sign extending the top, and
// returns the signed intepretation of the result. That will always
// be a valid smi value, since it's numerically smaller than the
// original.
// Uses and clobbers rcx, so dst may not be rcx.
void SmiShiftArithmeticRight(Register dst,
Register src1,
Register src2);
// Specialized operations
// Select the non-smi register of two registers where exactly one is a
// smi. If neither are smis, jump to the failure label.
void SelectNonSmi(Register dst,
Register src1,
Register src2,
Label* on_not_smis,
Label::Distance near_jump = Label::kFar);
// Converts, if necessary, a smi to a combination of number and
// multiplier to be used as a scaled index.
// The src register contains a *positive* smi value. The shift is the
// power of two to multiply the index value by (e.g.
// to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
// The returned index register may be either src or dst, depending
// on what is most efficient. If src and dst are different registers,
// src is always unchanged.
SmiIndex SmiToIndex(Register dst, Register src, int shift);
// Converts a positive smi to a negative index.
SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
// Add the value of a smi in memory to an int32 register.
// Sets flags as a normal add.
void AddSmiField(Register dst, const Operand& src);
// Basic Smi operations.
void Move(Register dst, Smi* source) {
LoadSmiConstant(dst, source);
}
void Move(const Operand& dst, Smi* source) {
Register constant = GetSmiConstant(source);
movp(dst, constant);
}
void Push(Smi* smi);
// Save away a raw integer with pointer size on the stack as two integers
// masquerading as smis so that the garbage collector skips visiting them.
void PushRegisterAsTwoSmis(Register src, Register scratch = kScratchRegister);
// Reconstruct a raw integer with pointer size from two integers masquerading
// as smis on the top of stack.
void PopRegisterAsTwoSmis(Register dst, Register scratch = kScratchRegister);
void Test(const Operand& dst, Smi* source);
// ---------------------------------------------------------------------------
// String macros.
// If object is a string, its map is loaded into object_map.
void JumpIfNotString(Register object,
Register object_map,
Label* not_string,
Label::Distance near_jump = Label::kFar);
void JumpIfNotBothSequentialOneByteStrings(
Register first_object, Register second_object, Register scratch1,
Register scratch2, Label* on_not_both_flat_one_byte,
Label::Distance near_jump = Label::kFar);
// Check whether the instance type represents a flat one-byte string. Jump
// to the label if not. If the instance type can be scratched specify same
// register for both instance type and scratch.
void JumpIfInstanceTypeIsNotSequentialOneByte(
Register instance_type, Register scratch,
Label* on_not_flat_one_byte_string,
Label::Distance near_jump = Label::kFar);
void JumpIfBothInstanceTypesAreNotSequentialOneByte(
Register first_object_instance_type, Register second_object_instance_type,
Register scratch1, Register scratch2, Label* on_fail,
Label::Distance near_jump = Label::kFar);
void EmitSeqStringSetCharCheck(Register string,
Register index,
Register value,
uint32_t encoding_mask);
// Checks if the given register or operand is a unique name
void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
Label::Distance distance = Label::kFar);
void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
Label::Distance distance = Label::kFar);
// ---------------------------------------------------------------------------
// Macro instructions.
// Load/store with specific representation.
void Load(Register dst, const Operand& src, Representation r);
void Store(const Operand& dst, Register src, Representation r);
// Load a register with a long value as efficiently as possible.
void Set(Register dst, int64_t x);
void Set(const Operand& dst, intptr_t x);
void Cvtss2sd(XMMRegister dst, XMMRegister src);
void Cvtss2sd(XMMRegister dst, const Operand& src);
void Cvtsd2ss(XMMRegister dst, XMMRegister src);
void Cvtsd2ss(XMMRegister dst, const Operand& src);
// cvtsi2sd instruction only writes to the low 64-bit of dst register, which
// hinders register renaming and makes dependence chains longer. So we use
// xorpd to clear the dst register before cvtsi2sd to solve this issue.
void Cvtlsi2sd(XMMRegister dst, Register src);
void Cvtlsi2sd(XMMRegister dst, const Operand& src);
void Cvtlsi2ss(XMMRegister dst, Register src);
void Cvtlsi2ss(XMMRegister dst, const Operand& src);
void Cvtqsi2ss(XMMRegister dst, Register src);
void Cvtqsi2ss(XMMRegister dst, const Operand& src);
void Cvtqsi2sd(XMMRegister dst, Register src);
void Cvtqsi2sd(XMMRegister dst, const Operand& src);
void Cvtqui2ss(XMMRegister dst, Register src, Register tmp);
void Cvtqui2sd(XMMRegister dst, Register src, Register tmp);
void Cvtsd2si(Register dst, XMMRegister src);
void Cvttss2si(Register dst, XMMRegister src);
void Cvttss2si(Register dst, const Operand& src);
void Cvttsd2si(Register dst, XMMRegister src);
void Cvttsd2si(Register dst, const Operand& src);
void Cvttss2siq(Register dst, XMMRegister src);
void Cvttss2siq(Register dst, const Operand& src);
void Cvttsd2siq(Register dst, XMMRegister src);
void Cvttsd2siq(Register dst, const Operand& src);
// Move if the registers are not identical.
void Move(Register target, Register source);
// TestBit and Load SharedFunctionInfo special field.
void TestBitSharedFunctionInfoSpecialField(Register base,
int offset,
int bit_index);
void LoadSharedFunctionInfoSpecialField(Register dst,
Register base,
int offset);
// Handle support
void Move(Register dst, Handle<Object> source);
void Move(const Operand& dst, Handle<Object> source);
void Cmp(Register dst, Handle<Object> source);
void Cmp(const Operand& dst, Handle<Object> source);
void Cmp(Register dst, Smi* src);
void Cmp(const Operand& dst, Smi* src);
void Push(Handle<Object> source);
// Load a heap object and handle the case of new-space objects by
// indirecting via a global cell.
void MoveHeapObject(Register result, Handle<Object> object);
// Load a global cell into a register.
void LoadGlobalCell(Register dst, Handle<Cell> cell);
// Compare the given value and the value of weak cell.
void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
void GetWeakValue(Register value, Handle<WeakCell> cell);
// Load the value of the weak cell in the value register. Branch to the given
// miss label if the weak cell was cleared.
void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
// Emit code that loads |parameter_index|'th parameter from the stack to
// the register according to the CallInterfaceDescriptor definition.
// |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
// below the caller's sp (on x64 it's at least return address).
template <class Descriptor>
void LoadParameterFromStack(
Register reg, typename Descriptor::ParameterIndices parameter_index,
int sp_to_ra_offset_in_words = 1) {
DCHECK(Descriptor::kPassLastArgsOnStack);
UNIMPLEMENTED();
}
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the rsp register.
void Drop(int stack_elements);
// Emit code to discard a positive number of pointer-sized elements
// from the stack under the return address which remains on the top,
// clobbering the rsp register.
void DropUnderReturnAddress(int stack_elements,
Register scratch = kScratchRegister);
void Call(Label* target) { call(target); }
void Push(Register src);
void Push(const Operand& src);
void PushQuad(const Operand& src);
void Push(Immediate value);
void PushImm32(int32_t imm32);
void Pop(Register dst);
void Pop(const Operand& dst);
void PopQuad(const Operand& dst);
void PushReturnAddressFrom(Register src) { pushq(src); }
void PopReturnAddressTo(Register dst) { popq(dst); }
void Move(Register dst, ExternalReference ext) {
movp(dst, reinterpret_cast<void*>(ext.address()),
RelocInfo::EXTERNAL_REFERENCE);
}
// Loads a pointer into a register with a relocation mode.
void Move(Register dst, void* ptr, RelocInfo::Mode rmode) {
// This method must not be used with heap object references. The stored
// address is not GC safe. Use the handle version instead.
DCHECK(rmode > RelocInfo::LAST_GCED_ENUM);
movp(dst, ptr, rmode);
}
void Move(Register dst, Handle<Object> value, RelocInfo::Mode rmode) {
AllowDeferredHandleDereference using_raw_address;
DCHECK(!RelocInfo::IsNone(rmode));
DCHECK(value->IsHeapObject());
movp(dst, reinterpret_cast<void*>(value.location()), rmode);
}
void Move(XMMRegister dst, uint32_t src);
void Move(XMMRegister dst, uint64_t src);
void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
#define AVX_OP2_WITH_TYPE(macro_name, name, src_type) \
void macro_name(XMMRegister dst, src_type src) { \
if (CpuFeatures::IsSupported(AVX)) { \
CpuFeatureScope scope(this, AVX); \
v##name(dst, dst, src); \
} else { \
name(dst, src); \
} \
}
#define AVX_OP2_X(macro_name, name) \
AVX_OP2_WITH_TYPE(macro_name, name, XMMRegister)
#define AVX_OP2_O(macro_name, name) \
AVX_OP2_WITH_TYPE(macro_name, name, const Operand&)
#define AVX_OP2_XO(macro_name, name) \
AVX_OP2_X(macro_name, name) \
AVX_OP2_O(macro_name, name)
AVX_OP2_XO(Addsd, addsd)
AVX_OP2_XO(Subsd, subsd)
AVX_OP2_XO(Mulsd, mulsd)
AVX_OP2_XO(Divss, divss)
AVX_OP2_XO(Divsd, divsd)
AVX_OP2_XO(Andps, andps)
AVX_OP2_XO(Andpd, andpd)
AVX_OP2_XO(Orpd, orpd)
AVX_OP2_XO(Xorpd, xorpd)
AVX_OP2_XO(Cmpeqps, cmpeqps)
AVX_OP2_XO(Cmpltps, cmpltps)
AVX_OP2_XO(Cmpleps, cmpleps)
AVX_OP2_XO(Cmpneqps, cmpneqps)
AVX_OP2_XO(Cmpnltps, cmpnltps)
AVX_OP2_XO(Cmpnleps, cmpnleps)
AVX_OP2_XO(Cmpeqpd, cmpeqpd)
AVX_OP2_XO(Cmpltpd, cmpltpd)
AVX_OP2_XO(Cmplepd, cmplepd)
AVX_OP2_XO(Cmpneqpd, cmpneqpd)
AVX_OP2_XO(Cmpnltpd, cmpnltpd)
AVX_OP2_XO(Cmpnlepd, cmpnlepd)
AVX_OP2_X(Pcmpeqd, pcmpeqd)
AVX_OP2_WITH_TYPE(Psllq, psllq, byte)
AVX_OP2_WITH_TYPE(Psrlq, psrlq, byte)
#undef AVX_OP2_O
#undef AVX_OP2_X
#undef AVX_OP2_XO
#undef AVX_OP2_WITH_TYPE
void Movsd(XMMRegister dst, XMMRegister src);
void Movsd(XMMRegister dst, const Operand& src);
void Movsd(const Operand& dst, XMMRegister src);
void Movss(XMMRegister dst, XMMRegister src);
void Movss(XMMRegister dst, const Operand& src);
void Movss(const Operand& dst, XMMRegister src);
void Movd(XMMRegister dst, Register src);
void Movd(XMMRegister dst, const Operand& src);
void Movd(Register dst, XMMRegister src);
void Movq(XMMRegister dst, Register src);
void Movq(Register dst, XMMRegister src);
void Movaps(XMMRegister dst, XMMRegister src);
void Movups(XMMRegister dst, XMMRegister src);
void Movups(XMMRegister dst, const Operand& src);
void Movups(const Operand& dst, XMMRegister src);
void Movmskps(Register dst, XMMRegister src);
void Movapd(XMMRegister dst, XMMRegister src);
void Movupd(XMMRegister dst, const Operand& src);
void Movupd(const Operand& dst, XMMRegister src);
void Movmskpd(Register dst, XMMRegister src);
void Xorps(XMMRegister dst, XMMRegister src);
void Xorps(XMMRegister dst, const Operand& src);
void Roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
void Roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
void Sqrtsd(XMMRegister dst, XMMRegister src);
void Sqrtsd(XMMRegister dst, const Operand& src);
void Ucomiss(XMMRegister src1, XMMRegister src2);
void Ucomiss(XMMRegister src1, const Operand& src2);
void Ucomisd(XMMRegister src1, XMMRegister src2);
void Ucomisd(XMMRegister src1, const Operand& src2);
// ---------------------------------------------------------------------------
// SIMD macros.
void Absps(XMMRegister dst);
void Negps(XMMRegister dst);
void Abspd(XMMRegister dst);
void Negpd(XMMRegister dst);
// Control Flow
void Jump(Address destination, RelocInfo::Mode rmode);
void Jump(ExternalReference ext);
void Jump(const Operand& op);
void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
void Call(Address destination, RelocInfo::Mode rmode);
void Call(ExternalReference ext);
void Call(const Operand& op);
void Call(Handle<Code> code_object,
RelocInfo::Mode rmode,
TypeFeedbackId ast_id = TypeFeedbackId::None());
// The size of the code generated for different call instructions.
int CallSize(Address destination) {
return kCallSequenceLength;
}
int CallSize(ExternalReference ext);
int CallSize(Handle<Code> code_object) {
// Code calls use 32-bit relative addressing.
return kShortCallInstructionLength;
}
int CallSize(Register target) {
// Opcode: REX_opt FF /2 m64
return (target.high_bit() != 0) ? 3 : 2;
}
int CallSize(const Operand& target) {
// Opcode: REX_opt FF /2 m64
return (target.requires_rex() ? 2 : 1) + target.operand_size();
}
// Non-SSE2 instructions.
void Pextrd(Register dst, XMMRegister src, int8_t imm8);
void Pinsrd(XMMRegister dst, Register src, int8_t imm8);
void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
void Lzcntq(Register dst, Register src);
void Lzcntq(Register dst, const Operand& src);
void Lzcntl(Register dst, Register src);
void Lzcntl(Register dst, const Operand& src);
void Tzcntq(Register dst, Register src);
void Tzcntq(Register dst, const Operand& src);
void Tzcntl(Register dst, Register src);
void Tzcntl(Register dst, const Operand& src);
void Popcntl(Register dst, Register src);
void Popcntl(Register dst, const Operand& src);
void Popcntq(Register dst, Register src);
void Popcntq(Register dst, const Operand& src);
// Non-x64 instructions.
// Push/pop all general purpose registers.
// Does not push rsp/rbp nor any of the assembler's special purpose registers
// (kScratchRegister, kRootRegister).
void Pushad();
void Popad();
// Sets the stack as after performing Popad, without actually loading the
// registers.
void Dropad();
// Compare object type for heap object.
// Always use unsigned comparisons: above and below, not less and greater.
// Incoming register is heap_object and outgoing register is map.
// They may be the same register, and may be kScratchRegister.
void CmpObjectType(Register heap_object, InstanceType type, Register map);
// Compare instance type for map.
// Always use unsigned comparisons: above and below, not less and greater.
void CmpInstanceType(Register map, InstanceType type);
// Check if a map for a JSObject indicates that the object can have both smi
// and HeapObject elements. Jump to the specified label if it does not.
void CheckFastObjectElements(Register map,
Label* fail,
Label::Distance distance = Label::kFar);
// Check if a map for a JSObject indicates that the object has fast smi only
// elements. Jump to the specified label if it does not.
void CheckFastSmiElements(Register map,
Label* fail,
Label::Distance distance = Label::kFar);
// Check to see if maybe_number can be stored as a double in
// FastDoubleElements. If it can, store it at the index specified by index in
// the FastDoubleElements array elements, otherwise jump to fail. Note that
// index must not be smi-tagged.
void StoreNumberToDoubleElements(Register maybe_number,
Register elements,
Register index,
XMMRegister xmm_scratch,
Label* fail,
int elements_offset = 0);
// Compare an object's map with the specified map.
void CompareMap(Register obj, Handle<Map> map);
// Check if the map of an object is equal to a specified map and branch to
// label if not. Skip the smi check if not required (object is known to be a
// heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
// against maps that are ElementsKind transition maps of the specified map.
void CheckMap(Register obj,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type);
// Check if the map of an object is equal to a specified weak map and branch
// to a specified target if equal. Skip the smi check if not required
// (object is known to be a heap object)
void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
Handle<WeakCell> cell, Handle<Code> success,
SmiCheckType smi_check_type);
// Check if the object in register heap_object is a string. Afterwards the
// register map contains the object map and the register instance_type
// contains the instance_type. The registers map and instance_type can be the
// same in which case it contains the instance type afterwards. Either of the
// registers map and instance_type can be the same as heap_object.
Condition IsObjectStringType(Register heap_object,
Register map,
Register instance_type);
// Check if the object in register heap_object is a name. Afterwards the
// register map contains the object map and the register instance_type
// contains the instance_type. The registers map and instance_type can be the
// same in which case it contains the instance type afterwards. Either of the
// registers map and instance_type can be the same as heap_object.
Condition IsObjectNameType(Register heap_object,
Register map,
Register instance_type);
// FCmp compares and pops the two values on top of the FPU stack.
// The flag results are similar to integer cmp, but requires unsigned
// jcc instructions (je, ja, jae, jb, jbe, je, and jz).
void FCmp();
void ClampUint8(Register reg);
void ClampDoubleToUint8(XMMRegister input_reg,
XMMRegister temp_xmm_reg,
Register result_reg);
void SlowTruncateToI(Register result_reg, Register input_reg,
int offset = HeapNumber::kValueOffset - kHeapObjectTag);
void TruncateHeapNumberToI(Register result_reg, Register input_reg);
void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
void DoubleToI(Register result_reg, XMMRegister input_reg,
XMMRegister scratch, MinusZeroMode minus_zero_mode,
Label* lost_precision, Label* is_nan, Label* minus_zero,
Label::Distance dst = Label::kFar);
void LoadUint32(XMMRegister dst, Register src);
void LoadInstanceDescriptors(Register map, Register descriptors);
void EnumLength(Register dst, Register map);
void NumberOfOwnDescriptors(Register dst, Register map);
void LoadAccessor(Register dst, Register holder, int accessor_index,
AccessorComponent accessor);
template<typename Field>
void DecodeField(Register reg) {
static const int shift = Field::kShift;
static const int mask = Field::kMask >> Field::kShift;
if (shift != 0) {
shrp(reg, Immediate(shift));
}
andp(reg, Immediate(mask));
}
template<typename Field>
void DecodeFieldToSmi(Register reg) {
if (SmiValuesAre32Bits()) {
andp(reg, Immediate(Field::kMask));
shlp(reg, Immediate(kSmiShift - Field::kShift));
} else {
static const int shift = Field::kShift;
static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
DCHECK(SmiValuesAre31Bits());
DCHECK(kSmiShift == kSmiTagSize);
DCHECK((mask & 0x80000000u) == 0);
if (shift < kSmiShift) {
shlp(reg, Immediate(kSmiShift - shift));
} else if (shift > kSmiShift) {
sarp(reg, Immediate(shift - kSmiShift));
}
andp(reg, Immediate(mask));
}
}
// Abort execution if argument is not a number, enabled via --debug-code.
void AssertNumber(Register object);
void AssertNotNumber(Register object);
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object);
// Abort execution if argument is not a smi, enabled via --debug-code.
void AssertSmi(Register object);
void AssertSmi(const Operand& object);
// Abort execution if a 64 bit register containing a 32 bit payload does not
// have zeros in the top 32 bits, enabled via --debug-code.
void AssertZeroExtended(Register reg);
// Abort execution if argument is not a string, enabled via --debug-code.
void AssertString(Register object);
// Abort execution if argument is not a name, enabled via --debug-code.
void AssertName(Register object);
// Abort execution if argument is not a JSFunction, enabled via --debug-code.
void AssertFunction(Register object);
// Abort execution if argument is not a JSBoundFunction,
// enabled via --debug-code.
void AssertBoundFunction(Register object);
// Abort execution if argument is not a JSGeneratorObject,
// enabled via --debug-code.
void AssertGeneratorObject(Register object);
// Abort execution if argument is not a JSReceiver, enabled via --debug-code.
void AssertReceiver(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object);
// Abort execution if argument is not the root value with the given index,
// enabled via --debug-code.
void AssertRootValue(Register src,
Heap::RootListIndex root_value_index,
BailoutReason reason);
// ---------------------------------------------------------------------------
// Exception handling
// Push a new stack handler and link it into stack handler chain.
void PushStackHandler();
// Unlink the stack handler on top of the stack from the stack handler chain.
void PopStackHandler();
// ---------------------------------------------------------------------------
// Inline caching support
void GetNumberHash(Register r0, Register scratch);
// ---------------------------------------------------------------------------
// Allocation support
// Allocate an object in new space or old space. If the given space
// is exhausted control continues at the gc_required label. The allocated
// object is returned in result and end of the new object is returned in
// result_end. The register scratch can be passed as no_reg in which case
// an additional object reference will be added to the reloc info. The
// returned pointers in result and result_end have not yet been tagged as
// heap objects. If result_contains_top_on_entry is true the content of
// result is known to be the allocation top on entry (could be result_end
// from a previous call). If result_contains_top_on_entry is true scratch
// should be no_reg as it is never used.
void Allocate(int object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags);
void Allocate(int header_size,
ScaleFactor element_size,
Register element_count,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags);
void Allocate(Register object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags);
// FastAllocate is right now only used for folded allocations. It just
// increments the top pointer without checking against limit. This can only
// be done if it was proved earlier that the allocation will succeed.
void FastAllocate(int object_size, Register result, Register result_end,
AllocationFlags flags);
void FastAllocate(Register object_size, Register result, Register result_end,
AllocationFlags flags);
// Allocate a heap number in new space with undefined value. Returns
// tagged pointer in result register, or jumps to gc_required if new
// space is full.
void AllocateHeapNumber(Register result,
Register scratch,
Label* gc_required,
MutableMode mode = IMMUTABLE);
// Allocate a sequential string. All the header fields of the string object
// are initialized.
void AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateOneByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3, Label* gc_required);
// Allocate a raw cons string object. Only the map field of the result is
// initialized.
void AllocateTwoByteConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateOneByteConsString(Register result, Register scratch1,
Register scratch2, Label* gc_required);
// Allocate a raw sliced string object. Only the map field of the result is
// initialized.
void AllocateTwoByteSlicedString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateOneByteSlicedString(Register result, Register scratch1,
Register scratch2, Label* gc_required);
// Allocate and initialize a JSValue wrapper with the specified {constructor}
// and {value}.
void AllocateJSValue(Register result, Register constructor, Register value,
Register scratch, Label* gc_required);
// ---------------------------------------------------------------------------
// Support functions.
// Check if result is zero and op is negative.
void NegativeZeroTest(Register result, Register op, Label* then_label);
// Check if result is zero and op is negative in code using jump targets.
void NegativeZeroTest(CodeGenerator* cgen,
Register result,
Register op,
JumpTarget* then_target);
// Check if result is zero and any of op1 and op2 are negative.
// Register scratch is destroyed, and it must be different from op2.
void NegativeZeroTest(Register result, Register op1, Register op2,
Register scratch, Label* then_label);
// Machine code version of Map::GetConstructor().
// |temp| holds |result|'s map when done.
void GetMapConstructor(Register result, Register map, Register temp);
// Try to get function prototype of a function and puts the value in
// the result register. Checks that the function really is a
// function and jumps to the miss label if the fast checks fail. The
// function register will be untouched; the other register may be
// clobbered.
void TryGetFunctionPrototype(Register function, Register result, Label* miss);
// Find the function context up the context chain.
void LoadContext(Register dst, int context_chain_length);
// Load the global object from the current context.
void LoadGlobalObject(Register dst) {
LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
}
// Load the global proxy from the current context.
void LoadGlobalProxy(Register dst) {
LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
}
// Conditionally load the cached Array transitioned map of type
// transitioned_kind from the native context if the map in register
// map_in_out is the cached Array map in the native context of
// expected_kind.
void LoadTransitionedArrayMapConditional(
ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch,
Label* no_map_match);
// Load the native context slot with the current index.
void LoadNativeContextSlot(int index, Register dst);
// Load the initial map from the global function. The registers
// function and map can be the same.
void LoadGlobalFunctionInitialMap(Register function, Register map);
// ---------------------------------------------------------------------------
// Runtime calls
// Call a code stub.
void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
// Tail call a code stub (jump).
void TailCallStub(CodeStub* stub);
// Return from a code stub after popping its arguments.
void StubReturn(int argc);
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
// Call a runtime function and save the value of XMM registers.
void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, kSaveFPRegs);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, save_doubles);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
}
// Convenience function: call an external reference.
void CallExternalReference(const ExternalReference& ext,
int num_arguments);
// Convenience function: tail call a runtime routine (jump)
void TailCallRuntime(Runtime::FunctionId fid);
// Jump to a runtime routines
void JumpToExternalReference(const ExternalReference& ext,
bool builtin_exit_frame = false);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, arguments must be stored in rsp[0], rsp[8],
// etc., not pushed. The argument count assumes all arguments are word sized.
// The number of slots reserved for arguments depends on platform. On Windows
// stack slots are reserved for the arguments passed in registers. On other
// platforms stack slots are only reserved for the arguments actually passed
// on the stack.
void PrepareCallCFunction(int num_arguments);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
// Calculate the number of stack slots to reserve for arguments when calling a
// C function.
int ArgumentStackSlotsForCFunctionCall(int num_arguments);
// ---------------------------------------------------------------------------
// Utilities
void Ret();
// Return and drop arguments from stack, where the number of arguments
// may be bigger than 2^16 - 1. Requires a scratch register.
void Ret(int bytes_dropped, Register scratch);
Handle<Object> CodeObject() {
DCHECK(!code_object_.is_null());
return code_object_;
}
// Initialize fields with filler values. Fields starting at |current_address|
// not including |end_address| are overwritten with the value in |filler|. At
// the end the loop, |current_address| takes the value of |end_address|.
void InitializeFieldsWithFiller(Register current_address,
Register end_address, Register filler);
// Emit code for a truncating division by a constant. The dividend register is
// unchanged, the result is in rdx, and rax gets clobbered.
void TruncatingDiv(Register dividend, int32_t divisor);
// ---------------------------------------------------------------------------
// StatsCounter support
void SetCounter(StatsCounter* counter, int value);
void IncrementCounter(StatsCounter* counter, int value);
void DecrementCounter(StatsCounter* counter, int value);
// ---------------------------------------------------------------------------
// Debugging
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, BailoutReason reason);
void AssertFastElements(Register elements);
// Like Assert(), but always enabled.
void Check(Condition cc, BailoutReason reason);
// Print a message to stdout and abort execution.
void Abort(BailoutReason msg);
// Check that the stack is aligned.
void CheckStackAlignment();
// Verify restrictions about code generated in stubs.
void set_generating_stub(bool value) { generating_stub_ = value; }
bool generating_stub() { return generating_stub_; }
void set_has_frame(bool value) { has_frame_ = value; }
bool has_frame() { return has_frame_; }
inline bool AllowThisStubCall(CodeStub* stub);
static int SafepointRegisterStackIndex(Register reg) {
return SafepointRegisterStackIndex(reg.code());
}
// Load the type feedback vector from a JavaScript frame.
void EmitLoadTypeFeedbackVector(Register vector);
// Activation support.
void EnterFrame(StackFrame::Type type);
void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
void LeaveFrame(StackFrame::Type type);
void EnterBuiltinFrame(Register context, Register target, Register argc);
void LeaveBuiltinFrame(Register context, Register target, Register argc);
// Expects object in rax and returns map with validated enum cache
// in rax. Assumes that any other register can be used as a scratch.
void CheckEnumCache(Label* call_runtime);
// AllocationMemento support. Arrays may have an associated
// AllocationMemento object that can be checked for in order to pretransition
// to another type.
// On entry, receiver_reg should point to the array object.
// scratch_reg gets clobbered.
// If allocation info is present, condition flags are set to equal.
void TestJSArrayForAllocationMemento(Register receiver_reg,
Register scratch_reg,
Label* no_memento_found);
void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
Register scratch_reg,
Label* memento_found) {
Label no_memento_found;
TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
&no_memento_found);
j(equal, memento_found);
bind(&no_memento_found);
}
// Jumps to found label if a prototype map has dictionary elements.
void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
Register scratch1, Label* found);
private:
// Order general registers are pushed by Pushad.
// rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r12, r14, r15.
static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
static const int kNumSafepointSavedRegisters = 12;
static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
bool generating_stub_;
bool has_frame_;
bool root_array_available_;
// Returns a register holding the smi value. The register MUST NOT be
// modified. It may be the "smi 1 constant" register.
Register GetSmiConstant(Smi* value);
int64_t RootRegisterDelta(ExternalReference other);
// Moves the smi value to the destination register.
void LoadSmiConstant(Register dst, Smi* value);
// This handle will be patched with the code object on installation.
Handle<Object> code_object_;
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Label* done,
bool* definitely_mismatches,
InvokeFlag flag,
Label::Distance near_jump,
const CallWrapper& call_wrapper);
void EnterExitFramePrologue(bool save_rax, StackFrame::Type frame_type);
// Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
// accessible via StackSpaceOperand.
void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
void LeaveExitFrameEpilogue(bool restore_context);
// Allocation support helpers.
// Loads the top of new-space into the result register.
// Otherwise the address of the new-space top is loaded into scratch (if
// scratch is valid), and the new-space top is loaded into result.
void LoadAllocationTopHelper(Register result,
Register scratch,
AllocationFlags flags);
void MakeSureDoubleAlignedHelper(Register result,
Register scratch,
Label* gc_required,
AllocationFlags flags);
// Update allocation top with value in result_end register.
// If scratch is valid, it contains the address of the allocation top.
void UpdateAllocationTopHelper(Register result_end,
Register scratch,
AllocationFlags flags);
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
void InNewSpace(Register object,
Register scratch,
Condition cc,
Label* branch,
Label::Distance distance = Label::kFar);
// Helper for finding the mark bits for an address. Afterwards, the
// bitmap register points at the word with the mark bits and the mask
// the position of the first bit. Uses rcx as scratch and leaves addr_reg
// unchanged.
inline void GetMarkBits(Register addr_reg,
Register bitmap_reg,
Register mask_reg);
// Compute memory operands for safepoint stack slots.
Operand SafepointRegisterSlot(Register reg);
static int SafepointRegisterStackIndex(int reg_code) {
return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
}
// Needs access to SafepointRegisterStackIndex for compiled frame
// traversal.
friend class StandardFrame;
};
// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. Is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion.
class CodePatcher {
public:
CodePatcher(Isolate* isolate, byte* address, int size);
~CodePatcher();
// Macro assembler to emit code.
MacroAssembler* masm() { return &masm_; }
private:
byte* address_; // The address of the code being patched.
int size_; // Number of bytes of the expected patch size.
MacroAssembler masm_; // Macro assembler used to generate the code.
};
// -----------------------------------------------------------------------------
// Static helper functions.
// Generate an Operand for loading a field from an object.
inline Operand FieldOperand(Register object, int offset) {
return Operand(object, offset - kHeapObjectTag);
}
// Generate an Operand for loading an indexed field from an object.
inline Operand FieldOperand(Register object,
Register index,
ScaleFactor scale,
int offset) {
return Operand(object, index, scale, offset - kHeapObjectTag);
}
inline Operand ContextOperand(Register context, int index) {
return Operand(context, Context::SlotOffset(index));
}
inline Operand ContextOperand(Register context, Register index) {
return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
}
inline Operand NativeContextOperand() {
return ContextOperand(rsi, Context::NATIVE_CONTEXT_INDEX);
}
// Provides access to exit frame stack space (not GCed).
inline Operand StackSpaceOperand(int index) {
#ifdef _WIN64
const int kShaddowSpace = 4;
return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
#else
return Operand(rsp, index * kPointerSize);
#endif
}
inline Operand StackOperandForReturnAddress(int32_t disp) {
return Operand(rsp, disp);
}
#define ACCESS_MASM(masm) masm->
} // namespace internal
} // namespace v8
#endif // V8_X64_MACRO_ASSEMBLER_X64_H_