// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_PPC_CODE_STUBS_PPC_H_
#define V8_PPC_CODE_STUBS_PPC_H_
#include "src/ppc/frames-ppc.h"
namespace v8 {
namespace internal {
void ArrayNativeCode(MacroAssembler* masm, Label* call_generic_code);
class StringHelper : public AllStatic {
public:
// Generate code for copying a large number of characters. This function
// is allowed to spend extra time setting up conditions to make copying
// faster. Copying of overlapping regions is not supported.
// Dest register ends at the position after the last character written.
static void GenerateCopyCharacters(MacroAssembler* masm, Register dest,
Register src, Register count,
Register scratch,
String::Encoding encoding);
// Compares two flat one-byte strings and returns result in r0.
static void GenerateCompareFlatOneByteStrings(MacroAssembler* masm,
Register left, Register right,
Register scratch1,
Register scratch2,
Register scratch3);
// Compares two flat one-byte strings for equality and returns result in r0.
static void GenerateFlatOneByteStringEquals(MacroAssembler* masm,
Register left, Register right,
Register scratch1,
Register scratch2);
private:
static void GenerateOneByteCharsCompareLoop(MacroAssembler* masm,
Register left, Register right,
Register length,
Register scratch1,
Label* chars_not_equal);
DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
};
class StoreRegistersStateStub : public PlatformCodeStub {
public:
explicit StoreRegistersStateStub(Isolate* isolate)
: PlatformCodeStub(isolate) {}
static void GenerateAheadOfTime(Isolate* isolate);
private:
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(StoreRegistersState, PlatformCodeStub);
};
class RestoreRegistersStateStub : public PlatformCodeStub {
public:
explicit RestoreRegistersStateStub(Isolate* isolate)
: PlatformCodeStub(isolate) {}
static void GenerateAheadOfTime(Isolate* isolate);
private:
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(RestoreRegistersState, PlatformCodeStub);
};
class RecordWriteStub : public PlatformCodeStub {
public:
RecordWriteStub(Isolate* isolate, Register object, Register value,
Register address, RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode)
: PlatformCodeStub(isolate),
regs_(object, // An input reg.
address, // An input reg.
value) { // One scratch reg.
minor_key_ = ObjectBits::encode(object.code()) |
ValueBits::encode(value.code()) |
AddressBits::encode(address.code()) |
RememberedSetActionBits::encode(remembered_set_action) |
SaveFPRegsModeBits::encode(fp_mode);
}
RecordWriteStub(uint32_t key, Isolate* isolate)
: PlatformCodeStub(key, isolate), regs_(object(), address(), value()) {}
enum Mode { STORE_BUFFER_ONLY, INCREMENTAL, INCREMENTAL_COMPACTION };
bool SometimesSetsUpAFrame() override { return false; }
static void PatchBranchIntoNop(MacroAssembler* masm, int pos) {
// Consider adding DCHECK here to catch bad patching
masm->instr_at_put(pos, (masm->instr_at(pos) & ~kBOfieldMask) | BT);
}
static void PatchNopIntoBranch(MacroAssembler* masm, int pos) {
// Consider adding DCHECK here to catch bad patching
masm->instr_at_put(pos, (masm->instr_at(pos) & ~kBOfieldMask) | BF);
}
static Mode GetMode(Code* stub) {
Instr first_instruction =
Assembler::instr_at(stub->instruction_start() + Assembler::kInstrSize);
Instr second_instruction = Assembler::instr_at(stub->instruction_start() +
(Assembler::kInstrSize * 2));
// Consider adding DCHECK here to catch unexpected instruction sequence
if (BF == (first_instruction & kBOfieldMask)) {
return INCREMENTAL;
}
if (BF == (second_instruction & kBOfieldMask)) {
return INCREMENTAL_COMPACTION;
}
return STORE_BUFFER_ONLY;
}
static void Patch(Code* stub, Mode mode) {
MacroAssembler masm(stub->GetIsolate(), stub->instruction_start(),
stub->instruction_size(), CodeObjectRequired::kNo);
switch (mode) {
case STORE_BUFFER_ONLY:
DCHECK(GetMode(stub) == INCREMENTAL ||
GetMode(stub) == INCREMENTAL_COMPACTION);
PatchBranchIntoNop(&masm, Assembler::kInstrSize);
PatchBranchIntoNop(&masm, Assembler::kInstrSize * 2);
break;
case INCREMENTAL:
DCHECK(GetMode(stub) == STORE_BUFFER_ONLY);
PatchNopIntoBranch(&masm, Assembler::kInstrSize);
break;
case INCREMENTAL_COMPACTION:
DCHECK(GetMode(stub) == STORE_BUFFER_ONLY);
PatchNopIntoBranch(&masm, Assembler::kInstrSize * 2);
break;
}
DCHECK(GetMode(stub) == mode);
Assembler::FlushICache(stub->GetIsolate(),
stub->instruction_start() + Assembler::kInstrSize,
2 * Assembler::kInstrSize);
}
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
private:
// This is a helper class for freeing up 3 scratch registers. The input is
// two registers that must be preserved and one scratch register provided by
// the caller.
class RegisterAllocation {
public:
RegisterAllocation(Register object, Register address, Register scratch0)
: object_(object), address_(address), scratch0_(scratch0) {
DCHECK(!AreAliased(scratch0, object, address, no_reg));
scratch1_ = GetRegisterThatIsNotOneOf(object_, address_, scratch0_);
}
void Save(MacroAssembler* masm) {
DCHECK(!AreAliased(object_, address_, scratch1_, scratch0_));
// We don't have to save scratch0_ because it was given to us as
// a scratch register.
masm->push(scratch1_);
}
void Restore(MacroAssembler* masm) { masm->pop(scratch1_); }
// If we have to call into C then we need to save and restore all caller-
// saved registers that were not already preserved. The scratch registers
// will be restored by other means so we don't bother pushing them here.
void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) {
masm->mflr(r0);
masm->push(r0);
masm->MultiPush(kJSCallerSaved & ~scratch1_.bit());
if (mode == kSaveFPRegs) {
// Save all volatile FP registers except d0.
masm->MultiPushDoubles(kCallerSavedDoubles & ~d0.bit());
}
}
inline void RestoreCallerSaveRegisters(MacroAssembler* masm,
SaveFPRegsMode mode) {
if (mode == kSaveFPRegs) {
// Restore all volatile FP registers except d0.
masm->MultiPopDoubles(kCallerSavedDoubles & ~d0.bit());
}
masm->MultiPop(kJSCallerSaved & ~scratch1_.bit());
masm->pop(r0);
masm->mtlr(r0);
}
inline Register object() { return object_; }
inline Register address() { return address_; }
inline Register scratch0() { return scratch0_; }
inline Register scratch1() { return scratch1_; }
private:
Register object_;
Register address_;
Register scratch0_;
Register scratch1_;
friend class RecordWriteStub;
};
enum OnNoNeedToInformIncrementalMarker {
kReturnOnNoNeedToInformIncrementalMarker,
kUpdateRememberedSetOnNoNeedToInformIncrementalMarker
};
inline Major MajorKey() const final { return RecordWrite; }
void Generate(MacroAssembler* masm) override;
void GenerateIncremental(MacroAssembler* masm, Mode mode);
void CheckNeedsToInformIncrementalMarker(
MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode);
void InformIncrementalMarker(MacroAssembler* masm);
void Activate(Code* code) override {
code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code);
}
Register object() const {
return Register::from_code(ObjectBits::decode(minor_key_));
}
Register value() const {
return Register::from_code(ValueBits::decode(minor_key_));
}
Register address() const {
return Register::from_code(AddressBits::decode(minor_key_));
}
RememberedSetAction remembered_set_action() const {
return RememberedSetActionBits::decode(minor_key_);
}
SaveFPRegsMode save_fp_regs_mode() const {
return SaveFPRegsModeBits::decode(minor_key_);
}
class ObjectBits : public BitField<int, 0, 5> {};
class ValueBits : public BitField<int, 5, 5> {};
class AddressBits : public BitField<int, 10, 5> {};
class RememberedSetActionBits : public BitField<RememberedSetAction, 15, 1> {
};
class SaveFPRegsModeBits : public BitField<SaveFPRegsMode, 16, 1> {};
Label slow_;
RegisterAllocation regs_;
DISALLOW_COPY_AND_ASSIGN(RecordWriteStub);
};
// Trampoline stub to call into native code. To call safely into native code
// in the presence of compacting GC (which can move code objects) we need to
// keep the code which called into native pinned in the memory. Currently the
// simplest approach is to generate such stub early enough so it can never be
// moved by GC
class DirectCEntryStub : public PlatformCodeStub {
public:
explicit DirectCEntryStub(Isolate* isolate) : PlatformCodeStub(isolate) {}
void GenerateCall(MacroAssembler* masm, Register target);
private:
bool NeedsImmovableCode() override { return true; }
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(DirectCEntry, PlatformCodeStub);
};
class NameDictionaryLookupStub : public PlatformCodeStub {
public:
enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP };
NameDictionaryLookupStub(Isolate* isolate, LookupMode mode)
: PlatformCodeStub(isolate) {
minor_key_ = LookupModeBits::encode(mode);
}
static void GenerateNegativeLookup(MacroAssembler* masm, Label* miss,
Label* done, Register receiver,
Register properties, Handle<Name> name,
Register scratch0);
static void GeneratePositiveLookup(MacroAssembler* masm, Label* miss,
Label* done, Register elements,
Register name, Register r0, Register r1);
bool SometimesSetsUpAFrame() override { return false; }
private:
static const int kInlinedProbes = 4;
static const int kTotalProbes = 20;
static const int kCapacityOffset =
NameDictionary::kHeaderSize +
NameDictionary::kCapacityIndex * kPointerSize;
static const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
LookupMode mode() const { return LookupModeBits::decode(minor_key_); }
class LookupModeBits : public BitField<LookupMode, 0, 1> {};
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(NameDictionaryLookup, PlatformCodeStub);
};
} // namespace internal
} // namespace v8
#endif // V8_PPC_CODE_STUBS_PPC_H_