// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Declares a Simulator for MIPS instructions if we are not generating a native
// MIPS binary. This Simulator allows us to run and debug MIPS code generation
// on regular desktop machines.
// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
// which will start execution in the Simulator or forwards to the real entry
// on a MIPS HW platform.
#ifndef V8_MIPS_SIMULATOR_MIPS_H_
#define V8_MIPS_SIMULATOR_MIPS_H_
#include "src/allocation.h"
#include "src/mips64/constants-mips64.h"
#if !defined(USE_SIMULATOR)
// Running without a simulator on a native mips platform.
namespace v8 {
namespace internal {
// When running without a simulator we call the entry directly.
#define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
entry(p0, p1, p2, p3, p4)
// Call the generated regexp code directly. The code at the entry address
// should act as a function matching the type arm_regexp_matcher.
// The fifth (or ninth) argument is a dummy that reserves the space used for
// the return address added by the ExitFrame in native calls.
typedef int (*mips_regexp_matcher)(String* input,
int64_t start_offset,
const byte* input_start,
const byte* input_end,
int* output,
int64_t output_size,
Address stack_base,
int64_t direct_call,
void* return_address,
Isolate* isolate);
#define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
p7, p8) \
(FUNCTION_CAST<mips_regexp_matcher>(entry)(p0, p1, p2, p3, p4, p5, p6, p7, \
NULL, p8))
// The stack limit beyond which we will throw stack overflow errors in
// generated code. Because generated code on mips uses the C stack, we
// just use the C stack limit.
class SimulatorStack : public v8::internal::AllStatic {
public:
static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
uintptr_t c_limit) {
return c_limit;
}
static inline uintptr_t RegisterCTryCatch(Isolate* isolate,
uintptr_t try_catch_address) {
USE(isolate);
return try_catch_address;
}
static inline void UnregisterCTryCatch(Isolate* isolate) { USE(isolate); }
};
} // namespace internal
} // namespace v8
// Calculated the stack limit beyond which we will throw stack overflow errors.
// This macro must be called from a C++ method. It relies on being able to take
// the address of "this" to get a value on the current execution stack and then
// calculates the stack limit based on that value.
// NOTE: The check for overflow is not safe as there is no guarantee that the
// running thread has its stack in all memory up to address 0x00000000.
#define GENERATED_CODE_STACK_LIMIT(limit) \
(reinterpret_cast<uintptr_t>(this) >= limit ? \
reinterpret_cast<uintptr_t>(this) - limit : 0)
#else // !defined(USE_SIMULATOR)
// Running with a simulator.
#include "src/assembler.h"
#include "src/base/hashmap.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Utility functions
class CachePage {
public:
static const int LINE_VALID = 0;
static const int LINE_INVALID = 1;
static const int kPageShift = 12;
static const int kPageSize = 1 << kPageShift;
static const int kPageMask = kPageSize - 1;
static const int kLineShift = 2; // The cache line is only 4 bytes right now.
static const int kLineLength = 1 << kLineShift;
static const int kLineMask = kLineLength - 1;
CachePage() {
memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
}
char* ValidityByte(int offset) {
return &validity_map_[offset >> kLineShift];
}
char* CachedData(int offset) {
return &data_[offset];
}
private:
char data_[kPageSize]; // The cached data.
static const int kValidityMapSize = kPageSize >> kLineShift;
char validity_map_[kValidityMapSize]; // One byte per line.
};
class SimInstructionBase : public InstructionBase {
public:
Type InstructionType() const { return type_; }
inline Instruction* instr() const { return instr_; }
inline int32_t operand() const { return operand_; }
protected:
SimInstructionBase() : operand_(-1), instr_(nullptr), type_(kUnsupported) {}
explicit SimInstructionBase(Instruction* instr) {}
int32_t operand_;
Instruction* instr_;
Type type_;
private:
DISALLOW_ASSIGN(SimInstructionBase);
};
class SimInstruction : public InstructionGetters<SimInstructionBase> {
public:
SimInstruction() {}
explicit SimInstruction(Instruction* instr) { *this = instr; }
SimInstruction& operator=(Instruction* instr) {
operand_ = *reinterpret_cast<const int32_t*>(instr);
instr_ = instr;
type_ = InstructionBase::InstructionType();
DCHECK(reinterpret_cast<void*>(&operand_) == this);
return *this;
}
};
class Simulator {
public:
friend class MipsDebugger;
// Registers are declared in order. See SMRL chapter 2.
enum Register {
no_reg = -1,
zero_reg = 0,
at,
v0, v1,
a0, a1, a2, a3, a4, a5, a6, a7,
t0, t1, t2, t3,
s0, s1, s2, s3, s4, s5, s6, s7,
t8, t9,
k0, k1,
gp,
sp,
s8,
ra,
// LO, HI, and pc.
LO,
HI,
pc, // pc must be the last register.
kNumSimuRegisters,
// aliases
fp = s8
};
// Coprocessor registers.
// Generated code will always use doubles. So we will only use even registers.
enum FPURegister {
f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
f12, f13, f14, f15, // f12 and f14 are arguments FPURegisters.
f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
f26, f27, f28, f29, f30, f31,
kNumFPURegisters
};
explicit Simulator(Isolate* isolate);
~Simulator();
// The currently executing Simulator instance. Potentially there can be one
// for each native thread.
static Simulator* current(v8::internal::Isolate* isolate);
// Accessors for register state. Reading the pc value adheres to the MIPS
// architecture specification and is off by a 8 from the currently executing
// instruction.
void set_register(int reg, int64_t value);
void set_register_word(int reg, int32_t value);
void set_dw_register(int dreg, const int* dbl);
int64_t get_register(int reg) const;
double get_double_from_register_pair(int reg);
// Same for FPURegisters.
void set_fpu_register(int fpureg, int64_t value);
void set_fpu_register_word(int fpureg, int32_t value);
void set_fpu_register_hi_word(int fpureg, int32_t value);
void set_fpu_register_float(int fpureg, float value);
void set_fpu_register_double(int fpureg, double value);
void set_fpu_register_invalid_result64(float original, float rounded);
void set_fpu_register_invalid_result(float original, float rounded);
void set_fpu_register_word_invalid_result(float original, float rounded);
void set_fpu_register_invalid_result64(double original, double rounded);
void set_fpu_register_invalid_result(double original, double rounded);
void set_fpu_register_word_invalid_result(double original, double rounded);
int64_t get_fpu_register(int fpureg) const;
int32_t get_fpu_register_word(int fpureg) const;
int32_t get_fpu_register_signed_word(int fpureg) const;
int32_t get_fpu_register_hi_word(int fpureg) const;
float get_fpu_register_float(int fpureg) const;
double get_fpu_register_double(int fpureg) const;
void set_fcsr_bit(uint32_t cc, bool value);
bool test_fcsr_bit(uint32_t cc);
bool set_fcsr_round_error(double original, double rounded);
bool set_fcsr_round64_error(double original, double rounded);
bool set_fcsr_round_error(float original, float rounded);
bool set_fcsr_round64_error(float original, float rounded);
void round_according_to_fcsr(double toRound, double& rounded,
int32_t& rounded_int, double fs);
void round64_according_to_fcsr(double toRound, double& rounded,
int64_t& rounded_int, double fs);
void round_according_to_fcsr(float toRound, float& rounded,
int32_t& rounded_int, float fs);
void round64_according_to_fcsr(float toRound, float& rounded,
int64_t& rounded_int, float fs);
void set_fcsr_rounding_mode(FPURoundingMode mode);
unsigned int get_fcsr_rounding_mode();
// Special case of set_register and get_register to access the raw PC value.
void set_pc(int64_t value);
int64_t get_pc() const;
Address get_sp() const {
return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
}
// Accessor to the internal simulator stack area.
uintptr_t StackLimit(uintptr_t c_limit) const;
// Executes MIPS instructions until the PC reaches end_sim_pc.
void Execute();
// Call on program start.
static void Initialize(Isolate* isolate);
static void TearDown(base::CustomMatcherHashMap* i_cache, Redirection* first);
// V8 generally calls into generated JS code with 5 parameters and into
// generated RegExp code with 7 parameters. This is a convenience function,
// which sets up the simulator state and grabs the result on return.
int64_t Call(byte* entry, int argument_count, ...);
// Alternative: call a 2-argument double function.
double CallFP(byte* entry, double d0, double d1);
// Push an address onto the JS stack.
uintptr_t PushAddress(uintptr_t address);
// Pop an address from the JS stack.
uintptr_t PopAddress();
// Debugger input.
void set_last_debugger_input(char* input);
char* last_debugger_input() { return last_debugger_input_; }
// ICache checking.
static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start,
size_t size);
// Returns true if pc register contains one of the 'special_values' defined
// below (bad_ra, end_sim_pc).
bool has_bad_pc() const;
private:
enum special_values {
// Known bad pc value to ensure that the simulator does not execute
// without being properly setup.
bad_ra = -1,
// A pc value used to signal the simulator to stop execution. Generally
// the ra is set to this value on transition from native C code to
// simulated execution, so that the simulator can "return" to the native
// C code.
end_sim_pc = -2,
// Unpredictable value.
Unpredictable = 0xbadbeaf
};
// Unsupported instructions use Format to print an error and stop execution.
void Format(Instruction* instr, const char* format);
// Read and write memory.
inline uint32_t ReadBU(int64_t addr);
inline int32_t ReadB(int64_t addr);
inline void WriteB(int64_t addr, uint8_t value);
inline void WriteB(int64_t addr, int8_t value);
inline uint16_t ReadHU(int64_t addr, Instruction* instr);
inline int16_t ReadH(int64_t addr, Instruction* instr);
// Note: Overloaded on the sign of the value.
inline void WriteH(int64_t addr, uint16_t value, Instruction* instr);
inline void WriteH(int64_t addr, int16_t value, Instruction* instr);
inline uint32_t ReadWU(int64_t addr, Instruction* instr);
inline int32_t ReadW(int64_t addr, Instruction* instr);
inline void WriteW(int64_t addr, int32_t value, Instruction* instr);
inline int64_t Read2W(int64_t addr, Instruction* instr);
inline void Write2W(int64_t addr, int64_t value, Instruction* instr);
inline double ReadD(int64_t addr, Instruction* instr);
inline void WriteD(int64_t addr, double value, Instruction* instr);
// Helper for debugging memory access.
inline void DieOrDebug();
// Helpers for data value tracing.
enum TraceType {
BYTE,
HALF,
WORD,
DWORD
// DFLOAT - Floats may have printing issues due to paired lwc1's
};
void TraceRegWr(int64_t value);
void TraceMemWr(int64_t addr, int64_t value, TraceType t);
void TraceMemRd(int64_t addr, int64_t value);
// Operations depending on endianness.
// Get Double Higher / Lower word.
inline int32_t GetDoubleHIW(double* addr);
inline int32_t GetDoubleLOW(double* addr);
// Set Double Higher / Lower word.
inline int32_t SetDoubleHIW(double* addr);
inline int32_t SetDoubleLOW(double* addr);
SimInstruction instr_;
// functions called from DecodeTypeRegister.
void DecodeTypeRegisterCOP1();
void DecodeTypeRegisterCOP1X();
void DecodeTypeRegisterSPECIAL();
void DecodeTypeRegisterSPECIAL2();
void DecodeTypeRegisterSPECIAL3();
void DecodeTypeRegisterSRsType();
void DecodeTypeRegisterDRsType();
void DecodeTypeRegisterWRsType();
void DecodeTypeRegisterLRsType();
// Executing is handled based on the instruction type.
void DecodeTypeRegister();
inline int32_t rs_reg() const { return instr_.RsValue(); }
inline int64_t rs() const { return get_register(rs_reg()); }
inline uint64_t rs_u() const {
return static_cast<uint64_t>(get_register(rs_reg()));
}
inline int32_t rt_reg() const { return instr_.RtValue(); }
inline int64_t rt() const { return get_register(rt_reg()); }
inline uint64_t rt_u() const {
return static_cast<uint64_t>(get_register(rt_reg()));
}
inline int32_t rd_reg() const { return instr_.RdValue(); }
inline int32_t fr_reg() const { return instr_.FrValue(); }
inline int32_t fs_reg() const { return instr_.FsValue(); }
inline int32_t ft_reg() const { return instr_.FtValue(); }
inline int32_t fd_reg() const { return instr_.FdValue(); }
inline int32_t sa() const { return instr_.SaValue(); }
inline int32_t lsa_sa() const { return instr_.LsaSaValue(); }
inline void SetResult(const int32_t rd_reg, const int64_t alu_out) {
set_register(rd_reg, alu_out);
TraceRegWr(alu_out);
}
void DecodeTypeImmediate();
void DecodeTypeJump();
// Used for breakpoints and traps.
void SoftwareInterrupt();
// Compact branch guard.
void CheckForbiddenSlot(int64_t current_pc) {
Instruction* instr_after_compact_branch =
reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
if (instr_after_compact_branch->IsForbiddenAfterBranch()) {
V8_Fatal(__FILE__, __LINE__,
"Error: Unexpected instruction 0x%08x immediately after a "
"compact branch instruction.",
*reinterpret_cast<uint32_t*>(instr_after_compact_branch));
}
}
// Stop helper functions.
bool IsWatchpoint(uint64_t code);
void PrintWatchpoint(uint64_t code);
void HandleStop(uint64_t code, Instruction* instr);
bool IsStopInstruction(Instruction* instr);
bool IsEnabledStop(uint64_t code);
void EnableStop(uint64_t code);
void DisableStop(uint64_t code);
void IncreaseStopCounter(uint64_t code);
void PrintStopInfo(uint64_t code);
// Executes one instruction.
void InstructionDecode(Instruction* instr);
// Execute one instruction placed in a branch delay slot.
void BranchDelayInstructionDecode(Instruction* instr) {
if (instr->InstructionBits() == nopInstr) {
// Short-cut generic nop instructions. They are always valid and they
// never change the simulator state.
return;
}
if (instr->IsForbiddenAfterBranch()) {
V8_Fatal(__FILE__, __LINE__,
"Eror:Unexpected %i opcode in a branch delay slot.",
instr->OpcodeValue());
}
InstructionDecode(instr);
SNPrintF(trace_buf_, " ");
}
// ICache.
static void CheckICache(base::CustomMatcherHashMap* i_cache,
Instruction* instr);
static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start,
size_t size);
static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache,
void* page);
enum Exception {
none,
kIntegerOverflow,
kIntegerUnderflow,
kDivideByZero,
kNumExceptions
};
// Exceptions.
void SignalException(Exception e);
// Runtime call support.
static void* RedirectExternalReference(Isolate* isolate,
void* external_function,
ExternalReference::Type type);
// Handle arguments and return value for runtime FP functions.
void GetFpArgs(double* x, double* y, int32_t* z);
void SetFpResult(const double& result);
void CallInternal(byte* entry);
// Architecture state.
// Registers.
int64_t registers_[kNumSimuRegisters];
// Coprocessor Registers.
int64_t FPUregisters_[kNumFPURegisters];
// FPU control register.
uint32_t FCSR_;
// Simulator support.
// Allocate 1MB for stack.
size_t stack_size_;
char* stack_;
bool pc_modified_;
int64_t icount_;
int break_count_;
EmbeddedVector<char, 128> trace_buf_;
// Debugger input.
char* last_debugger_input_;
// Icache simulation.
base::CustomMatcherHashMap* i_cache_;
v8::internal::Isolate* isolate_;
// Registered breakpoints.
Instruction* break_pc_;
Instr break_instr_;
// Stop is disabled if bit 31 is set.
static const uint32_t kStopDisabledBit = 1 << 31;
// A stop is enabled, meaning the simulator will stop when meeting the
// instruction, if bit 31 of watched_stops_[code].count is unset.
// The value watched_stops_[code].count & ~(1 << 31) indicates how many times
// the breakpoint was hit or gone through.
struct StopCountAndDesc {
uint32_t count;
char* desc;
};
StopCountAndDesc watched_stops_[kMaxStopCode + 1];
};
// When running with the simulator transition into simulated execution at this
// point.
#define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
reinterpret_cast<Object*>(Simulator::current(isolate)->Call( \
FUNCTION_ADDR(entry), 5, reinterpret_cast<int64_t*>(p0), \
reinterpret_cast<int64_t*>(p1), reinterpret_cast<int64_t*>(p2), \
reinterpret_cast<int64_t*>(p3), reinterpret_cast<int64_t*>(p4)))
#define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
p7, p8) \
static_cast<int>(Simulator::current(isolate)->Call( \
entry, 10, p0, p1, p2, p3, p4, reinterpret_cast<int64_t*>(p5), p6, p7, \
NULL, p8))
// The simulator has its own stack. Thus it has a different stack limit from
// the C-based native code. The JS-based limit normally points near the end of
// the simulator stack. When the C-based limit is exhausted we reflect that by
// lowering the JS-based limit as well, to make stack checks trigger.
class SimulatorStack : public v8::internal::AllStatic {
public:
static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
uintptr_t c_limit) {
return Simulator::current(isolate)->StackLimit(c_limit);
}
static inline uintptr_t RegisterCTryCatch(Isolate* isolate,
uintptr_t try_catch_address) {
Simulator* sim = Simulator::current(isolate);
return sim->PushAddress(try_catch_address);
}
static inline void UnregisterCTryCatch(Isolate* isolate) {
Simulator::current(isolate)->PopAddress();
}
};
} // namespace internal
} // namespace v8
#endif // !defined(USE_SIMULATOR)
#endif // V8_MIPS_SIMULATOR_MIPS_H_