// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2014 the V8 project authors. All rights reserved.
// A light-weight PPC Assembler
// Generates user mode instructions for the PPC architecture up
#ifndef V8_PPC_ASSEMBLER_PPC_H_
#define V8_PPC_ASSEMBLER_PPC_H_
#include <stdio.h>
#include <vector>
#include "src/assembler.h"
#include "src/ppc/constants-ppc.h"
#if V8_HOST_ARCH_PPC && \
(V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN))
#define ABI_USES_FUNCTION_DESCRIPTORS 1
#else
#define ABI_USES_FUNCTION_DESCRIPTORS 0
#endif
#if !V8_HOST_ARCH_PPC || V8_OS_AIX || V8_TARGET_ARCH_PPC64
#define ABI_PASSES_HANDLES_IN_REGS 1
#else
#define ABI_PASSES_HANDLES_IN_REGS 0
#endif
#if !V8_HOST_ARCH_PPC || !V8_TARGET_ARCH_PPC64 || V8_TARGET_LITTLE_ENDIAN
#define ABI_RETURNS_OBJECT_PAIRS_IN_REGS 1
#else
#define ABI_RETURNS_OBJECT_PAIRS_IN_REGS 0
#endif
#if !V8_HOST_ARCH_PPC || (V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN)
#define ABI_CALL_VIA_IP 1
#else
#define ABI_CALL_VIA_IP 0
#endif
#if !V8_HOST_ARCH_PPC || V8_OS_AIX || V8_TARGET_ARCH_PPC64
#define ABI_TOC_REGISTER 2
#else
#define ABI_TOC_REGISTER 13
#endif
#define INSTR_AND_DATA_CACHE_COHERENCY LWSYNC
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(r0) V(sp) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(r11) V(ip) V(r13) V(r14) V(r15) \
V(r16) V(r17) V(r18) V(r19) V(r20) V(r21) V(r22) V(r23) \
V(r24) V(r25) V(r26) V(r27) V(r28) V(r29) V(r30) V(fp)
#if V8_EMBEDDED_CONSTANT_POOL
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(r14) V(r15) \
V(r16) V(r17) V(r18) V(r19) V(r20) V(r21) V(r22) V(r23) \
V(r24) V(r25) V(r26) V(r27) V(r30)
#else
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(r14) V(r15) \
V(r16) V(r17) V(r18) V(r19) V(r20) V(r21) V(r22) V(r23) \
V(r24) V(r25) V(r26) V(r27) V(r28) V(r30)
#endif
#define DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) V(d14) V(d15) \
V(d16) V(d17) V(d18) V(d19) V(d20) V(d21) V(d22) V(d23) \
V(d24) V(d25) V(d26) V(d27) V(d28) V(d29) V(d30) V(d31)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS DOUBLE_REGISTERS
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d15) \
V(d16) V(d17) V(d18) V(d19) V(d20) V(d21) V(d22) V(d23) \
V(d24) V(d25) V(d26) V(d27) V(d28) V(d29) V(d30) V(d31)
// clang-format on
// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
struct Register {
enum Code {
#define REGISTER_CODE(R) kCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kAfterLast,
kCode_no_reg = -1
};
static const int kNumRegisters = Code::kAfterLast;
#define REGISTER_COUNT(R) 1 +
static const int kNumAllocatable =
ALLOCATABLE_GENERAL_REGISTERS(REGISTER_COUNT)0;
#undef REGISTER_COUNT
#define REGISTER_BIT(R) 1 << kCode_##R |
static const RegList kAllocatable =
ALLOCATABLE_GENERAL_REGISTERS(REGISTER_BIT)0;
#undef REGISTER_BIT
static Register from_code(int code) {
DCHECK(code >= 0);
DCHECK(code < kNumRegisters);
Register r = {code};
return r;
}
bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
bool is(Register reg) const { return reg_code == reg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void set_code(int code) {
reg_code = code;
DCHECK(is_valid());
}
#if V8_TARGET_LITTLE_ENDIAN
static const int kMantissaOffset = 0;
static const int kExponentOffset = 4;
#else
static const int kMantissaOffset = 4;
static const int kExponentOffset = 0;
#endif
// Unfortunately we can't make this private in a struct.
int reg_code;
};
#define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
const Register no_reg = {Register::kCode_no_reg};
// Aliases
const Register kLithiumScratch = r11; // lithium scratch.
const Register kConstantPoolRegister = r28; // Constant pool.
const Register kRootRegister = r29; // Roots array pointer.
const Register cp = r30; // JavaScript context pointer.
static const bool kSimpleFPAliasing = true;
// Double word FP register.
struct DoubleRegister {
enum Code {
#define REGISTER_CODE(R) kCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kAfterLast,
kCode_no_reg = -1
};
static const int kNumRegisters = Code::kAfterLast;
static const int kMaxNumRegisters = kNumRegisters;
bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
bool is(DoubleRegister reg) const { return reg_code == reg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
static DoubleRegister from_code(int code) {
DoubleRegister r = {code};
return r;
}
int reg_code;
};
typedef DoubleRegister FloatRegister;
// TODO(ppc) Define SIMD registers.
typedef DoubleRegister Simd128Register;
#define DECLARE_REGISTER(R) \
const DoubleRegister R = {DoubleRegister::kCode_##R};
DOUBLE_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
const Register no_dreg = {Register::kCode_no_reg};
// Aliases for double registers. Defined using #define instead of
// "static const DoubleRegister&" because Clang complains otherwise when a
// compilation unit that includes this header doesn't use the variables.
#define kFirstCalleeSavedDoubleReg d14
#define kLastCalleeSavedDoubleReg d31
#define kDoubleRegZero d14
#define kScratchDoubleReg d13
Register ToRegister(int num);
// Coprocessor register
struct CRegister {
bool is_valid() const { return 0 <= reg_code && reg_code < 8; }
bool is(CRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
const CRegister no_creg = {-1};
const CRegister cr0 = {0};
const CRegister cr1 = {1};
const CRegister cr2 = {2};
const CRegister cr3 = {3};
const CRegister cr4 = {4};
const CRegister cr5 = {5};
const CRegister cr6 = {6};
const CRegister cr7 = {7};
// -----------------------------------------------------------------------------
// Machine instruction Operands
#if V8_TARGET_ARCH_PPC64
const RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE64;
#else
const RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE32;
#endif
// Class Operand represents a shifter operand in data processing instructions
class Operand BASE_EMBEDDED {
public:
// immediate
INLINE(explicit Operand(intptr_t immediate,
RelocInfo::Mode rmode = kRelocInfo_NONEPTR));
INLINE(static Operand Zero()) { return Operand(static_cast<intptr_t>(0)); }
INLINE(explicit Operand(const ExternalReference& f));
explicit Operand(Handle<Object> handle);
INLINE(explicit Operand(Smi* value));
// rm
INLINE(explicit Operand(Register rm));
// Return true if this is a register operand.
INLINE(bool is_reg() const);
bool must_output_reloc_info(const Assembler* assembler) const;
inline intptr_t immediate() const {
DCHECK(!rm_.is_valid());
return imm_;
}
Register rm() const { return rm_; }
private:
Register rm_;
intptr_t imm_; // valid if rm_ == no_reg
RelocInfo::Mode rmode_;
friend class Assembler;
friend class MacroAssembler;
};
// Class MemOperand represents a memory operand in load and store instructions
// On PowerPC we have base register + 16bit signed value
// Alternatively we can have a 16bit signed value immediate
class MemOperand BASE_EMBEDDED {
public:
explicit MemOperand(Register rn, int32_t offset = 0);
explicit MemOperand(Register ra, Register rb);
int32_t offset() const {
DCHECK(rb_.is(no_reg));
return offset_;
}
// PowerPC - base register
Register ra() const {
DCHECK(!ra_.is(no_reg));
return ra_;
}
Register rb() const {
DCHECK(offset_ == 0 && !rb_.is(no_reg));
return rb_;
}
private:
Register ra_; // base
int32_t offset_; // offset
Register rb_; // index
friend class Assembler;
};
class DeferredRelocInfo {
public:
DeferredRelocInfo() {}
DeferredRelocInfo(int position, RelocInfo::Mode rmode, intptr_t data)
: position_(position), rmode_(rmode), data_(data) {}
int position() const { return position_; }
RelocInfo::Mode rmode() const { return rmode_; }
intptr_t data() const { return data_; }
private:
int position_;
RelocInfo::Mode rmode_;
intptr_t data_;
};
class Assembler : public AssemblerBase {
public:
// Create an assembler. Instructions and relocation information are emitted
// into a buffer, with the instructions starting from the beginning and the
// relocation information starting from the end of the buffer. See CodeDesc
// for a detailed comment on the layout (globals.h).
//
// If the provided buffer is NULL, the assembler allocates and grows its own
// buffer, and buffer_size determines the initial buffer size. The buffer is
// owned by the assembler and deallocated upon destruction of the assembler.
//
// If the provided buffer is not NULL, the assembler uses the provided buffer
// for code generation and assumes its size to be buffer_size. If the buffer
// is too small, a fatal error occurs. No deallocation of the buffer is done
// upon destruction of the assembler.
Assembler(Isolate* isolate, void* buffer, int buffer_size);
virtual ~Assembler() {}
// GetCode emits any pending (non-emitted) code and fills the descriptor
// desc. GetCode() is idempotent; it returns the same result if no other
// Assembler functions are invoked in between GetCode() calls.
void GetCode(CodeDesc* desc);
// Label operations & relative jumps (PPUM Appendix D)
//
// Takes a branch opcode (cc) and a label (L) and generates
// either a backward branch or a forward branch and links it
// to the label fixup chain. Usage:
//
// Label L; // unbound label
// j(cc, &L); // forward branch to unbound label
// bind(&L); // bind label to the current pc
// j(cc, &L); // backward branch to bound label
// bind(&L); // illegal: a label may be bound only once
//
// Note: The same Label can be used for forward and backward branches
// but it may be bound only once.
void bind(Label* L); // binds an unbound label L to the current code position
// Links a label at the current pc_offset(). If already bound, returns the
// bound position. If already linked, returns the position of the prior link.
// Otherwise, returns the current pc_offset().
int link(Label* L);
// Determines if Label is bound and near enough so that a single
// branch instruction can be used to reach it.
bool is_near(Label* L, Condition cond);
// Returns the branch offset to the given label from the current code position
// Links the label to the current position if it is still unbound
int branch_offset(Label* L) {
if (L->is_unused() && !trampoline_emitted_) {
TrackBranch();
}
return link(L) - pc_offset();
}
// Puts a labels target address at the given position.
// The high 8 bits are set to zero.
void label_at_put(Label* L, int at_offset);
INLINE(static bool IsConstantPoolLoadStart(
Address pc, ConstantPoolEntry::Access* access = nullptr));
INLINE(static bool IsConstantPoolLoadEnd(
Address pc, ConstantPoolEntry::Access* access = nullptr));
INLINE(static int GetConstantPoolOffset(Address pc,
ConstantPoolEntry::Access access,
ConstantPoolEntry::Type type));
INLINE(void PatchConstantPoolAccessInstruction(
int pc_offset, int offset, ConstantPoolEntry::Access access,
ConstantPoolEntry::Type type));
// Return the address in the constant pool of the code target address used by
// the branch/call instruction at pc, or the object in a mov.
INLINE(static Address target_constant_pool_address_at(
Address pc, Address constant_pool, ConstantPoolEntry::Access access,
ConstantPoolEntry::Type type));
// Read/Modify the code target address in the branch/call instruction at pc.
INLINE(static Address target_address_at(Address pc, Address constant_pool));
INLINE(static void set_target_address_at(
Isolate* isolate, Address pc, Address constant_pool, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
INLINE(static Address target_address_at(Address pc, Code* code)) {
Address constant_pool = code ? code->constant_pool() : NULL;
return target_address_at(pc, constant_pool);
}
INLINE(static void set_target_address_at(
Isolate* isolate, Address pc, Code* code, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
Address constant_pool = code ? code->constant_pool() : NULL;
set_target_address_at(isolate, pc, constant_pool, target,
icache_flush_mode);
}
// Return the code target address at a call site from the return address
// of that call in the instruction stream.
inline static Address target_address_from_return_address(Address pc);
// Given the address of the beginning of a call, return the address
// in the instruction stream that the call will return to.
INLINE(static Address return_address_from_call_start(Address pc));
// This sets the branch destination.
// This is for calls and branches within generated code.
inline static void deserialization_set_special_target_at(
Isolate* isolate, Address instruction_payload, Code* code,
Address target);
// This sets the internal reference at the pc.
inline static void deserialization_set_target_internal_reference_at(
Isolate* isolate, Address pc, Address target,
RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
// Size of an instruction.
static const int kInstrSize = sizeof(Instr);
// Here we are patching the address in the LUI/ORI instruction pair.
// These values are used in the serialization process and must be zero for
// PPC platform, as Code, Embedded Object or External-reference pointers
// are split across two consecutive instructions and don't exist separately
// in the code, so the serializer should not step forwards in memory after
// a target is resolved and written.
static const int kSpecialTargetSize = 0;
// Number of instructions to load an address via a mov sequence.
#if V8_TARGET_ARCH_PPC64
static const int kMovInstructionsConstantPool = 1;
static const int kMovInstructionsNoConstantPool = 5;
#if defined(V8_PPC_TAGGING_OPT)
static const int kTaggedLoadInstructions = 1;
#else
static const int kTaggedLoadInstructions = 2;
#endif
#else
static const int kMovInstructionsConstantPool = 1;
static const int kMovInstructionsNoConstantPool = 2;
static const int kTaggedLoadInstructions = 1;
#endif
static const int kMovInstructions = FLAG_enable_embedded_constant_pool
? kMovInstructionsConstantPool
: kMovInstructionsNoConstantPool;
// Distance between the instruction referring to the address of the call
// target and the return address.
// Call sequence is a FIXED_SEQUENCE:
// mov r8, @ call address
// mtlr r8
// blrl
// @ return address
static const int kCallTargetAddressOffset =
(kMovInstructions + 2) * kInstrSize;
// Distance between start of patched debug break slot and the emitted address
// to jump to.
// Patched debug break slot code is a FIXED_SEQUENCE:
// mov r0, <address>
// mtlr r0
// blrl
static const int kPatchDebugBreakSlotAddressOffset = 0 * kInstrSize;
// This is the length of the code sequence from SetDebugBreakAtSlot()
// FIXED_SEQUENCE
static const int kDebugBreakSlotInstructions =
kMovInstructionsNoConstantPool + 2;
static const int kDebugBreakSlotLength =
kDebugBreakSlotInstructions * kInstrSize;
static inline int encode_crbit(const CRegister& cr, enum CRBit crbit) {
return ((cr.code() * CRWIDTH) + crbit);
}
// ---------------------------------------------------------------------------
// Code generation
// Insert the smallest number of nop instructions
// possible to align the pc offset to a multiple
// of m. m must be a power of 2 (>= 4).
void Align(int m);
// Insert the smallest number of zero bytes possible to align the pc offset
// to a mulitple of m. m must be a power of 2 (>= 2).
void DataAlign(int m);
// Aligns code to something that's optimal for a jump target for the platform.
void CodeTargetAlign();
// Branch instructions
void bclr(BOfield bo, int condition_bit, LKBit lk);
void blr();
void bc(int branch_offset, BOfield bo, int condition_bit, LKBit lk = LeaveLK);
void b(int branch_offset, LKBit lk);
void bcctr(BOfield bo, int condition_bit, LKBit lk);
void bctr();
void bctrl();
// Convenience branch instructions using labels
void b(Label* L, LKBit lk = LeaveLK) { b(branch_offset(L), lk); }
inline CRegister cmpi_optimization(CRegister cr) {
// Check whether the branch is preceeded by an optimizable cmpi against 0.
// The cmpi can be deleted if it is also preceeded by an instruction that
// sets the register used by the compare and supports a dot form.
unsigned int sradi_mask = kOpcodeMask | kExt2OpcodeVariant2Mask;
unsigned int srawi_mask = kOpcodeMask | kExt2OpcodeMask;
int pos = pc_offset();
int cmpi_pos = pc_offset() - kInstrSize;
if (cmpi_pos > 0 && optimizable_cmpi_pos_ == cmpi_pos &&
cmpi_cr_.code() == cr.code() && last_bound_pos_ != pos) {
int xpos = cmpi_pos - kInstrSize;
int xinstr = instr_at(xpos);
int cmpi_ra = (instr_at(cmpi_pos) & 0x1f0000) >> 16;
// ra is at the same bit position for the three cases below.
int ra = (xinstr & 0x1f0000) >> 16;
if (cmpi_ra == ra) {
if ((xinstr & sradi_mask) == (EXT2 | SRADIX)) {
cr = cr0;
instr_at_put(xpos, xinstr | SetRC);
pc_ -= kInstrSize;
} else if ((xinstr & srawi_mask) == (EXT2 | SRAWIX)) {
cr = cr0;
instr_at_put(xpos, xinstr | SetRC);
pc_ -= kInstrSize;
} else if ((xinstr & kOpcodeMask) == ANDIx) {
cr = cr0;
pc_ -= kInstrSize;
// nothing to do here since andi. records.
}
// didn't match one of the above, must keep cmpwi.
}
}
return cr;
}
void bc_short(Condition cond, Label* L, CRegister cr = cr7,
LKBit lk = LeaveLK) {
DCHECK(cond != al);
DCHECK(cr.code() >= 0 && cr.code() <= 7);
cr = cmpi_optimization(cr);
int b_offset = branch_offset(L);
switch (cond) {
case eq:
bc(b_offset, BT, encode_crbit(cr, CR_EQ), lk);
break;
case ne:
bc(b_offset, BF, encode_crbit(cr, CR_EQ), lk);
break;
case gt:
bc(b_offset, BT, encode_crbit(cr, CR_GT), lk);
break;
case le:
bc(b_offset, BF, encode_crbit(cr, CR_GT), lk);
break;
case lt:
bc(b_offset, BT, encode_crbit(cr, CR_LT), lk);
break;
case ge:
bc(b_offset, BF, encode_crbit(cr, CR_LT), lk);
break;
case unordered:
bc(b_offset, BT, encode_crbit(cr, CR_FU), lk);
break;
case ordered:
bc(b_offset, BF, encode_crbit(cr, CR_FU), lk);
break;
case overflow:
bc(b_offset, BT, encode_crbit(cr, CR_SO), lk);
break;
case nooverflow:
bc(b_offset, BF, encode_crbit(cr, CR_SO), lk);
break;
default:
UNIMPLEMENTED();
}
}
void bclr(Condition cond, CRegister cr = cr7, LKBit lk = LeaveLK) {
DCHECK(cond != al);
DCHECK(cr.code() >= 0 && cr.code() <= 7);
cr = cmpi_optimization(cr);
switch (cond) {
case eq:
bclr(BT, encode_crbit(cr, CR_EQ), lk);
break;
case ne:
bclr(BF, encode_crbit(cr, CR_EQ), lk);
break;
case gt:
bclr(BT, encode_crbit(cr, CR_GT), lk);
break;
case le:
bclr(BF, encode_crbit(cr, CR_GT), lk);
break;
case lt:
bclr(BT, encode_crbit(cr, CR_LT), lk);
break;
case ge:
bclr(BF, encode_crbit(cr, CR_LT), lk);
break;
case unordered:
bclr(BT, encode_crbit(cr, CR_FU), lk);
break;
case ordered:
bclr(BF, encode_crbit(cr, CR_FU), lk);
break;
case overflow:
bclr(BT, encode_crbit(cr, CR_SO), lk);
break;
case nooverflow:
bclr(BF, encode_crbit(cr, CR_SO), lk);
break;
default:
UNIMPLEMENTED();
}
}
void isel(Register rt, Register ra, Register rb, int cb);
void isel(Condition cond, Register rt, Register ra, Register rb,
CRegister cr = cr7) {
DCHECK(cond != al);
DCHECK(cr.code() >= 0 && cr.code() <= 7);
cr = cmpi_optimization(cr);
switch (cond) {
case eq:
isel(rt, ra, rb, encode_crbit(cr, CR_EQ));
break;
case ne:
isel(rt, rb, ra, encode_crbit(cr, CR_EQ));
break;
case gt:
isel(rt, ra, rb, encode_crbit(cr, CR_GT));
break;
case le:
isel(rt, rb, ra, encode_crbit(cr, CR_GT));
break;
case lt:
isel(rt, ra, rb, encode_crbit(cr, CR_LT));
break;
case ge:
isel(rt, rb, ra, encode_crbit(cr, CR_LT));
break;
case unordered:
isel(rt, ra, rb, encode_crbit(cr, CR_FU));
break;
case ordered:
isel(rt, rb, ra, encode_crbit(cr, CR_FU));
break;
case overflow:
isel(rt, ra, rb, encode_crbit(cr, CR_SO));
break;
case nooverflow:
isel(rt, rb, ra, encode_crbit(cr, CR_SO));
break;
default:
UNIMPLEMENTED();
}
}
void b(Condition cond, Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
if (cond == al) {
b(L, lk);
return;
}
if ((L->is_bound() && is_near(L, cond)) || !is_trampoline_emitted()) {
bc_short(cond, L, cr, lk);
return;
}
Label skip;
Condition neg_cond = NegateCondition(cond);
bc_short(neg_cond, &skip, cr);
b(L, lk);
bind(&skip);
}
void bne(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
b(ne, L, cr, lk);
}
void beq(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
b(eq, L, cr, lk);
}
void blt(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
b(lt, L, cr, lk);
}
void bge(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
b(ge, L, cr, lk);
}
void ble(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
b(le, L, cr, lk);
}
void bgt(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
b(gt, L, cr, lk);
}
void bunordered(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
b(unordered, L, cr, lk);
}
void bordered(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
b(ordered, L, cr, lk);
}
void boverflow(Label* L, CRegister cr = cr0, LKBit lk = LeaveLK) {
b(overflow, L, cr, lk);
}
void bnooverflow(Label* L, CRegister cr = cr0, LKBit lk = LeaveLK) {
b(nooverflow, L, cr, lk);
}
// Decrement CTR; branch if CTR != 0
void bdnz(Label* L, LKBit lk = LeaveLK) {
bc(branch_offset(L), DCBNZ, 0, lk);
}
// Data-processing instructions
void sub(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
RCBit r = LeaveRC);
void subc(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
RCBit r = LeaveRC);
void sube(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
RCBit r = LeaveRC);
void subfic(Register dst, Register src, const Operand& imm);
void add(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
RCBit r = LeaveRC);
void addc(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
RCBit r = LeaveRC);
void adde(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
RCBit r = LeaveRC);
void addze(Register dst, Register src1, OEBit o = LeaveOE, RCBit r = LeaveRC);
void mullw(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
RCBit r = LeaveRC);
void mulhw(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
void mulhwu(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
void divw(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
RCBit r = LeaveRC);
void divwu(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
RCBit r = LeaveRC);
void addi(Register dst, Register src, const Operand& imm);
void addis(Register dst, Register src, const Operand& imm);
void addic(Register dst, Register src, const Operand& imm);
void and_(Register dst, Register src1, Register src2, RCBit rc = LeaveRC);
void andc(Register dst, Register src1, Register src2, RCBit rc = LeaveRC);
void andi(Register ra, Register rs, const Operand& imm);
void andis(Register ra, Register rs, const Operand& imm);
void nor(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
void notx(Register dst, Register src, RCBit r = LeaveRC);
void ori(Register dst, Register src, const Operand& imm);
void oris(Register dst, Register src, const Operand& imm);
void orx(Register dst, Register src1, Register src2, RCBit rc = LeaveRC);
void orc(Register dst, Register src1, Register src2, RCBit rc = LeaveRC);
void xori(Register dst, Register src, const Operand& imm);
void xoris(Register ra, Register rs, const Operand& imm);
void xor_(Register dst, Register src1, Register src2, RCBit rc = LeaveRC);
void cmpi(Register src1, const Operand& src2, CRegister cr = cr7);
void cmpli(Register src1, const Operand& src2, CRegister cr = cr7);
void cmpwi(Register src1, const Operand& src2, CRegister cr = cr7);
void cmplwi(Register src1, const Operand& src2, CRegister cr = cr7);
void li(Register dst, const Operand& src);
void lis(Register dst, const Operand& imm);
void mr(Register dst, Register src);
void lbz(Register dst, const MemOperand& src);
void lbzx(Register dst, const MemOperand& src);
void lbzux(Register dst, const MemOperand& src);
void lhz(Register dst, const MemOperand& src);
void lhzx(Register dst, const MemOperand& src);
void lhzux(Register dst, const MemOperand& src);
void lha(Register dst, const MemOperand& src);
void lhax(Register dst, const MemOperand& src);
void lwz(Register dst, const MemOperand& src);
void lwzu(Register dst, const MemOperand& src);
void lwzx(Register dst, const MemOperand& src);
void lwzux(Register dst, const MemOperand& src);
void lwa(Register dst, const MemOperand& src);
void lwax(Register dst, const MemOperand& src);
void ldbrx(Register dst, const MemOperand& src);
void lwbrx(Register dst, const MemOperand& src);
void lhbrx(Register dst, const MemOperand& src);
void stb(Register dst, const MemOperand& src);
void stbx(Register dst, const MemOperand& src);
void stbux(Register dst, const MemOperand& src);
void sth(Register dst, const MemOperand& src);
void sthx(Register dst, const MemOperand& src);
void sthux(Register dst, const MemOperand& src);
void stw(Register dst, const MemOperand& src);
void stwu(Register dst, const MemOperand& src);
void stwx(Register rs, const MemOperand& src);
void stwux(Register rs, const MemOperand& src);
void extsb(Register rs, Register ra, RCBit r = LeaveRC);
void extsh(Register rs, Register ra, RCBit r = LeaveRC);
void extsw(Register rs, Register ra, RCBit r = LeaveRC);
void neg(Register rt, Register ra, OEBit o = LeaveOE, RCBit c = LeaveRC);
#if V8_TARGET_ARCH_PPC64
void ld(Register rd, const MemOperand& src);
void ldx(Register rd, const MemOperand& src);
void ldu(Register rd, const MemOperand& src);
void ldux(Register rd, const MemOperand& src);
void std(Register rs, const MemOperand& src);
void stdx(Register rs, const MemOperand& src);
void stdu(Register rs, const MemOperand& src);
void stdux(Register rs, const MemOperand& src);
void rldic(Register dst, Register src, int sh, int mb, RCBit r = LeaveRC);
void rldicl(Register dst, Register src, int sh, int mb, RCBit r = LeaveRC);
void rldcl(Register ra, Register rs, Register rb, int mb, RCBit r = LeaveRC);
void rldicr(Register dst, Register src, int sh, int me, RCBit r = LeaveRC);
void rldimi(Register dst, Register src, int sh, int mb, RCBit r = LeaveRC);
void sldi(Register dst, Register src, const Operand& val, RCBit rc = LeaveRC);
void srdi(Register dst, Register src, const Operand& val, RCBit rc = LeaveRC);
void clrrdi(Register dst, Register src, const Operand& val,
RCBit rc = LeaveRC);
void clrldi(Register dst, Register src, const Operand& val,
RCBit rc = LeaveRC);
void sradi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
void srd(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
void sld(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
void srad(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
void rotld(Register ra, Register rs, Register rb, RCBit r = LeaveRC);
void rotldi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
void rotrdi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
void cntlzd_(Register dst, Register src, RCBit rc = LeaveRC);
void popcntd(Register dst, Register src);
void mulld(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
RCBit r = LeaveRC);
void divd(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
RCBit r = LeaveRC);
void divdu(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
RCBit r = LeaveRC);
#endif
void rlwinm(Register ra, Register rs, int sh, int mb, int me,
RCBit rc = LeaveRC);
void rlwimi(Register ra, Register rs, int sh, int mb, int me,
RCBit rc = LeaveRC);
void rlwnm(Register ra, Register rs, Register rb, int mb, int me,
RCBit rc = LeaveRC);
void slwi(Register dst, Register src, const Operand& val, RCBit rc = LeaveRC);
void srwi(Register dst, Register src, const Operand& val, RCBit rc = LeaveRC);
void clrrwi(Register dst, Register src, const Operand& val,
RCBit rc = LeaveRC);
void clrlwi(Register dst, Register src, const Operand& val,
RCBit rc = LeaveRC);
void srawi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
void srw(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
void slw(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
void sraw(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
void rotlw(Register ra, Register rs, Register rb, RCBit r = LeaveRC);
void rotlwi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
void rotrwi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
void cntlzw_(Register dst, Register src, RCBit rc = LeaveRC);
void popcntw(Register dst, Register src);
void subi(Register dst, Register src1, const Operand& src2);
void cmp(Register src1, Register src2, CRegister cr = cr7);
void cmpl(Register src1, Register src2, CRegister cr = cr7);
void cmpw(Register src1, Register src2, CRegister cr = cr7);
void cmplw(Register src1, Register src2, CRegister cr = cr7);
void mov(Register dst, const Operand& src);
void bitwise_mov(Register dst, intptr_t value);
void bitwise_mov32(Register dst, int32_t value);
void bitwise_add32(Register dst, Register src, int32_t value);
// Load the position of the label relative to the generated code object
// pointer in a register.
void mov_label_offset(Register dst, Label* label);
// dst = base + label position + delta
void add_label_offset(Register dst, Register base, Label* label,
int delta = 0);
// Load the address of the label in a register and associate with an
// internal reference relocation.
void mov_label_addr(Register dst, Label* label);
// Emit the address of the label (i.e. a jump table entry) and associate with
// an internal reference relocation.
void emit_label_addr(Label* label);
// Multiply instructions
void mul(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
RCBit r = LeaveRC);
// Miscellaneous arithmetic instructions
// Special register access
void crxor(int bt, int ba, int bb);
void crclr(int bt) { crxor(bt, bt, bt); }
void creqv(int bt, int ba, int bb);
void crset(int bt) { creqv(bt, bt, bt); }
void mflr(Register dst);
void mtlr(Register src);
void mtctr(Register src);
void mtxer(Register src);
void mcrfs(CRegister cr, FPSCRBit bit);
void mfcr(Register dst);
#if V8_TARGET_ARCH_PPC64
void mffprd(Register dst, DoubleRegister src);
void mffprwz(Register dst, DoubleRegister src);
void mtfprd(DoubleRegister dst, Register src);
void mtfprwz(DoubleRegister dst, Register src);
void mtfprwa(DoubleRegister dst, Register src);
#endif
void function_descriptor();
// Exception-generating instructions and debugging support
void stop(const char* msg, Condition cond = al,
int32_t code = kDefaultStopCode, CRegister cr = cr7);
void bkpt(uint32_t imm16); // v5 and above
void dcbf(Register ra, Register rb);
void sync();
void lwsync();
void icbi(Register ra, Register rb);
void isync();
// Support for floating point
void lfd(const DoubleRegister frt, const MemOperand& src);
void lfdu(const DoubleRegister frt, const MemOperand& src);
void lfdx(const DoubleRegister frt, const MemOperand& src);
void lfdux(const DoubleRegister frt, const MemOperand& src);
void lfs(const DoubleRegister frt, const MemOperand& src);
void lfsu(const DoubleRegister frt, const MemOperand& src);
void lfsx(const DoubleRegister frt, const MemOperand& src);
void lfsux(const DoubleRegister frt, const MemOperand& src);
void stfd(const DoubleRegister frs, const MemOperand& src);
void stfdu(const DoubleRegister frs, const MemOperand& src);
void stfdx(const DoubleRegister frs, const MemOperand& src);
void stfdux(const DoubleRegister frs, const MemOperand& src);
void stfs(const DoubleRegister frs, const MemOperand& src);
void stfsu(const DoubleRegister frs, const MemOperand& src);
void stfsx(const DoubleRegister frs, const MemOperand& src);
void stfsux(const DoubleRegister frs, const MemOperand& src);
void fadd(const DoubleRegister frt, const DoubleRegister fra,
const DoubleRegister frb, RCBit rc = LeaveRC);
void fsub(const DoubleRegister frt, const DoubleRegister fra,
const DoubleRegister frb, RCBit rc = LeaveRC);
void fdiv(const DoubleRegister frt, const DoubleRegister fra,
const DoubleRegister frb, RCBit rc = LeaveRC);
void fmul(const DoubleRegister frt, const DoubleRegister fra,
const DoubleRegister frc, RCBit rc = LeaveRC);
void fcmpu(const DoubleRegister fra, const DoubleRegister frb,
CRegister cr = cr7);
void fmr(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void fctiwz(const DoubleRegister frt, const DoubleRegister frb);
void fctiw(const DoubleRegister frt, const DoubleRegister frb);
void frin(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void friz(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void frip(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void frim(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void frsp(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void fcfid(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void fcfidu(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void fcfidus(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void fcfids(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void fctid(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void fctidz(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void fctidu(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void fctiduz(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void fsel(const DoubleRegister frt, const DoubleRegister fra,
const DoubleRegister frc, const DoubleRegister frb,
RCBit rc = LeaveRC);
void fneg(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void mtfsb0(FPSCRBit bit, RCBit rc = LeaveRC);
void mtfsb1(FPSCRBit bit, RCBit rc = LeaveRC);
void mtfsfi(int bf, int immediate, RCBit rc = LeaveRC);
void mffs(const DoubleRegister frt, RCBit rc = LeaveRC);
void mtfsf(const DoubleRegister frb, bool L = 1, int FLM = 0, bool W = 0,
RCBit rc = LeaveRC);
void fsqrt(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void fabs(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc = LeaveRC);
void fmadd(const DoubleRegister frt, const DoubleRegister fra,
const DoubleRegister frc, const DoubleRegister frb,
RCBit rc = LeaveRC);
void fmsub(const DoubleRegister frt, const DoubleRegister fra,
const DoubleRegister frc, const DoubleRegister frb,
RCBit rc = LeaveRC);
// Pseudo instructions
// Different nop operations are used by the code generator to detect certain
// states of the generated code.
enum NopMarkerTypes {
NON_MARKING_NOP = 0,
GROUP_ENDING_NOP,
DEBUG_BREAK_NOP,
// IC markers.
PROPERTY_ACCESS_INLINED,
PROPERTY_ACCESS_INLINED_CONTEXT,
PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
// Helper values.
LAST_CODE_MARKER,
FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
};
void nop(int type = 0); // 0 is the default non-marking type.
void push(Register src) {
#if V8_TARGET_ARCH_PPC64
stdu(src, MemOperand(sp, -kPointerSize));
#else
stwu(src, MemOperand(sp, -kPointerSize));
#endif
}
void pop(Register dst) {
#if V8_TARGET_ARCH_PPC64
ld(dst, MemOperand(sp));
#else
lwz(dst, MemOperand(sp));
#endif
addi(sp, sp, Operand(kPointerSize));
}
void pop() { addi(sp, sp, Operand(kPointerSize)); }
// Jump unconditionally to given label.
void jmp(Label* L) { b(L); }
// Check the code size generated from label to here.
int SizeOfCodeGeneratedSince(Label* label) {
return pc_offset() - label->pos();
}
// Check the number of instructions generated from label to here.
int InstructionsGeneratedSince(Label* label) {
return SizeOfCodeGeneratedSince(label) / kInstrSize;
}
// Class for scoping postponing the trampoline pool generation.
class BlockTrampolinePoolScope {
public:
explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
assem_->StartBlockTrampolinePool();
}
~BlockTrampolinePoolScope() { assem_->EndBlockTrampolinePool(); }
private:
Assembler* assem_;
DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
};
// Class for scoping disabling constant pool entry merging
class BlockConstantPoolEntrySharingScope {
public:
explicit BlockConstantPoolEntrySharingScope(Assembler* assem)
: assem_(assem) {
assem_->StartBlockConstantPoolEntrySharing();
}
~BlockConstantPoolEntrySharingScope() {
assem_->EndBlockConstantPoolEntrySharing();
}
private:
Assembler* assem_;
DISALLOW_IMPLICIT_CONSTRUCTORS(BlockConstantPoolEntrySharingScope);
};
// Debugging
// Mark generator continuation.
void RecordGeneratorContinuation();
// Mark address of a debug break slot.
void RecordDebugBreakSlot(RelocInfo::Mode mode);
// Record the AST id of the CallIC being compiled, so that it can be placed
// in the relocation information.
void SetRecordedAstId(TypeFeedbackId ast_id) {
// Causes compiler to fail
// DCHECK(recorded_ast_id_.IsNone());
recorded_ast_id_ = ast_id;
}
TypeFeedbackId RecordedAstId() {
// Causes compiler to fail
// DCHECK(!recorded_ast_id_.IsNone());
return recorded_ast_id_;
}
void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
// Record a comment relocation entry that can be used by a disassembler.
// Use --code-comments to enable.
void RecordComment(const char* msg);
// Record a deoptimization reason that can be used by a log or cpu profiler.
// Use --trace-deopt to enable.
void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
int id);
// Writes a single byte or word of data in the code stream. Used
// for inline tables, e.g., jump-tables.
void db(uint8_t data);
void dd(uint32_t data);
void dq(uint64_t data);
void dp(uintptr_t data);
// Read/patch instructions
Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
void instr_at_put(int pos, Instr instr) {
*reinterpret_cast<Instr*>(buffer_ + pos) = instr;
}
static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
static void instr_at_put(byte* pc, Instr instr) {
*reinterpret_cast<Instr*>(pc) = instr;
}
static Condition GetCondition(Instr instr);
static bool IsLis(Instr instr);
static bool IsLi(Instr instr);
static bool IsAddic(Instr instr);
static bool IsOri(Instr instr);
static bool IsBranch(Instr instr);
static Register GetRA(Instr instr);
static Register GetRB(Instr instr);
#if V8_TARGET_ARCH_PPC64
static bool Is64BitLoadIntoR12(Instr instr1, Instr instr2, Instr instr3,
Instr instr4, Instr instr5);
#else
static bool Is32BitLoadIntoR12(Instr instr1, Instr instr2);
#endif
static bool IsCmpRegister(Instr instr);
static bool IsCmpImmediate(Instr instr);
static bool IsRlwinm(Instr instr);
static bool IsAndi(Instr instr);
#if V8_TARGET_ARCH_PPC64
static bool IsRldicl(Instr instr);
#endif
static bool IsCrSet(Instr instr);
static Register GetCmpImmediateRegister(Instr instr);
static int GetCmpImmediateRawImmediate(Instr instr);
static bool IsNop(Instr instr, int type = NON_MARKING_NOP);
// Postpone the generation of the trampoline pool for the specified number of
// instructions.
void BlockTrampolinePoolFor(int instructions);
void CheckTrampolinePool();
// For mov. Return the number of actual instructions required to
// load the operand into a register. This can be anywhere from
// one (constant pool small section) to five instructions (full
// 64-bit sequence).
//
// The value returned is only valid as long as no entries are added to the
// constant pool between this call and the actual instruction being emitted.
int instructions_required_for_mov(Register dst, const Operand& src) const;
// Decide between using the constant pool vs. a mov immediate sequence.
bool use_constant_pool_for_mov(Register dst, const Operand& src,
bool canOptimize) const;
// The code currently calls CheckBuffer() too often. This has the side
// effect of randomly growing the buffer in the middle of multi-instruction
// sequences.
//
// This function allows outside callers to check and grow the buffer
void EnsureSpaceFor(int space_needed);
int EmitConstantPool() { return constant_pool_builder_.Emit(this); }
bool ConstantPoolAccessIsInOverflow() const {
return constant_pool_builder_.NextAccess(ConstantPoolEntry::INTPTR) ==
ConstantPoolEntry::OVERFLOWED;
}
Label* ConstantPoolPosition() {
return constant_pool_builder_.EmittedPosition();
}
void EmitRelocations();
protected:
// Relocation for a type-recording IC has the AST id added to it. This
// member variable is a way to pass the information from the call site to
// the relocation info.
TypeFeedbackId recorded_ast_id_;
int buffer_space() const { return reloc_info_writer.pos() - pc_; }
// Decode instruction(s) at pos and return backchain to previous
// label reference or kEndOfChain.
int target_at(int pos);
// Patch instruction(s) at pos to target target_pos (e.g. branch)
void target_at_put(int pos, int target_pos, bool* is_branch = nullptr);
// Record reloc info for current pc_
void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
ConstantPoolEntry::Access ConstantPoolAddEntry(RelocInfo::Mode rmode,
intptr_t value) {
bool sharing_ok = RelocInfo::IsNone(rmode) ||
!(serializer_enabled() || rmode < RelocInfo::CELL ||
is_constant_pool_entry_sharing_blocked());
return constant_pool_builder_.AddEntry(pc_offset(), value, sharing_ok);
}
ConstantPoolEntry::Access ConstantPoolAddEntry(double value) {
return constant_pool_builder_.AddEntry(pc_offset(), value);
}
// Block the emission of the trampoline pool before pc_offset.
void BlockTrampolinePoolBefore(int pc_offset) {
if (no_trampoline_pool_before_ < pc_offset)
no_trampoline_pool_before_ = pc_offset;
}
void StartBlockTrampolinePool() { trampoline_pool_blocked_nesting_++; }
void EndBlockTrampolinePool() {
int count = --trampoline_pool_blocked_nesting_;
if (count == 0) CheckTrampolinePoolQuick();
}
bool is_trampoline_pool_blocked() const {
return trampoline_pool_blocked_nesting_ > 0;
}
void StartBlockConstantPoolEntrySharing() {
constant_pool_entry_sharing_blocked_nesting_++;
}
void EndBlockConstantPoolEntrySharing() {
constant_pool_entry_sharing_blocked_nesting_--;
}
bool is_constant_pool_entry_sharing_blocked() const {
return constant_pool_entry_sharing_blocked_nesting_ > 0;
}
bool has_exception() const { return internal_trampoline_exception_; }
bool is_trampoline_emitted() const { return trampoline_emitted_; }
private:
// Code generation
// The relocation writer's position is at least kGap bytes below the end of
// the generated instructions. This is so that multi-instruction sequences do
// not have to check for overflow. The same is true for writes of large
// relocation info entries.
static const int kGap = 32;
// Repeated checking whether the trampoline pool should be emitted is rather
// expensive. By default we only check again once a number of instructions
// has been generated.
int next_trampoline_check_; // pc offset of next buffer check.
// Emission of the trampoline pool may be blocked in some code sequences.
int trampoline_pool_blocked_nesting_; // Block emission if this is not zero.
int no_trampoline_pool_before_; // Block emission before this pc offset.
// Do not share constant pool entries.
int constant_pool_entry_sharing_blocked_nesting_;
// Relocation info generation
// Each relocation is encoded as a variable size value
static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
RelocInfoWriter reloc_info_writer;
std::vector<DeferredRelocInfo> relocations_;
// The bound position, before this we cannot do instruction elimination.
int last_bound_pos_;
// Optimizable cmpi information.
int optimizable_cmpi_pos_;
CRegister cmpi_cr_;
ConstantPoolBuilder constant_pool_builder_;
// Code emission
inline void CheckBuffer();
void GrowBuffer(int needed = 0);
inline void emit(Instr x);
inline void TrackBranch();
inline void UntrackBranch();
inline void CheckTrampolinePoolQuick();
// Instruction generation
void a_form(Instr instr, DoubleRegister frt, DoubleRegister fra,
DoubleRegister frb, RCBit r);
void d_form(Instr instr, Register rt, Register ra, const intptr_t val,
bool signed_disp);
void x_form(Instr instr, Register ra, Register rs, Register rb, RCBit r);
void xo_form(Instr instr, Register rt, Register ra, Register rb, OEBit o,
RCBit r);
void md_form(Instr instr, Register ra, Register rs, int shift, int maskbit,
RCBit r);
void mds_form(Instr instr, Register ra, Register rs, Register rb, int maskbit,
RCBit r);
// Labels
void print(Label* L);
int max_reach_from(int pos);
void bind_to(Label* L, int pos);
void next(Label* L);
class Trampoline {
public:
Trampoline() {
next_slot_ = 0;
free_slot_count_ = 0;
}
Trampoline(int start, int slot_count) {
next_slot_ = start;
free_slot_count_ = slot_count;
}
int take_slot() {
int trampoline_slot = kInvalidSlotPos;
if (free_slot_count_ <= 0) {
// We have run out of space on trampolines.
// Make sure we fail in debug mode, so we become aware of each case
// when this happens.
DCHECK(0);
// Internal exception will be caught.
} else {
trampoline_slot = next_slot_;
free_slot_count_--;
next_slot_ += kTrampolineSlotsSize;
}
return trampoline_slot;
}
private:
int next_slot_;
int free_slot_count_;
};
int32_t get_trampoline_entry();
int tracked_branch_count_;
// If trampoline is emitted, generated code is becoming large. As
// this is already a slow case which can possibly break our code
// generation for the extreme case, we use this information to
// trigger different mode of branch instruction generation, where we
// no longer use a single branch instruction.
bool trampoline_emitted_;
static const int kTrampolineSlotsSize = kInstrSize;
static const int kMaxCondBranchReach = (1 << (16 - 1)) - 1;
static const int kMaxBlockTrampolineSectionSize = 64 * kInstrSize;
static const int kInvalidSlotPos = -1;
Trampoline trampoline_;
bool internal_trampoline_exception_;
friend class RegExpMacroAssemblerPPC;
friend class RelocInfo;
friend class CodePatcher;
friend class BlockTrampolinePoolScope;
friend class EnsureSpace;
};
class EnsureSpace BASE_EMBEDDED {
public:
explicit EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
};
} // namespace internal
} // namespace v8
#endif // V8_PPC_ASSEMBLER_PPC_H_