// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_X64_ASSEMBLER_X64_INL_H_
#define V8_X64_ASSEMBLER_X64_INL_H_
#include "src/x64/assembler-x64.h"
#include "src/base/cpu.h"
#include "src/debug/debug.h"
#include "src/v8memory.h"
namespace v8 {
namespace internal {
bool CpuFeatures::SupportsCrankshaft() { return true; }
bool CpuFeatures::SupportsSimd128() { return false; }
// -----------------------------------------------------------------------------
// Implementation of Assembler
static const byte kCallOpcode = 0xE8;
// The length of pushq(rbp), movp(rbp, rsp), Push(rsi) and Push(rdi).
static const int kNoCodeAgeSequenceLength = kPointerSize == kInt64Size ? 6 : 17;
void Assembler::emitl(uint32_t x) {
Memory::uint32_at(pc_) = x;
pc_ += sizeof(uint32_t);
}
void Assembler::emitp(void* x, RelocInfo::Mode rmode) {
uintptr_t value = reinterpret_cast<uintptr_t>(x);
Memory::uintptr_at(pc_) = value;
if (!RelocInfo::IsNone(rmode)) {
RecordRelocInfo(rmode, value);
}
pc_ += sizeof(uintptr_t);
}
void Assembler::emitq(uint64_t x) {
Memory::uint64_at(pc_) = x;
pc_ += sizeof(uint64_t);
}
void Assembler::emitw(uint16_t x) {
Memory::uint16_at(pc_) = x;
pc_ += sizeof(uint16_t);
}
void Assembler::emit_code_target(Handle<Code> target,
RelocInfo::Mode rmode,
TypeFeedbackId ast_id) {
DCHECK(RelocInfo::IsCodeTarget(rmode) ||
rmode == RelocInfo::CODE_AGE_SEQUENCE);
if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID, ast_id.ToInt());
} else {
RecordRelocInfo(rmode);
}
int current = code_targets_.length();
if (current > 0 && code_targets_.last().address() == target.address()) {
// Optimization if we keep jumping to the same code target.
emitl(current - 1);
} else {
code_targets_.Add(target);
emitl(current);
}
}
void Assembler::emit_runtime_entry(Address entry, RelocInfo::Mode rmode) {
DCHECK(RelocInfo::IsRuntimeEntry(rmode));
RecordRelocInfo(rmode);
emitl(static_cast<uint32_t>(
entry - isolate()->heap()->memory_allocator()->code_range()->start()));
}
void Assembler::emit_rex_64(Register reg, Register rm_reg) {
emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
}
void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
}
void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) {
emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
}
void Assembler::emit_rex_64(Register reg, const Operand& op) {
emit(0x48 | reg.high_bit() << 2 | op.rex_);
}
void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
}
void Assembler::emit_rex_64(Register rm_reg) {
DCHECK_EQ(rm_reg.code() & 0xf, rm_reg.code());
emit(0x48 | rm_reg.high_bit());
}
void Assembler::emit_rex_64(const Operand& op) {
emit(0x48 | op.rex_);
}
void Assembler::emit_rex_32(Register reg, Register rm_reg) {
emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
}
void Assembler::emit_rex_32(Register reg, const Operand& op) {
emit(0x40 | reg.high_bit() << 2 | op.rex_);
}
void Assembler::emit_rex_32(Register rm_reg) {
emit(0x40 | rm_reg.high_bit());
}
void Assembler::emit_rex_32(const Operand& op) {
emit(0x40 | op.rex_);
}
void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
byte rex_bits = reg.high_bit() << 2 | op.rex_;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
byte rex_bits = (reg.code() & 0x8) >> 1 | op.rex_;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) {
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(Register rm_reg) {
if (rm_reg.high_bit()) emit(0x41);
}
void Assembler::emit_optional_rex_32(XMMRegister rm_reg) {
if (rm_reg.high_bit()) emit(0x41);
}
void Assembler::emit_optional_rex_32(const Operand& op) {
if (op.rex_ != 0) emit(0x40 | op.rex_);
}
// byte 1 of 3-byte VEX
void Assembler::emit_vex3_byte1(XMMRegister reg, XMMRegister rm,
LeadingOpcode m) {
byte rxb = ~((reg.high_bit() << 2) | rm.high_bit()) << 5;
emit(rxb | m);
}
// byte 1 of 3-byte VEX
void Assembler::emit_vex3_byte1(XMMRegister reg, const Operand& rm,
LeadingOpcode m) {
byte rxb = ~((reg.high_bit() << 2) | rm.rex_) << 5;
emit(rxb | m);
}
// byte 1 of 2-byte VEX
void Assembler::emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l,
SIMDPrefix pp) {
byte rv = ~((reg.high_bit() << 4) | v.code()) << 3;
emit(rv | l | pp);
}
// byte 2 of 3-byte VEX
void Assembler::emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l,
SIMDPrefix pp) {
emit(w | ((~v.code() & 0xf) << 3) | l | pp);
}
void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg,
XMMRegister rm, VectorLength l, SIMDPrefix pp,
LeadingOpcode mm, VexW w) {
if (rm.high_bit() || mm != k0F || w != kW0) {
emit_vex3_byte0();
emit_vex3_byte1(reg, rm, mm);
emit_vex3_byte2(w, vreg, l, pp);
} else {
emit_vex2_byte0();
emit_vex2_byte1(reg, vreg, l, pp);
}
}
void Assembler::emit_vex_prefix(Register reg, Register vreg, Register rm,
VectorLength l, SIMDPrefix pp, LeadingOpcode mm,
VexW w) {
XMMRegister ireg = {reg.code()};
XMMRegister ivreg = {vreg.code()};
XMMRegister irm = {rm.code()};
emit_vex_prefix(ireg, ivreg, irm, l, pp, mm, w);
}
void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg,
const Operand& rm, VectorLength l,
SIMDPrefix pp, LeadingOpcode mm, VexW w) {
if (rm.rex_ || mm != k0F || w != kW0) {
emit_vex3_byte0();
emit_vex3_byte1(reg, rm, mm);
emit_vex3_byte2(w, vreg, l, pp);
} else {
emit_vex2_byte0();
emit_vex2_byte1(reg, vreg, l, pp);
}
}
void Assembler::emit_vex_prefix(Register reg, Register vreg, const Operand& rm,
VectorLength l, SIMDPrefix pp, LeadingOpcode mm,
VexW w) {
XMMRegister ireg = {reg.code()};
XMMRegister ivreg = {vreg.code()};
emit_vex_prefix(ireg, ivreg, rm, l, pp, mm, w);
}
Address Assembler::target_address_at(Address pc, Address constant_pool) {
return Memory::int32_at(pc) + pc + 4;
}
void Assembler::set_target_address_at(Isolate* isolate, Address pc,
Address constant_pool, Address target,
ICacheFlushMode icache_flush_mode) {
Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
Assembler::FlushICache(isolate, pc, sizeof(int32_t));
}
}
void Assembler::deserialization_set_target_internal_reference_at(
Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
Memory::Address_at(pc) = target;
}
Address Assembler::target_address_from_return_address(Address pc) {
return pc - kCallTargetAddressOffset;
}
Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
return code_targets_[Memory::int32_at(pc)];
}
Address Assembler::runtime_entry_at(Address pc) {
return Memory::int32_at(pc) +
isolate()->heap()->memory_allocator()->code_range()->start();
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo
// The modes possibly affected by apply must be in kApplyMask.
void RelocInfo::apply(intptr_t delta) {
if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
Memory::int32_at(pc_) -= static_cast<int32_t>(delta);
} else if (IsCodeAgeSequence(rmode_)) {
if (*pc_ == kCallOpcode) {
int32_t* p = reinterpret_cast<int32_t*>(pc_ + 1);
*p -= static_cast<int32_t>(delta); // Relocate entry.
}
} else if (IsInternalReference(rmode_)) {
// absolute code pointer inside code object moves with the code object.
Memory::Address_at(pc_) += delta;
}
}
Address RelocInfo::target_address() {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
return Assembler::target_address_at(pc_, host_);
}
Address RelocInfo::target_address_address() {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
|| rmode_ == EMBEDDED_OBJECT
|| rmode_ == EXTERNAL_REFERENCE);
return reinterpret_cast<Address>(pc_);
}
Address RelocInfo::constant_pool_entry_address() {
UNREACHABLE();
return NULL;
}
int RelocInfo::target_address_size() {
if (IsCodedSpecially()) {
return Assembler::kSpecialTargetSize;
} else {
return kPointerSize;
}
}
Object* RelocInfo::target_object() {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return Memory::Object_at(pc_);
}
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
if (rmode_ == EMBEDDED_OBJECT) {
return Memory::Object_Handle_at(pc_);
} else {
return origin->code_target_object_handle_at(pc_);
}
}
Address RelocInfo::target_external_reference() {
DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
return Memory::Address_at(pc_);
}
Address RelocInfo::target_internal_reference() {
DCHECK(rmode_ == INTERNAL_REFERENCE);
return Memory::Address_at(pc_);
}
Address RelocInfo::target_internal_reference_address() {
DCHECK(rmode_ == INTERNAL_REFERENCE);
return reinterpret_cast<Address>(pc_);
}
void RelocInfo::set_target_object(Object* target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
Memory::Object_at(pc_) = target;
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
Assembler::FlushICache(isolate_, pc_, sizeof(Address));
}
if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
host() != NULL &&
target->IsHeapObject()) {
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
host(), this, HeapObject::cast(target));
host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
}
}
Address RelocInfo::target_runtime_entry(Assembler* origin) {
DCHECK(IsRuntimeEntry(rmode_));
return origin->runtime_entry_at(pc_);
}
void RelocInfo::set_target_runtime_entry(Address target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsRuntimeEntry(rmode_));
if (target_address() != target) {
set_target_address(target, write_barrier_mode, icache_flush_mode);
}
}
Handle<Cell> RelocInfo::target_cell_handle() {
DCHECK(rmode_ == RelocInfo::CELL);
Address address = Memory::Address_at(pc_);
return Handle<Cell>(reinterpret_cast<Cell**>(address));
}
Cell* RelocInfo::target_cell() {
DCHECK(rmode_ == RelocInfo::CELL);
return Cell::FromValueAddress(Memory::Address_at(pc_));
}
void RelocInfo::set_target_cell(Cell* cell,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(rmode_ == RelocInfo::CELL);
Address address = cell->address() + Cell::kValueOffset;
Memory::Address_at(pc_) = address;
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
Assembler::FlushICache(isolate_, pc_, sizeof(Address));
}
if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
host() != NULL) {
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
cell);
}
}
void RelocInfo::WipeOut() {
if (IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
IsInternalReference(rmode_)) {
Memory::Address_at(pc_) = NULL;
} else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
// Effectively write zero into the relocation.
Assembler::set_target_address_at(isolate_, pc_, host_,
pc_ + sizeof(int32_t));
} else {
UNREACHABLE();
}
}
Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
DCHECK(*pc_ == kCallOpcode);
return origin->code_target_object_handle_at(pc_ + 1);
}
Code* RelocInfo::code_age_stub() {
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
DCHECK(*pc_ == kCallOpcode);
return Code::GetCodeFromTargetAddress(
Assembler::target_address_at(pc_ + 1, host_));
}
void RelocInfo::set_code_age_stub(Code* stub,
ICacheFlushMode icache_flush_mode) {
DCHECK(*pc_ == kCallOpcode);
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
Assembler::set_target_address_at(
isolate_, pc_ + 1, host_, stub->instruction_start(), icache_flush_mode);
}
Address RelocInfo::debug_call_address() {
DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
return Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset);
}
void RelocInfo::set_debug_call_address(Address target) {
DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset) =
target;
Assembler::FlushICache(isolate_,
pc_ + Assembler::kPatchDebugBreakSlotAddressOffset,
sizeof(Address));
if (host() != NULL) {
Object* target_code = Code::GetCodeFromTargetAddress(target);
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
host(), this, HeapObject::cast(target_code));
}
}
template <typename ObjectVisitor>
void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
visitor->VisitEmbeddedPointer(this);
Assembler::FlushICache(isolate, pc_, sizeof(Address));
} else if (RelocInfo::IsCodeTarget(mode)) {
visitor->VisitCodeTarget(this);
} else if (mode == RelocInfo::CELL) {
visitor->VisitCell(this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
visitor->VisitExternalReference(this);
} else if (mode == RelocInfo::INTERNAL_REFERENCE) {
visitor->VisitInternalReference(this);
} else if (RelocInfo::IsCodeAgeSequence(mode)) {
visitor->VisitCodeAgeSequence(this);
} else if (RelocInfo::IsDebugBreakSlot(mode) &&
IsPatchedDebugBreakSlotSequence()) {
visitor->VisitDebugTarget(this);
} else if (RelocInfo::IsRuntimeEntry(mode)) {
visitor->VisitRuntimeEntry(this);
}
}
template<typename StaticVisitor>
void RelocInfo::Visit(Heap* heap) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
StaticVisitor::VisitEmbeddedPointer(heap, this);
Assembler::FlushICache(heap->isolate(), pc_, sizeof(Address));
} else if (RelocInfo::IsCodeTarget(mode)) {
StaticVisitor::VisitCodeTarget(heap, this);
} else if (mode == RelocInfo::CELL) {
StaticVisitor::VisitCell(heap, this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
StaticVisitor::VisitExternalReference(this);
} else if (mode == RelocInfo::INTERNAL_REFERENCE) {
StaticVisitor::VisitInternalReference(this);
} else if (RelocInfo::IsCodeAgeSequence(mode)) {
StaticVisitor::VisitCodeAgeSequence(heap, this);
} else if (RelocInfo::IsDebugBreakSlot(mode) &&
IsPatchedDebugBreakSlotSequence()) {
StaticVisitor::VisitDebugTarget(heap, this);
} else if (RelocInfo::IsRuntimeEntry(mode)) {
StaticVisitor::VisitRuntimeEntry(this);
}
}
// -----------------------------------------------------------------------------
// Implementation of Operand
void Operand::set_modrm(int mod, Register rm_reg) {
DCHECK(is_uint2(mod));
buf_[0] = mod << 6 | rm_reg.low_bits();
// Set REX.B to the high bit of rm.code().
rex_ |= rm_reg.high_bit();
}
void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
DCHECK(len_ == 1);
DCHECK(is_uint2(scale));
// Use SIB with no index register only for base rsp or r12. Otherwise we
// would skip the SIB byte entirely.
DCHECK(!index.is(rsp) || base.is(rsp) || base.is(r12));
buf_[1] = (scale << 6) | (index.low_bits() << 3) | base.low_bits();
rex_ |= index.high_bit() << 1 | base.high_bit();
len_ = 2;
}
void Operand::set_disp8(int disp) {
DCHECK(is_int8(disp));
DCHECK(len_ == 1 || len_ == 2);
int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
*p = disp;
len_ += sizeof(int8_t);
}
void Operand::set_disp32(int disp) {
DCHECK(len_ == 1 || len_ == 2);
int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
*p = disp;
len_ += sizeof(int32_t);
}
void Operand::set_disp64(int64_t disp) {
DCHECK_EQ(1, len_);
int64_t* p = reinterpret_cast<int64_t*>(&buf_[len_]);
*p = disp;
len_ += sizeof(disp);
}
} // namespace internal
} // namespace v8
#endif // V8_X64_ASSEMBLER_X64_INL_H_