// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_IA32
#include "src/base/bits.h"
#include "src/base/division-by-constant.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/ia32/frames-ia32.h"
#include "src/ia32/macro-assembler-ia32.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
// -------------------------------------------------------------------------
// MacroAssembler implementation.
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size,
CodeObjectRequired create_code_object)
: Assembler(arg_isolate, buffer, size),
generating_stub_(false),
has_frame_(false) {
if (create_code_object == CodeObjectRequired::kYes) {
code_object_ =
Handle<Object>::New(isolate()->heap()->undefined_value(), isolate());
}
}
void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
DCHECK(!r.IsDouble());
if (r.IsInteger8()) {
movsx_b(dst, src);
} else if (r.IsUInteger8()) {
movzx_b(dst, src);
} else if (r.IsInteger16()) {
movsx_w(dst, src);
} else if (r.IsUInteger16()) {
movzx_w(dst, src);
} else {
mov(dst, src);
}
}
void MacroAssembler::Store(Register src, const Operand& dst, Representation r) {
DCHECK(!r.IsDouble());
if (r.IsInteger8() || r.IsUInteger8()) {
mov_b(dst, src);
} else if (r.IsInteger16() || r.IsUInteger16()) {
mov_w(dst, src);
} else {
if (r.IsHeapObject()) {
AssertNotSmi(src);
} else if (r.IsSmi()) {
AssertSmi(src);
}
mov(dst, src);
}
}
void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) {
mov(destination, isolate()->heap()->root_handle(index));
return;
}
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
mov(destination, Immediate(index));
mov(destination, Operand::StaticArray(destination,
times_pointer_size,
roots_array_start));
}
void MacroAssembler::StoreRoot(Register source,
Register scratch,
Heap::RootListIndex index) {
DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
mov(scratch, Immediate(index));
mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start),
source);
}
void MacroAssembler::CompareRoot(Register with,
Register scratch,
Heap::RootListIndex index) {
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
mov(scratch, Immediate(index));
cmp(with, Operand::StaticArray(scratch,
times_pointer_size,
roots_array_start));
}
void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
cmp(with, isolate()->heap()->root_handle(index));
}
void MacroAssembler::CompareRoot(const Operand& with,
Heap::RootListIndex index) {
DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
cmp(with, isolate()->heap()->root_handle(index));
}
void MacroAssembler::PushRoot(Heap::RootListIndex index) {
DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
Push(isolate()->heap()->root_handle(index));
}
#define REG(Name) \
{ Register::kCode_##Name }
static const Register saved_regs[] = {REG(eax), REG(ecx), REG(edx)};
#undef REG
static const int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register);
void MacroAssembler::PushCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1, Register exclusion2,
Register exclusion3) {
// We don't allow a GC during a store buffer overflow so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
for (int i = 0; i < kNumberOfSavedRegs; i++) {
Register reg = saved_regs[i];
if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
push(reg);
}
}
if (fp_mode == kSaveFPRegs) {
sub(esp, Immediate(kDoubleSize * (XMMRegister::kMaxNumRegisters - 1)));
// Save all XMM registers except XMM0.
for (int i = XMMRegister::kMaxNumRegisters - 1; i > 0; i--) {
XMMRegister reg = XMMRegister::from_code(i);
movsd(Operand(esp, (i - 1) * kDoubleSize), reg);
}
}
}
void MacroAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
Register exclusion2, Register exclusion3) {
if (fp_mode == kSaveFPRegs) {
// Restore all XMM registers except XMM0.
for (int i = XMMRegister::kMaxNumRegisters - 1; i > 0; i--) {
XMMRegister reg = XMMRegister::from_code(i);
movsd(reg, Operand(esp, (i - 1) * kDoubleSize));
}
add(esp, Immediate(kDoubleSize * (XMMRegister::kMaxNumRegisters - 1)));
}
for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) {
Register reg = saved_regs[i];
if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
pop(reg);
}
}
}
void MacroAssembler::InNewSpace(Register object, Register scratch, Condition cc,
Label* condition_met,
Label::Distance distance) {
CheckPageFlag(object, scratch, MemoryChunk::kIsInNewSpaceMask, cc,
condition_met, distance);
}
void MacroAssembler::RememberedSetHelper(
Register object, // Only used for debug checks.
Register addr,
Register scratch,
SaveFPRegsMode save_fp,
MacroAssembler::RememberedSetFinalAction and_then) {
Label done;
if (emit_debug_code()) {
Label ok;
JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
int3();
bind(&ok);
}
// Load store buffer top.
ExternalReference store_buffer =
ExternalReference::store_buffer_top(isolate());
mov(scratch, Operand::StaticVariable(store_buffer));
// Store pointer to buffer.
mov(Operand(scratch, 0), addr);
// Increment buffer top.
add(scratch, Immediate(kPointerSize));
// Write back new top of buffer.
mov(Operand::StaticVariable(store_buffer), scratch);
// Call stub on end of buffer.
// Check for end of buffer.
test(scratch, Immediate(StoreBuffer::kStoreBufferMask));
if (and_then == kReturnAtEnd) {
Label buffer_overflowed;
j(equal, &buffer_overflowed, Label::kNear);
ret(0);
bind(&buffer_overflowed);
} else {
DCHECK(and_then == kFallThroughAtEnd);
j(not_equal, &done, Label::kNear);
}
StoreBufferOverflowStub store_buffer_overflow(isolate(), save_fp);
CallStub(&store_buffer_overflow);
if (and_then == kReturnAtEnd) {
ret(0);
} else {
DCHECK(and_then == kFallThroughAtEnd);
bind(&done);
}
}
void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg,
XMMRegister scratch_reg,
Register result_reg) {
Label done;
Label conv_failure;
xorps(scratch_reg, scratch_reg);
cvtsd2si(result_reg, input_reg);
test(result_reg, Immediate(0xFFFFFF00));
j(zero, &done, Label::kNear);
cmp(result_reg, Immediate(0x1));
j(overflow, &conv_failure, Label::kNear);
mov(result_reg, Immediate(0));
setcc(sign, result_reg);
sub(result_reg, Immediate(1));
and_(result_reg, Immediate(255));
jmp(&done, Label::kNear);
bind(&conv_failure);
Move(result_reg, Immediate(0));
ucomisd(input_reg, scratch_reg);
j(below, &done, Label::kNear);
Move(result_reg, Immediate(255));
bind(&done);
}
void MacroAssembler::ClampUint8(Register reg) {
Label done;
test(reg, Immediate(0xFFFFFF00));
j(zero, &done, Label::kNear);
setcc(negative, reg); // 1 if negative, 0 if positive.
dec_b(reg); // 0 if negative, 255 if positive.
bind(&done);
}
void MacroAssembler::SlowTruncateToI(Register result_reg,
Register input_reg,
int offset) {
DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true);
call(stub.GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::TruncateDoubleToI(Register result_reg,
XMMRegister input_reg) {
Label done;
cvttsd2si(result_reg, Operand(input_reg));
cmp(result_reg, 0x1);
j(no_overflow, &done, Label::kNear);
sub(esp, Immediate(kDoubleSize));
movsd(MemOperand(esp, 0), input_reg);
SlowTruncateToI(result_reg, esp, 0);
add(esp, Immediate(kDoubleSize));
bind(&done);
}
void MacroAssembler::DoubleToI(Register result_reg, XMMRegister input_reg,
XMMRegister scratch,
MinusZeroMode minus_zero_mode,
Label* lost_precision, Label* is_nan,
Label* minus_zero, Label::Distance dst) {
DCHECK(!input_reg.is(scratch));
cvttsd2si(result_reg, Operand(input_reg));
Cvtsi2sd(scratch, Operand(result_reg));
ucomisd(scratch, input_reg);
j(not_equal, lost_precision, dst);
j(parity_even, is_nan, dst);
if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
Label done;
// The integer converted back is equal to the original. We
// only have to test if we got -0 as an input.
test(result_reg, Operand(result_reg));
j(not_zero, &done, Label::kNear);
movmskpd(result_reg, input_reg);
// Bit 0 contains the sign of the double in input_reg.
// If input was positive, we are ok and return 0, otherwise
// jump to minus_zero.
and_(result_reg, 1);
j(not_zero, minus_zero, dst);
bind(&done);
}
}
void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
Register input_reg) {
Label done, slow_case;
if (CpuFeatures::IsSupported(SSE3)) {
CpuFeatureScope scope(this, SSE3);
Label convert;
// Use more powerful conversion when sse3 is available.
// Load x87 register with heap number.
fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
// Get exponent alone and check for too-big exponent.
mov(result_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
and_(result_reg, HeapNumber::kExponentMask);
const uint32_t kTooBigExponent =
(HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
cmp(Operand(result_reg), Immediate(kTooBigExponent));
j(greater_equal, &slow_case, Label::kNear);
// Reserve space for 64 bit answer.
sub(Operand(esp), Immediate(kDoubleSize));
// Do conversion, which cannot fail because we checked the exponent.
fisttp_d(Operand(esp, 0));
mov(result_reg, Operand(esp, 0)); // Low word of answer is the result.
add(Operand(esp), Immediate(kDoubleSize));
jmp(&done, Label::kNear);
// Slow case.
bind(&slow_case);
if (input_reg.is(result_reg)) {
// Input is clobbered. Restore number from fpu stack
sub(Operand(esp), Immediate(kDoubleSize));
fstp_d(Operand(esp, 0));
SlowTruncateToI(result_reg, esp, 0);
add(esp, Immediate(kDoubleSize));
} else {
fstp(0);
SlowTruncateToI(result_reg, input_reg);
}
} else {
movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
cvttsd2si(result_reg, Operand(xmm0));
cmp(result_reg, 0x1);
j(no_overflow, &done, Label::kNear);
// Check if the input was 0x8000000 (kMinInt).
// If no, then we got an overflow and we deoptimize.
ExternalReference min_int = ExternalReference::address_of_min_int();
ucomisd(xmm0, Operand::StaticVariable(min_int));
j(not_equal, &slow_case, Label::kNear);
j(parity_even, &slow_case, Label::kNear); // NaN.
jmp(&done, Label::kNear);
// Slow case.
bind(&slow_case);
if (input_reg.is(result_reg)) {
// Input is clobbered. Restore number from double scratch.
sub(esp, Immediate(kDoubleSize));
movsd(MemOperand(esp, 0), xmm0);
SlowTruncateToI(result_reg, esp, 0);
add(esp, Immediate(kDoubleSize));
} else {
SlowTruncateToI(result_reg, input_reg);
}
}
bind(&done);
}
void MacroAssembler::LoadUint32(XMMRegister dst, const Operand& src) {
Label done;
cmp(src, Immediate(0));
ExternalReference uint32_bias = ExternalReference::address_of_uint32_bias();
Cvtsi2sd(dst, src);
j(not_sign, &done, Label::kNear);
addsd(dst, Operand::StaticVariable(uint32_bias));
bind(&done);
}
void MacroAssembler::RecordWriteArray(
Register object,
Register value,
Register index,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
DCHECK_EQ(0, kSmiTag);
test(value, Immediate(kSmiTagMask));
j(zero, &done);
}
// Array access: calculate the destination address in the same manner as
// KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset
// into an array of words.
Register dst = index;
lea(dst, Operand(object, index, times_half_pointer_size,
FixedArray::kHeaderSize - kHeapObjectTag));
RecordWrite(object, dst, value, save_fp, remembered_set_action,
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
mov(index, Immediate(bit_cast<int32_t>(kZapValue)));
}
}
void MacroAssembler::RecordWriteField(
Register object,
int offset,
Register value,
Register dst,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done, Label::kNear);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so so offset must be a multiple of kPointerSize.
DCHECK(IsAligned(offset, kPointerSize));
lea(dst, FieldOperand(object, offset));
if (emit_debug_code()) {
Label ok;
test_b(dst, Immediate((1 << kPointerSizeLog2) - 1));
j(zero, &ok, Label::kNear);
int3();
bind(&ok);
}
RecordWrite(object, dst, value, save_fp, remembered_set_action,
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
mov(dst, Immediate(bit_cast<int32_t>(kZapValue)));
}
}
void MacroAssembler::RecordWriteForMap(
Register object,
Handle<Map> map,
Register scratch1,
Register scratch2,
SaveFPRegsMode save_fp) {
Label done;
Register address = scratch1;
Register value = scratch2;
if (emit_debug_code()) {
Label ok;
lea(address, FieldOperand(object, HeapObject::kMapOffset));
test_b(address, Immediate((1 << kPointerSizeLog2) - 1));
j(zero, &ok, Label::kNear);
int3();
bind(&ok);
}
DCHECK(!object.is(value));
DCHECK(!object.is(address));
DCHECK(!value.is(address));
AssertNotSmi(object);
if (!FLAG_incremental_marking) {
return;
}
// Compute the address.
lea(address, FieldOperand(object, HeapObject::kMapOffset));
// A single check of the map's pages interesting flag suffices, since it is
// only set during incremental collection, and then it's also guaranteed that
// the from object's page's interesting flag is also set. This optimization
// relies on the fact that maps can never be in new space.
DCHECK(!isolate()->heap()->InNewSpace(*map));
CheckPageFlagForMap(map,
MemoryChunk::kPointersToHereAreInterestingMask,
zero,
&done,
Label::kNear);
RecordWriteStub stub(isolate(), object, value, address, OMIT_REMEMBERED_SET,
save_fp);
CallStub(&stub);
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
mov(scratch1, Immediate(bit_cast<int32_t>(kZapValue)));
mov(scratch2, Immediate(bit_cast<int32_t>(kZapValue)));
}
}
void MacroAssembler::RecordWrite(
Register object,
Register address,
Register value,
SaveFPRegsMode fp_mode,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
DCHECK(!object.is(value));
DCHECK(!object.is(address));
DCHECK(!value.is(address));
AssertNotSmi(object);
if (remembered_set_action == OMIT_REMEMBERED_SET &&
!FLAG_incremental_marking) {
return;
}
if (emit_debug_code()) {
Label ok;
cmp(value, Operand(address, 0));
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis and stores into young gen.
Label done;
if (smi_check == INLINE_SMI_CHECK) {
// Skip barrier if writing a smi.
JumpIfSmi(value, &done, Label::kNear);
}
if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
zero,
&done,
Label::kNear);
}
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask,
zero,
&done,
Label::kNear);
RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
fp_mode);
CallStub(&stub);
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(address, Immediate(bit_cast<int32_t>(kZapValue)));
mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
}
}
void MacroAssembler::RecordWriteCodeEntryField(Register js_function,
Register code_entry,
Register scratch) {
const int offset = JSFunction::kCodeEntryOffset;
// Since a code entry (value) is always in old space, we don't need to update
// remembered set. If incremental marking is off, there is nothing for us to
// do.
if (!FLAG_incremental_marking) return;
DCHECK(!js_function.is(code_entry));
DCHECK(!js_function.is(scratch));
DCHECK(!code_entry.is(scratch));
AssertNotSmi(js_function);
if (emit_debug_code()) {
Label ok;
lea(scratch, FieldOperand(js_function, offset));
cmp(code_entry, Operand(scratch, 0));
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis and stores into young gen.
Label done;
CheckPageFlag(code_entry, scratch,
MemoryChunk::kPointersToHereAreInterestingMask, zero, &done,
Label::kNear);
CheckPageFlag(js_function, scratch,
MemoryChunk::kPointersFromHereAreInterestingMask, zero, &done,
Label::kNear);
// Save input registers.
push(js_function);
push(code_entry);
const Register dst = scratch;
lea(dst, FieldOperand(js_function, offset));
// Save caller-saved registers.
PushCallerSaved(kDontSaveFPRegs, js_function, code_entry);
int argument_count = 3;
PrepareCallCFunction(argument_count, code_entry);
mov(Operand(esp, 0 * kPointerSize), js_function);
mov(Operand(esp, 1 * kPointerSize), dst); // Slot.
mov(Operand(esp, 2 * kPointerSize),
Immediate(ExternalReference::isolate_address(isolate())));
{
AllowExternalCallThatCantCauseGC scope(this);
CallCFunction(
ExternalReference::incremental_marking_record_write_code_entry_function(
isolate()),
argument_count);
}
// Restore caller-saved registers.
PopCallerSaved(kDontSaveFPRegs, js_function, code_entry);
// Restore input registers.
pop(code_entry);
pop(js_function);
bind(&done);
}
void MacroAssembler::DebugBreak() {
Move(eax, Immediate(0));
mov(ebx, Immediate(ExternalReference(Runtime::kHandleDebuggerStatement,
isolate())));
CEntryStub ces(isolate(), 1);
call(ces.GetCode(), RelocInfo::DEBUGGER_STATEMENT);
}
void MacroAssembler::Cvtsi2sd(XMMRegister dst, const Operand& src) {
xorps(dst, dst);
cvtsi2sd(dst, src);
}
void MacroAssembler::Cvtui2ss(XMMRegister dst, Register src, Register tmp) {
Label msb_set_src;
Label jmp_return;
test(src, src);
j(sign, &msb_set_src, Label::kNear);
cvtsi2ss(dst, src);
jmp(&jmp_return, Label::kNear);
bind(&msb_set_src);
mov(tmp, src);
shr(src, 1);
// Recover the least significant bit to avoid rounding errors.
and_(tmp, Immediate(1));
or_(src, tmp);
cvtsi2ss(dst, src);
addss(dst, dst);
bind(&jmp_return);
}
void MacroAssembler::ShlPair(Register high, Register low, uint8_t shift) {
if (shift >= 32) {
mov(high, low);
shl(high, shift - 32);
xor_(low, low);
} else {
shld(high, low, shift);
shl(low, shift);
}
}
void MacroAssembler::ShlPair_cl(Register high, Register low) {
shld_cl(high, low);
shl_cl(low);
Label done;
test(ecx, Immediate(0x20));
j(equal, &done, Label::kNear);
mov(high, low);
xor_(low, low);
bind(&done);
}
void MacroAssembler::ShrPair(Register high, Register low, uint8_t shift) {
if (shift >= 32) {
mov(low, high);
shr(low, shift - 32);
xor_(high, high);
} else {
shrd(high, low, shift);
shr(high, shift);
}
}
void MacroAssembler::ShrPair_cl(Register high, Register low) {
shrd_cl(low, high);
shr_cl(high);
Label done;
test(ecx, Immediate(0x20));
j(equal, &done, Label::kNear);
mov(low, high);
xor_(high, high);
bind(&done);
}
void MacroAssembler::SarPair(Register high, Register low, uint8_t shift) {
if (shift >= 32) {
mov(low, high);
sar(low, shift - 32);
sar(high, 31);
} else {
shrd(high, low, shift);
sar(high, shift);
}
}
void MacroAssembler::SarPair_cl(Register high, Register low) {
shrd_cl(low, high);
sar_cl(high);
Label done;
test(ecx, Immediate(0x20));
j(equal, &done, Label::kNear);
mov(low, high);
sar(high, 31);
bind(&done);
}
bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) {
static const int kMaxImmediateBits = 17;
if (!RelocInfo::IsNone(x.rmode_)) return false;
return !is_intn(x.x_, kMaxImmediateBits);
}
void MacroAssembler::SafeMove(Register dst, const Immediate& x) {
if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
Move(dst, Immediate(x.x_ ^ jit_cookie()));
xor_(dst, jit_cookie());
} else {
Move(dst, x);
}
}
void MacroAssembler::SafePush(const Immediate& x) {
if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
push(Immediate(x.x_ ^ jit_cookie()));
xor_(Operand(esp, 0), Immediate(jit_cookie()));
} else {
push(x);
}
}
void MacroAssembler::CmpObjectType(Register heap_object,
InstanceType type,
Register map) {
mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
CmpInstanceType(map, type);
}
void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
cmpb(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(type));
}
void MacroAssembler::CheckFastObjectElements(Register map,
Label* fail,
Label::Distance distance) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Immediate(Map::kMaximumBitField2FastHoleySmiElementValue));
j(below_equal, fail, distance);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Immediate(Map::kMaximumBitField2FastHoleyElementValue));
j(above, fail, distance);
}
void MacroAssembler::CheckFastSmiElements(Register map,
Label* fail,
Label::Distance distance) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Immediate(Map::kMaximumBitField2FastHoleySmiElementValue));
j(above, fail, distance);
}
void MacroAssembler::StoreNumberToDoubleElements(
Register maybe_number,
Register elements,
Register key,
Register scratch1,
XMMRegister scratch2,
Label* fail,
int elements_offset) {
Label smi_value, done;
JumpIfSmi(maybe_number, &smi_value, Label::kNear);
CheckMap(maybe_number,
isolate()->factory()->heap_number_map(),
fail,
DONT_DO_SMI_CHECK);
// Double value, turn potential sNaN into qNaN.
Move(scratch2, 1.0);
mulsd(scratch2, FieldOperand(maybe_number, HeapNumber::kValueOffset));
jmp(&done, Label::kNear);
bind(&smi_value);
// Value is a smi. Convert to a double and store.
// Preserve original value.
mov(scratch1, maybe_number);
SmiUntag(scratch1);
Cvtsi2sd(scratch2, scratch1);
bind(&done);
movsd(FieldOperand(elements, key, times_4,
FixedDoubleArray::kHeaderSize - elements_offset),
scratch2);
}
void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
}
void MacroAssembler::CheckMap(Register obj,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
CompareMap(obj, map);
j(not_equal, fail);
}
void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1,
Register scratch2, Handle<WeakCell> cell,
Handle<Code> success,
SmiCheckType smi_check_type) {
Label fail;
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, &fail);
}
mov(scratch1, FieldOperand(obj, HeapObject::kMapOffset));
CmpWeakValue(scratch1, cell, scratch2);
j(equal, success);
bind(&fail);
}
Condition MacroAssembler::IsObjectStringType(Register heap_object,
Register map,
Register instance_type) {
mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
test(instance_type, Immediate(kIsNotStringMask));
return zero;
}
Condition MacroAssembler::IsObjectNameType(Register heap_object,
Register map,
Register instance_type) {
mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
cmpb(instance_type, Immediate(LAST_NAME_TYPE));
return below_equal;
}
void MacroAssembler::FCmp() {
fucomip();
fstp(0);
}
void MacroAssembler::AssertNumber(Register object) {
if (emit_debug_code()) {
Label ok;
JumpIfSmi(object, &ok);
cmp(FieldOperand(object, HeapObject::kMapOffset),
isolate()->factory()->heap_number_map());
Check(equal, kOperandNotANumber);
bind(&ok);
}
}
void MacroAssembler::AssertNotNumber(Register object) {
if (emit_debug_code()) {
test(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsANumber);
cmp(FieldOperand(object, HeapObject::kMapOffset),
isolate()->factory()->heap_number_map());
Check(not_equal, kOperandIsANumber);
}
}
void MacroAssembler::AssertSmi(Register object) {
if (emit_debug_code()) {
test(object, Immediate(kSmiTagMask));
Check(equal, kOperandIsNotASmi);
}
}
void MacroAssembler::AssertString(Register object) {
if (emit_debug_code()) {
test(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotAString);
push(object);
mov(object, FieldOperand(object, HeapObject::kMapOffset));
CmpInstanceType(object, FIRST_NONSTRING_TYPE);
pop(object);
Check(below, kOperandIsNotAString);
}
}
void MacroAssembler::AssertName(Register object) {
if (emit_debug_code()) {
test(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotAName);
push(object);
mov(object, FieldOperand(object, HeapObject::kMapOffset));
CmpInstanceType(object, LAST_NAME_TYPE);
pop(object);
Check(below_equal, kOperandIsNotAName);
}
}
void MacroAssembler::AssertFunction(Register object) {
if (emit_debug_code()) {
test(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotAFunction);
Push(object);
CmpObjectType(object, JS_FUNCTION_TYPE, object);
Pop(object);
Check(equal, kOperandIsNotAFunction);
}
}
void MacroAssembler::AssertBoundFunction(Register object) {
if (emit_debug_code()) {
test(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotABoundFunction);
Push(object);
CmpObjectType(object, JS_BOUND_FUNCTION_TYPE, object);
Pop(object);
Check(equal, kOperandIsNotABoundFunction);
}
}
void MacroAssembler::AssertGeneratorObject(Register object) {
if (emit_debug_code()) {
test(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotAGeneratorObject);
Push(object);
CmpObjectType(object, JS_GENERATOR_OBJECT_TYPE, object);
Pop(object);
Check(equal, kOperandIsNotAGeneratorObject);
}
}
void MacroAssembler::AssertReceiver(Register object) {
if (emit_debug_code()) {
test(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotAReceiver);
Push(object);
STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
CmpObjectType(object, FIRST_JS_RECEIVER_TYPE, object);
Pop(object);
Check(above_equal, kOperandIsNotAReceiver);
}
}
void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
if (emit_debug_code()) {
Label done_checking;
AssertNotSmi(object);
cmp(object, isolate()->factory()->undefined_value());
j(equal, &done_checking);
cmp(FieldOperand(object, 0),
Immediate(isolate()->factory()->allocation_site_map()));
Assert(equal, kExpectedUndefinedOrCell);
bind(&done_checking);
}
}
void MacroAssembler::AssertNotSmi(Register object) {
if (emit_debug_code()) {
test(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmi);
}
}
void MacroAssembler::StubPrologue(StackFrame::Type type) {
push(ebp); // Caller's frame pointer.
mov(ebp, esp);
push(Immediate(Smi::FromInt(type)));
}
void MacroAssembler::Prologue(bool code_pre_aging) {
PredictableCodeSizeScope predictible_code_size_scope(this,
kNoCodeAgeSequenceLength);
if (code_pre_aging) {
// Pre-age the code.
call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
RelocInfo::CODE_AGE_SEQUENCE);
Nop(kNoCodeAgeSequenceLength - Assembler::kCallInstructionLength);
} else {
push(ebp); // Caller's frame pointer.
mov(ebp, esp);
push(esi); // Callee's context.
push(edi); // Callee's JS function.
}
}
void MacroAssembler::EmitLoadTypeFeedbackVector(Register vector) {
mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
mov(vector, FieldOperand(vector, JSFunction::kLiteralsOffset));
mov(vector, FieldOperand(vector, LiteralsArray::kFeedbackVectorOffset));
}
void MacroAssembler::EnterFrame(StackFrame::Type type,
bool load_constant_pool_pointer_reg) {
// Out-of-line constant pool not implemented on ia32.
UNREACHABLE();
}
void MacroAssembler::EnterFrame(StackFrame::Type type) {
push(ebp);
mov(ebp, esp);
push(Immediate(Smi::FromInt(type)));
if (type == StackFrame::INTERNAL) {
push(Immediate(CodeObject()));
}
if (emit_debug_code()) {
cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value()));
Check(not_equal, kCodeObjectNotProperlyPatched);
}
}
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
if (emit_debug_code()) {
cmp(Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset),
Immediate(Smi::FromInt(type)));
Check(equal, kStackFrameTypesMustMatch);
}
leave();
}
void MacroAssembler::EnterBuiltinFrame(Register context, Register target,
Register argc) {
Push(ebp);
Move(ebp, esp);
Push(context);
Push(target);
Push(argc);
}
void MacroAssembler::LeaveBuiltinFrame(Register context, Register target,
Register argc) {
Pop(argc);
Pop(target);
Pop(context);
leave();
}
void MacroAssembler::EnterExitFramePrologue(StackFrame::Type frame_type) {
DCHECK(frame_type == StackFrame::EXIT ||
frame_type == StackFrame::BUILTIN_EXIT);
// Set up the frame structure on the stack.
DCHECK_EQ(+2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
DCHECK_EQ(+1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
push(ebp);
mov(ebp, esp);
// Reserve room for entry stack pointer and push the code object.
push(Immediate(Smi::FromInt(frame_type)));
DCHECK_EQ(-2 * kPointerSize, ExitFrameConstants::kSPOffset);
push(Immediate(0)); // Saved entry sp, patched before call.
DCHECK_EQ(-3 * kPointerSize, ExitFrameConstants::kCodeOffset);
push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot.
// Save the frame pointer and the context in top.
ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
ExternalReference context_address(Isolate::kContextAddress, isolate());
ExternalReference c_function_address(Isolate::kCFunctionAddress, isolate());
mov(Operand::StaticVariable(c_entry_fp_address), ebp);
mov(Operand::StaticVariable(context_address), esi);
mov(Operand::StaticVariable(c_function_address), ebx);
}
void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) {
// Optionally save all XMM registers.
if (save_doubles) {
int space = XMMRegister::kMaxNumRegisters * kDoubleSize +
argc * kPointerSize;
sub(esp, Immediate(space));
const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp;
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
movsd(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg);
}
} else {
sub(esp, Immediate(argc * kPointerSize));
}
// Get the required frame alignment for the OS.
const int kFrameAlignment = base::OS::ActivationFrameAlignment();
if (kFrameAlignment > 0) {
DCHECK(base::bits::IsPowerOfTwo32(kFrameAlignment));
and_(esp, -kFrameAlignment);
}
// Patch the saved entry sp.
mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
}
void MacroAssembler::EnterExitFrame(int argc, bool save_doubles,
StackFrame::Type frame_type) {
EnterExitFramePrologue(frame_type);
// Set up argc and argv in callee-saved registers.
int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
mov(edi, eax);
lea(esi, Operand(ebp, eax, times_4, offset));
// Reserve space for argc, argv and isolate.
EnterExitFrameEpilogue(argc, save_doubles);
}
void MacroAssembler::EnterApiExitFrame(int argc) {
EnterExitFramePrologue(StackFrame::EXIT);
EnterExitFrameEpilogue(argc, false);
}
void MacroAssembler::LeaveExitFrame(bool save_doubles, bool pop_arguments) {
// Optionally restore all XMM registers.
if (save_doubles) {
const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp;
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
movsd(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize)));
}
}
if (pop_arguments) {
// Get the return address from the stack and restore the frame pointer.
mov(ecx, Operand(ebp, 1 * kPointerSize));
mov(ebp, Operand(ebp, 0 * kPointerSize));
// Pop the arguments and the receiver from the caller stack.
lea(esp, Operand(esi, 1 * kPointerSize));
// Push the return address to get ready to return.
push(ecx);
} else {
// Otherwise just leave the exit frame.
leave();
}
LeaveExitFrameEpilogue(true);
}
void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
// Restore current context from top and clear it in debug mode.
ExternalReference context_address(Isolate::kContextAddress, isolate());
if (restore_context) {
mov(esi, Operand::StaticVariable(context_address));
}
#ifdef DEBUG
mov(Operand::StaticVariable(context_address), Immediate(0));
#endif
// Clear the top frame.
ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
isolate());
mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
}
void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
mov(esp, ebp);
pop(ebp);
LeaveExitFrameEpilogue(restore_context);
}
void MacroAssembler::PushStackHandler() {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
// Link the current handler as the next handler.
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
push(Operand::StaticVariable(handler_address));
// Set this new handler as the current one.
mov(Operand::StaticVariable(handler_address), esp);
}
void MacroAssembler::PopStackHandler() {
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
pop(Operand::StaticVariable(handler_address));
add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize));
}
// Compute the hash code from the untagged key. This must be kept in sync with
// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
// code-stub-hydrogen.cc
//
// Note: r0 will contain hash code
void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
// Xor original key with a seed.
if (serializer_enabled()) {
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
mov(scratch, Immediate(Heap::kHashSeedRootIndex));
mov(scratch,
Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
SmiUntag(scratch);
xor_(r0, scratch);
} else {
int32_t seed = isolate()->heap()->HashSeed();
xor_(r0, Immediate(seed));
}
// hash = ~hash + (hash << 15);
mov(scratch, r0);
not_(r0);
shl(scratch, 15);
add(r0, scratch);
// hash = hash ^ (hash >> 12);
mov(scratch, r0);
shr(scratch, 12);
xor_(r0, scratch);
// hash = hash + (hash << 2);
lea(r0, Operand(r0, r0, times_4, 0));
// hash = hash ^ (hash >> 4);
mov(scratch, r0);
shr(scratch, 4);
xor_(r0, scratch);
// hash = hash * 2057;
imul(r0, r0, 2057);
// hash = hash ^ (hash >> 16);
mov(scratch, r0);
shr(scratch, 16);
xor_(r0, scratch);
and_(r0, 0x3fffffff);
}
void MacroAssembler::LoadAllocationTopHelper(Register result,
Register scratch,
AllocationFlags flags) {
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
// Just return if allocation top is already known.
if ((flags & RESULT_CONTAINS_TOP) != 0) {
// No use of scratch if allocation top is provided.
DCHECK(scratch.is(no_reg));
#ifdef DEBUG
// Assert that result actually contains top on entry.
cmp(result, Operand::StaticVariable(allocation_top));
Check(equal, kUnexpectedAllocationTop);
#endif
return;
}
// Move address of new object to result. Use scratch register if available.
if (scratch.is(no_reg)) {
mov(result, Operand::StaticVariable(allocation_top));
} else {
mov(scratch, Immediate(allocation_top));
mov(result, Operand(scratch, 0));
}
}
void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
Register scratch,
AllocationFlags flags) {
if (emit_debug_code()) {
test(result_end, Immediate(kObjectAlignmentMask));
Check(zero, kUnalignedAllocationInNewSpace);
}
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
// Update new top. Use scratch if available.
if (scratch.is(no_reg)) {
mov(Operand::StaticVariable(allocation_top), result_end);
} else {
mov(Operand(scratch, 0), result_end);
}
}
void MacroAssembler::Allocate(int object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
DCHECK(object_size <= kMaxRegularHeapObjectSize);
DCHECK((flags & ALLOCATION_FOLDED) == 0);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
mov(result, Immediate(0x7091));
if (result_end.is_valid()) {
mov(result_end, Immediate(0x7191));
}
if (scratch.is_valid()) {
mov(scratch, Immediate(0x7291));
}
}
jmp(gc_required);
return;
}
DCHECK(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, scratch, flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
// Align the next allocation. Storing the filler map without checking top is
// safe in new-space because the limit of the heap is aligned there.
if ((flags & DOUBLE_ALIGNMENT) != 0) {
DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
Label aligned;
test(result, Immediate(kDoubleAlignmentMask));
j(zero, &aligned, Label::kNear);
if ((flags & PRETENURE) != 0) {
cmp(result, Operand::StaticVariable(allocation_limit));
j(above_equal, gc_required);
}
mov(Operand(result, 0),
Immediate(isolate()->factory()->one_pointer_filler_map()));
add(result, Immediate(kDoubleSize / 2));
bind(&aligned);
}
// Calculate new top and bail out if space is exhausted.
Register top_reg = result_end.is_valid() ? result_end : result;
if (!top_reg.is(result)) {
mov(top_reg, result);
}
add(top_reg, Immediate(object_size));
cmp(top_reg, Operand::StaticVariable(allocation_limit));
j(above, gc_required);
if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) {
// The top pointer is not updated for allocation folding dominators.
UpdateAllocationTopHelper(top_reg, scratch, flags);
}
if (top_reg.is(result)) {
sub(result, Immediate(object_size - kHeapObjectTag));
} else {
// Tag the result.
DCHECK(kHeapObjectTag == 1);
inc(result);
}
}
void MacroAssembler::Allocate(int header_size,
ScaleFactor element_size,
Register element_count,
RegisterValueType element_count_type,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
DCHECK((flags & SIZE_IN_WORDS) == 0);
DCHECK((flags & ALLOCATION_FOLDING_DOMINATOR) == 0);
DCHECK((flags & ALLOCATION_FOLDED) == 0);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
mov(result, Immediate(0x7091));
mov(result_end, Immediate(0x7191));
if (scratch.is_valid()) {
mov(scratch, Immediate(0x7291));
}
// Register element_count is not modified by the function.
}
jmp(gc_required);
return;
}
DCHECK(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, scratch, flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
// Align the next allocation. Storing the filler map without checking top is
// safe in new-space because the limit of the heap is aligned there.
if ((flags & DOUBLE_ALIGNMENT) != 0) {
DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
Label aligned;
test(result, Immediate(kDoubleAlignmentMask));
j(zero, &aligned, Label::kNear);
if ((flags & PRETENURE) != 0) {
cmp(result, Operand::StaticVariable(allocation_limit));
j(above_equal, gc_required);
}
mov(Operand(result, 0),
Immediate(isolate()->factory()->one_pointer_filler_map()));
add(result, Immediate(kDoubleSize / 2));
bind(&aligned);
}
// Calculate new top and bail out if space is exhausted.
// We assume that element_count*element_size + header_size does not
// overflow.
if (element_count_type == REGISTER_VALUE_IS_SMI) {
STATIC_ASSERT(static_cast<ScaleFactor>(times_2 - 1) == times_1);
STATIC_ASSERT(static_cast<ScaleFactor>(times_4 - 1) == times_2);
STATIC_ASSERT(static_cast<ScaleFactor>(times_8 - 1) == times_4);
DCHECK(element_size >= times_2);
DCHECK(kSmiTagSize == 1);
element_size = static_cast<ScaleFactor>(element_size - 1);
} else {
DCHECK(element_count_type == REGISTER_VALUE_IS_INT32);
}
lea(result_end, Operand(element_count, element_size, header_size));
add(result_end, result);
cmp(result_end, Operand::StaticVariable(allocation_limit));
j(above, gc_required);
// Tag result.
DCHECK(kHeapObjectTag == 1);
inc(result);
UpdateAllocationTopHelper(result_end, scratch, flags);
}
void MacroAssembler::Allocate(Register object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
DCHECK((flags & ALLOCATION_FOLDED) == 0);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
mov(result, Immediate(0x7091));
mov(result_end, Immediate(0x7191));
if (scratch.is_valid()) {
mov(scratch, Immediate(0x7291));
}
// object_size is left unchanged by this function.
}
jmp(gc_required);
return;
}
DCHECK(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, scratch, flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
// Align the next allocation. Storing the filler map without checking top is
// safe in new-space because the limit of the heap is aligned there.
if ((flags & DOUBLE_ALIGNMENT) != 0) {
DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
Label aligned;
test(result, Immediate(kDoubleAlignmentMask));
j(zero, &aligned, Label::kNear);
if ((flags & PRETENURE) != 0) {
cmp(result, Operand::StaticVariable(allocation_limit));
j(above_equal, gc_required);
}
mov(Operand(result, 0),
Immediate(isolate()->factory()->one_pointer_filler_map()));
add(result, Immediate(kDoubleSize / 2));
bind(&aligned);
}
// Calculate new top and bail out if space is exhausted.
if (!object_size.is(result_end)) {
mov(result_end, object_size);
}
add(result_end, result);
cmp(result_end, Operand::StaticVariable(allocation_limit));
j(above, gc_required);
// Tag result.
DCHECK(kHeapObjectTag == 1);
inc(result);
if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) {
// The top pointer is not updated for allocation folding dominators.
UpdateAllocationTopHelper(result_end, scratch, flags);
}
}
void MacroAssembler::FastAllocate(int object_size, Register result,
Register result_end, AllocationFlags flags) {
DCHECK(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, no_reg, flags);
if ((flags & DOUBLE_ALIGNMENT) != 0) {
DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
Label aligned;
test(result, Immediate(kDoubleAlignmentMask));
j(zero, &aligned, Label::kNear);
mov(Operand(result, 0),
Immediate(isolate()->factory()->one_pointer_filler_map()));
add(result, Immediate(kDoubleSize / 2));
bind(&aligned);
}
lea(result_end, Operand(result, object_size));
UpdateAllocationTopHelper(result_end, no_reg, flags);
DCHECK(kHeapObjectTag == 1);
inc(result);
}
void MacroAssembler::FastAllocate(Register object_size, Register result,
Register result_end, AllocationFlags flags) {
DCHECK(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, no_reg, flags);
if ((flags & DOUBLE_ALIGNMENT) != 0) {
DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
Label aligned;
test(result, Immediate(kDoubleAlignmentMask));
j(zero, &aligned, Label::kNear);
mov(Operand(result, 0),
Immediate(isolate()->factory()->one_pointer_filler_map()));
add(result, Immediate(kDoubleSize / 2));
bind(&aligned);
}
lea(result_end, Operand(result, object_size, times_1, 0));
UpdateAllocationTopHelper(result_end, no_reg, flags);
DCHECK(kHeapObjectTag == 1);
inc(result);
}
void MacroAssembler::AllocateHeapNumber(Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
MutableMode mode) {
// Allocate heap number in new space.
Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
Handle<Map> map = mode == MUTABLE
? isolate()->factory()->mutable_heap_number_map()
: isolate()->factory()->heap_number_map();
// Set the map.
mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(map));
}
void MacroAssembler::AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
DCHECK(kShortSize == 2);
// scratch1 = length * 2 + kObjectAlignmentMask.
lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
and_(scratch1, Immediate(~kObjectAlignmentMask));
// Allocate two byte string in new space.
Allocate(SeqTwoByteString::kHeaderSize, times_1, scratch1,
REGISTER_VALUE_IS_INT32, result, scratch2, scratch3, gc_required,
NO_ALLOCATION_FLAGS);
// Set the map, length and hash field.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->string_map()));
mov(scratch1, length);
SmiTag(scratch1);
mov(FieldOperand(result, String::kLengthOffset), scratch1);
mov(FieldOperand(result, String::kHashFieldOffset),
Immediate(String::kEmptyHashField));
}
void MacroAssembler::AllocateOneByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
mov(scratch1, length);
DCHECK(kCharSize == 1);
add(scratch1, Immediate(kObjectAlignmentMask));
and_(scratch1, Immediate(~kObjectAlignmentMask));
// Allocate one-byte string in new space.
Allocate(SeqOneByteString::kHeaderSize, times_1, scratch1,
REGISTER_VALUE_IS_INT32, result, scratch2, scratch3, gc_required,
NO_ALLOCATION_FLAGS);
// Set the map, length and hash field.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->one_byte_string_map()));
mov(scratch1, length);
SmiTag(scratch1);
mov(FieldOperand(result, String::kLengthOffset), scratch1);
mov(FieldOperand(result, String::kHashFieldOffset),
Immediate(String::kEmptyHashField));
}
void MacroAssembler::AllocateOneByteString(Register result, int length,
Register scratch1, Register scratch2,
Label* gc_required) {
DCHECK(length > 0);
// Allocate one-byte string in new space.
Allocate(SeqOneByteString::SizeFor(length), result, scratch1, scratch2,
gc_required, NO_ALLOCATION_FLAGS);
// Set the map, length and hash field.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->one_byte_string_map()));
mov(FieldOperand(result, String::kLengthOffset),
Immediate(Smi::FromInt(length)));
mov(FieldOperand(result, String::kHashFieldOffset),
Immediate(String::kEmptyHashField));
}
void MacroAssembler::AllocateTwoByteConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
// Set the map. The other fields are left uninitialized.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->cons_string_map()));
}
void MacroAssembler::AllocateOneByteConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
// Set the map. The other fields are left uninitialized.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->cons_one_byte_string_map()));
}
void MacroAssembler::AllocateTwoByteSlicedString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
// Set the map. The other fields are left uninitialized.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->sliced_string_map()));
}
void MacroAssembler::AllocateOneByteSlicedString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
// Set the map. The other fields are left uninitialized.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->sliced_one_byte_string_map()));
}
void MacroAssembler::AllocateJSValue(Register result, Register constructor,
Register value, Register scratch,
Label* gc_required) {
DCHECK(!result.is(constructor));
DCHECK(!result.is(scratch));
DCHECK(!result.is(value));
// Allocate JSValue in new space.
Allocate(JSValue::kSize, result, scratch, no_reg, gc_required,
NO_ALLOCATION_FLAGS);
// Initialize the JSValue.
LoadGlobalFunctionInitialMap(constructor, scratch);
mov(FieldOperand(result, HeapObject::kMapOffset), scratch);
LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex);
mov(FieldOperand(result, JSObject::kPropertiesOffset), scratch);
mov(FieldOperand(result, JSObject::kElementsOffset), scratch);
mov(FieldOperand(result, JSValue::kValueOffset), value);
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
}
void MacroAssembler::InitializeFieldsWithFiller(Register current_address,
Register end_address,
Register filler) {
Label loop, entry;
jmp(&entry, Label::kNear);
bind(&loop);
mov(Operand(current_address, 0), filler);
add(current_address, Immediate(kPointerSize));
bind(&entry);
cmp(current_address, end_address);
j(below, &loop, Label::kNear);
}
void MacroAssembler::BooleanBitTest(Register object,
int field_offset,
int bit_index) {
bit_index += kSmiTagSize + kSmiShiftSize;
DCHECK(base::bits::IsPowerOfTwo32(kBitsPerByte));
int byte_index = bit_index / kBitsPerByte;
int byte_bit_index = bit_index & (kBitsPerByte - 1);
test_b(FieldOperand(object, field_offset + byte_index),
Immediate(1 << byte_bit_index));
}
void MacroAssembler::NegativeZeroTest(Register result,
Register op,
Label* then_label) {
Label ok;
test(result, result);
j(not_zero, &ok, Label::kNear);
test(op, op);
j(sign, then_label, Label::kNear);
bind(&ok);
}
void MacroAssembler::NegativeZeroTest(Register result,
Register op1,
Register op2,
Register scratch,
Label* then_label) {
Label ok;
test(result, result);
j(not_zero, &ok, Label::kNear);
mov(scratch, op1);
or_(scratch, op2);
j(sign, then_label, Label::kNear);
bind(&ok);
}
void MacroAssembler::GetMapConstructor(Register result, Register map,
Register temp) {
Label done, loop;
mov(result, FieldOperand(map, Map::kConstructorOrBackPointerOffset));
bind(&loop);
JumpIfSmi(result, &done, Label::kNear);
CmpObjectType(result, MAP_TYPE, temp);
j(not_equal, &done, Label::kNear);
mov(result, FieldOperand(result, Map::kConstructorOrBackPointerOffset));
jmp(&loop);
bind(&done);
}
void MacroAssembler::TryGetFunctionPrototype(Register function, Register result,
Register scratch, Label* miss) {
// Get the prototype or initial map from the function.
mov(result,
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// If the prototype or initial map is the hole, don't return it and
// simply miss the cache instead. This will allow us to allocate a
// prototype object on-demand in the runtime system.
cmp(result, Immediate(isolate()->factory()->the_hole_value()));
j(equal, miss);
// If the function does not have an initial map, we're done.
Label done;
CmpObjectType(result, MAP_TYPE, scratch);
j(not_equal, &done, Label::kNear);
// Get the prototype from the initial map.
mov(result, FieldOperand(result, Map::kPrototypeOffset));
// All done.
bind(&done);
}
void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs.
call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
}
void MacroAssembler::TailCallStub(CodeStub* stub) {
jmp(stub->GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::StubReturn(int argc) {
DCHECK(argc >= 1 && generating_stub());
ret((argc - 1) * kPointerSize);
}
bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
return has_frame_ || !stub->SometimesSetsUpAFrame();
}
void MacroAssembler::CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles) {
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
CHECK(f->nargs < 0 || f->nargs == num_arguments);
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Move(eax, Immediate(num_arguments));
mov(ebx, Immediate(ExternalReference(f, isolate())));
CEntryStub ces(isolate(), 1, save_doubles);
CallStub(&ces);
}
void MacroAssembler::CallExternalReference(ExternalReference ref,
int num_arguments) {
mov(eax, Immediate(num_arguments));
mov(ebx, Immediate(ref));
CEntryStub stub(isolate(), 1);
CallStub(&stub);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[8] : argument num_arguments - 1
// ...
// -- esp[8 * num_arguments] : argument 0 (receiver)
//
// For runtime functions with variable arguments:
// -- eax : number of arguments
// -----------------------------------
const Runtime::Function* function = Runtime::FunctionForId(fid);
DCHECK_EQ(1, function->result_size);
if (function->nargs >= 0) {
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
mov(eax, Immediate(function->nargs));
}
JumpToExternalReference(ExternalReference(fid, isolate()));
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& ext,
bool builtin_exit_frame) {
// Set the entry point and jump to the C entry runtime stub.
mov(ebx, Immediate(ext));
CEntryStub ces(isolate(), 1, kDontSaveFPRegs, kArgvOnStack,
builtin_exit_frame);
jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::PrepareForTailCall(
const ParameterCount& callee_args_count, Register caller_args_count_reg,
Register scratch0, Register scratch1, ReturnAddressState ra_state,
int number_of_temp_values_after_return_address) {
#if DEBUG
if (callee_args_count.is_reg()) {
DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0,
scratch1));
} else {
DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1));
}
DCHECK(ra_state != ReturnAddressState::kNotOnStack ||
number_of_temp_values_after_return_address == 0);
#endif
// Calculate the destination address where we will put the return address
// after we drop current frame.
Register new_sp_reg = scratch0;
if (callee_args_count.is_reg()) {
sub(caller_args_count_reg, callee_args_count.reg());
lea(new_sp_reg,
Operand(ebp, caller_args_count_reg, times_pointer_size,
StandardFrameConstants::kCallerPCOffset -
number_of_temp_values_after_return_address * kPointerSize));
} else {
lea(new_sp_reg, Operand(ebp, caller_args_count_reg, times_pointer_size,
StandardFrameConstants::kCallerPCOffset -
(callee_args_count.immediate() +
number_of_temp_values_after_return_address) *
kPointerSize));
}
if (FLAG_debug_code) {
cmp(esp, new_sp_reg);
Check(below, kStackAccessBelowStackPointer);
}
// Copy return address from caller's frame to current frame's return address
// to avoid its trashing and let the following loop copy it to the right
// place.
Register tmp_reg = scratch1;
if (ra_state == ReturnAddressState::kOnStack) {
mov(tmp_reg, Operand(ebp, StandardFrameConstants::kCallerPCOffset));
mov(Operand(esp, number_of_temp_values_after_return_address * kPointerSize),
tmp_reg);
} else {
DCHECK(ReturnAddressState::kNotOnStack == ra_state);
DCHECK_EQ(0, number_of_temp_values_after_return_address);
Push(Operand(ebp, StandardFrameConstants::kCallerPCOffset));
}
// Restore caller's frame pointer now as it could be overwritten by
// the copying loop.
mov(ebp, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
// +2 here is to copy both receiver and return address.
Register count_reg = caller_args_count_reg;
if (callee_args_count.is_reg()) {
lea(count_reg, Operand(callee_args_count.reg(),
2 + number_of_temp_values_after_return_address));
} else {
mov(count_reg, Immediate(callee_args_count.immediate() + 2 +
number_of_temp_values_after_return_address));
// TODO(ishell): Unroll copying loop for small immediate values.
}
// Now copy callee arguments to the caller frame going backwards to avoid
// callee arguments corruption (source and destination areas could overlap).
Label loop, entry;
jmp(&entry, Label::kNear);
bind(&loop);
dec(count_reg);
mov(tmp_reg, Operand(esp, count_reg, times_pointer_size, 0));
mov(Operand(new_sp_reg, count_reg, times_pointer_size, 0), tmp_reg);
bind(&entry);
cmp(count_reg, Immediate(0));
j(not_equal, &loop, Label::kNear);
// Leave current frame.
mov(esp, new_sp_reg);
}
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Label* done,
bool* definitely_mismatches,
InvokeFlag flag,
Label::Distance done_near,
const CallWrapper& call_wrapper) {
bool definitely_matches = false;
*definitely_mismatches = false;
Label invoke;
if (expected.is_immediate()) {
DCHECK(actual.is_immediate());
mov(eax, actual.immediate());
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
if (expected.immediate() == sentinel) {
// Don't worry about adapting arguments for builtins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
*definitely_mismatches = true;
mov(ebx, expected.immediate());
}
}
} else {
if (actual.is_immediate()) {
// Expected is in register, actual is immediate. This is the
// case when we invoke function values without going through the
// IC mechanism.
mov(eax, actual.immediate());
cmp(expected.reg(), actual.immediate());
j(equal, &invoke);
DCHECK(expected.reg().is(ebx));
} else if (!expected.reg().is(actual.reg())) {
// Both expected and actual are in (different) registers. This
// is the case when we invoke functions using call and apply.
cmp(expected.reg(), actual.reg());
j(equal, &invoke);
DCHECK(actual.reg().is(eax));
DCHECK(expected.reg().is(ebx));
} else {
Move(eax, actual.reg());
}
}
if (!definitely_matches) {
Handle<Code> adaptor =
isolate()->builtins()->ArgumentsAdaptorTrampoline();
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
call(adaptor, RelocInfo::CODE_TARGET);
call_wrapper.AfterCall();
if (!*definitely_mismatches) {
jmp(done, done_near);
}
} else {
jmp(adaptor, RelocInfo::CODE_TARGET);
}
bind(&invoke);
}
}
void MacroAssembler::FloodFunctionIfStepping(Register fun, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual) {
Label skip_flooding;
ExternalReference last_step_action =
ExternalReference::debug_last_step_action_address(isolate());
STATIC_ASSERT(StepFrame > StepIn);
cmpb(Operand::StaticVariable(last_step_action), Immediate(StepIn));
j(less, &skip_flooding);
{
FrameScope frame(this,
has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
if (expected.is_reg()) {
SmiTag(expected.reg());
Push(expected.reg());
}
if (actual.is_reg()) {
SmiTag(actual.reg());
Push(actual.reg());
}
if (new_target.is_valid()) {
Push(new_target);
}
Push(fun);
Push(fun);
CallRuntime(Runtime::kDebugPrepareStepInIfStepping);
Pop(fun);
if (new_target.is_valid()) {
Pop(new_target);
}
if (actual.is_reg()) {
Pop(actual.reg());
SmiUntag(actual.reg());
}
if (expected.is_reg()) {
Pop(expected.reg());
SmiUntag(expected.reg());
}
}
bind(&skip_flooding);
}
void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
DCHECK(function.is(edi));
DCHECK_IMPLIES(new_target.is_valid(), new_target.is(edx));
if (call_wrapper.NeedsDebugStepCheck()) {
FloodFunctionIfStepping(function, new_target, expected, actual);
}
// Clear the new.target register if not given.
if (!new_target.is_valid()) {
mov(edx, isolate()->factory()->undefined_value());
}
Label done;
bool definitely_mismatches = false;
InvokePrologue(expected, actual, &done, &definitely_mismatches, flag,
Label::kNear, call_wrapper);
if (!definitely_mismatches) {
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
Operand code = FieldOperand(function, JSFunction::kCodeEntryOffset);
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(code));
call(code);
call_wrapper.AfterCall();
} else {
DCHECK(flag == JUMP_FUNCTION);
jmp(code);
}
bind(&done);
}
}
void MacroAssembler::InvokeFunction(Register fun,
Register new_target,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
DCHECK(fun.is(edi));
mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kFormalParameterCountOffset));
SmiUntag(ebx);
ParameterCount expected(ebx);
InvokeFunctionCode(edi, new_target, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Register fun,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
DCHECK(fun.is(edi));
mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
InvokeFunctionCode(edi, no_reg, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
LoadHeapObject(edi, function);
InvokeFunction(edi, expected, actual, flag, call_wrapper);
}
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
if (context_chain_length > 0) {
// Move up the chain of contexts to the context containing the slot.
mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
for (int i = 1; i < context_chain_length; i++) {
mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
}
} else {
// Slot is in the current function context. Move it into the
// destination register in case we store into it (the write barrier
// cannot be allowed to destroy the context in esi).
mov(dst, esi);
}
// We should not have found a with context by walking the context chain
// (i.e., the static scope chain and runtime context chain do not agree).
// A variable occurring in such a scope should have slot type LOOKUP and
// not CONTEXT.
if (emit_debug_code()) {
cmp(FieldOperand(dst, HeapObject::kMapOffset),
isolate()->factory()->with_context_map());
Check(not_equal, kVariableResolvedToWithContext);
}
}
void MacroAssembler::LoadGlobalProxy(Register dst) {
mov(dst, NativeContextOperand());
mov(dst, ContextOperand(dst, Context::GLOBAL_PROXY_INDEX));
}
void MacroAssembler::LoadTransitionedArrayMapConditional(
ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch,
Label* no_map_match) {
DCHECK(IsFastElementsKind(expected_kind));
DCHECK(IsFastElementsKind(transitioned_kind));
// Check that the function's map is the same as the expected cached map.
mov(scratch, NativeContextOperand());
cmp(map_in_out,
ContextOperand(scratch, Context::ArrayMapIndex(expected_kind)));
j(not_equal, no_map_match);
// Use the transitioned cached map.
mov(map_in_out,
ContextOperand(scratch, Context::ArrayMapIndex(transitioned_kind)));
}
void MacroAssembler::LoadGlobalFunction(int index, Register function) {
// Load the native context from the current context.
mov(function, NativeContextOperand());
// Load the function from the native context.
mov(function, ContextOperand(function, index));
}
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
Register map) {
// Load the initial map. The global functions all have initial maps.
mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
if (emit_debug_code()) {
Label ok, fail;
CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
jmp(&ok);
bind(&fail);
Abort(kGlobalFunctionsMustHaveInitialMap);
bind(&ok);
}
}
// Store the value in register src in the safepoint register stack
// slot for register dst.
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
mov(SafepointRegisterSlot(dst), src);
}
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) {
mov(SafepointRegisterSlot(dst), src);
}
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
mov(dst, SafepointRegisterSlot(src));
}
Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
}
int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
// The registers are pushed starting with the lowest encoding,
// which means that lowest encodings are furthest away from
// the stack pointer.
DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters);
return kNumSafepointRegisters - reg_code - 1;
}
void MacroAssembler::LoadHeapObject(Register result,
Handle<HeapObject> object) {
mov(result, object);
}
void MacroAssembler::CmpHeapObject(Register reg, Handle<HeapObject> object) {
cmp(reg, object);
}
void MacroAssembler::PushHeapObject(Handle<HeapObject> object) { Push(object); }
void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell,
Register scratch) {
mov(scratch, cell);
cmp(value, FieldOperand(scratch, WeakCell::kValueOffset));
}
void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) {
mov(value, cell);
mov(value, FieldOperand(value, WeakCell::kValueOffset));
}
void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
Label* miss) {
GetWeakValue(value, cell);
JumpIfSmi(value, miss);
}
void MacroAssembler::Ret() {
ret(0);
}
void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
if (is_uint16(bytes_dropped)) {
ret(bytes_dropped);
} else {
pop(scratch);
add(esp, Immediate(bytes_dropped));
push(scratch);
ret(0);
}
}
void MacroAssembler::Drop(int stack_elements) {
if (stack_elements > 0) {
add(esp, Immediate(stack_elements * kPointerSize));
}
}
void MacroAssembler::Move(Register dst, Register src) {
if (!dst.is(src)) {
mov(dst, src);
}
}
void MacroAssembler::Move(Register dst, const Immediate& x) {
if (x.is_zero() && RelocInfo::IsNone(x.rmode_)) {
xor_(dst, dst); // Shorter than mov of 32-bit immediate 0.
} else {
mov(dst, x);
}
}
void MacroAssembler::Move(const Operand& dst, const Immediate& x) {
mov(dst, x);
}
void MacroAssembler::Move(XMMRegister dst, uint32_t src) {
if (src == 0) {
pxor(dst, dst);
} else {
unsigned cnt = base::bits::CountPopulation32(src);
unsigned nlz = base::bits::CountLeadingZeros32(src);
unsigned ntz = base::bits::CountTrailingZeros32(src);
if (nlz + cnt + ntz == 32) {
pcmpeqd(dst, dst);
if (ntz == 0) {
psrld(dst, 32 - cnt);
} else {
pslld(dst, 32 - cnt);
if (nlz != 0) psrld(dst, nlz);
}
} else {
push(eax);
mov(eax, Immediate(src));
movd(dst, Operand(eax));
pop(eax);
}
}
}
void MacroAssembler::Move(XMMRegister dst, uint64_t src) {
if (src == 0) {
pxor(dst, dst);
} else {
uint32_t lower = static_cast<uint32_t>(src);
uint32_t upper = static_cast<uint32_t>(src >> 32);
unsigned cnt = base::bits::CountPopulation64(src);
unsigned nlz = base::bits::CountLeadingZeros64(src);
unsigned ntz = base::bits::CountTrailingZeros64(src);
if (nlz + cnt + ntz == 64) {
pcmpeqd(dst, dst);
if (ntz == 0) {
psrlq(dst, 64 - cnt);
} else {
psllq(dst, 64 - cnt);
if (nlz != 0) psrlq(dst, nlz);
}
} else if (lower == 0) {
Move(dst, upper);
psllq(dst, 32);
} else if (CpuFeatures::IsSupported(SSE4_1)) {
CpuFeatureScope scope(this, SSE4_1);
push(eax);
Move(eax, Immediate(lower));
movd(dst, Operand(eax));
Move(eax, Immediate(upper));
pinsrd(dst, Operand(eax), 1);
pop(eax);
} else {
push(Immediate(upper));
push(Immediate(lower));
movsd(dst, Operand(esp, 0));
add(esp, Immediate(kDoubleSize));
}
}
}
void MacroAssembler::Pextrd(Register dst, XMMRegister src, int8_t imm8) {
if (imm8 == 0) {
movd(dst, src);
return;
}
DCHECK_EQ(1, imm8);
if (CpuFeatures::IsSupported(SSE4_1)) {
CpuFeatureScope sse_scope(this, SSE4_1);
pextrd(dst, src, imm8);
return;
}
pshufd(xmm0, src, 1);
movd(dst, xmm0);
}
void MacroAssembler::Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8) {
DCHECK(imm8 == 0 || imm8 == 1);
if (CpuFeatures::IsSupported(SSE4_1)) {
CpuFeatureScope sse_scope(this, SSE4_1);
pinsrd(dst, src, imm8);
return;
}
movd(xmm0, src);
if (imm8 == 1) {
punpckldq(dst, xmm0);
} else {
DCHECK_EQ(0, imm8);
psrlq(dst, 32);
punpckldq(xmm0, dst);
movaps(dst, xmm0);
}
}
void MacroAssembler::Lzcnt(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(LZCNT)) {
CpuFeatureScope scope(this, LZCNT);
lzcnt(dst, src);
return;
}
Label not_zero_src;
bsr(dst, src);
j(not_zero, ¬_zero_src, Label::kNear);
Move(dst, Immediate(63)); // 63^31 == 32
bind(¬_zero_src);
xor_(dst, Immediate(31)); // for x in [0..31], 31^x == 31-x.
}
void MacroAssembler::Tzcnt(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(BMI1)) {
CpuFeatureScope scope(this, BMI1);
tzcnt(dst, src);
return;
}
Label not_zero_src;
bsf(dst, src);
j(not_zero, ¬_zero_src, Label::kNear);
Move(dst, Immediate(32)); // The result of tzcnt is 32 if src = 0.
bind(¬_zero_src);
}
void MacroAssembler::Popcnt(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(POPCNT)) {
CpuFeatureScope scope(this, POPCNT);
popcnt(dst, src);
return;
}
UNREACHABLE();
}
void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
if (FLAG_native_code_counters && counter->Enabled()) {
mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
}
}
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
DCHECK(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Operand operand = Operand::StaticVariable(ExternalReference(counter));
if (value == 1) {
inc(operand);
} else {
add(operand, Immediate(value));
}
}
}
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
DCHECK(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Operand operand = Operand::StaticVariable(ExternalReference(counter));
if (value == 1) {
dec(operand);
} else {
sub(operand, Immediate(value));
}
}
}
void MacroAssembler::IncrementCounter(Condition cc,
StatsCounter* counter,
int value) {
DCHECK(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Label skip;
j(NegateCondition(cc), &skip);
pushfd();
IncrementCounter(counter, value);
popfd();
bind(&skip);
}
}
void MacroAssembler::DecrementCounter(Condition cc,
StatsCounter* counter,
int value) {
DCHECK(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Label skip;
j(NegateCondition(cc), &skip);
pushfd();
DecrementCounter(counter, value);
popfd();
bind(&skip);
}
}
void MacroAssembler::Assert(Condition cc, BailoutReason reason) {
if (emit_debug_code()) Check(cc, reason);
}
void MacroAssembler::AssertFastElements(Register elements) {
if (emit_debug_code()) {
Factory* factory = isolate()->factory();
Label ok;
cmp(FieldOperand(elements, HeapObject::kMapOffset),
Immediate(factory->fixed_array_map()));
j(equal, &ok);
cmp(FieldOperand(elements, HeapObject::kMapOffset),
Immediate(factory->fixed_double_array_map()));
j(equal, &ok);
cmp(FieldOperand(elements, HeapObject::kMapOffset),
Immediate(factory->fixed_cow_array_map()));
j(equal, &ok);
Abort(kJSObjectWithFastElementsMapHasSlowElements);
bind(&ok);
}
}
void MacroAssembler::Check(Condition cc, BailoutReason reason) {
Label L;
j(cc, &L);
Abort(reason);
// will not return here
bind(&L);
}
void MacroAssembler::CheckStackAlignment() {
int frame_alignment = base::OS::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
Label alignment_as_expected;
test(esp, Immediate(frame_alignment_mask));
j(zero, &alignment_as_expected);
// Abort if stack is not aligned.
int3();
bind(&alignment_as_expected);
}
}
void MacroAssembler::Abort(BailoutReason reason) {
#ifdef DEBUG
const char* msg = GetBailoutReason(reason);
if (msg != NULL) {
RecordComment("Abort message: ");
RecordComment(msg);
}
if (FLAG_trap_on_abort) {
int3();
return;
}
#endif
// Check if Abort() has already been initialized.
DCHECK(isolate()->builtins()->Abort()->IsHeapObject());
Move(edx, Smi::FromInt(static_cast<int>(reason)));
// Disable stub call restrictions to always allow calls to abort.
if (!has_frame_) {
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(this, StackFrame::NONE);
Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
} else {
Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
}
// will not return here
int3();
}
void MacroAssembler::LoadInstanceDescriptors(Register map,
Register descriptors) {
mov(descriptors, FieldOperand(map, Map::kDescriptorsOffset));
}
void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
mov(dst, FieldOperand(map, Map::kBitField3Offset));
DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
}
void MacroAssembler::LoadAccessor(Register dst, Register holder,
int accessor_index,
AccessorComponent accessor) {
mov(dst, FieldOperand(holder, HeapObject::kMapOffset));
LoadInstanceDescriptors(dst, dst);
mov(dst, FieldOperand(dst, DescriptorArray::GetValueOffset(accessor_index)));
int offset = accessor == ACCESSOR_GETTER ? AccessorPair::kGetterOffset
: AccessorPair::kSetterOffset;
mov(dst, FieldOperand(dst, offset));
}
void MacroAssembler::LoadPowerOf2(XMMRegister dst,
Register scratch,
int power) {
DCHECK(is_uintn(power + HeapNumber::kExponentBias,
HeapNumber::kExponentBits));
mov(scratch, Immediate(power + HeapNumber::kExponentBias));
movd(dst, scratch);
psllq(dst, HeapNumber::kMantissaBits);
}
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(
Register instance_type, Register scratch, Label* failure) {
if (!scratch.is(instance_type)) {
mov(scratch, instance_type);
}
and_(scratch,
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
cmp(scratch, kStringTag | kSeqStringTag | kOneByteStringTag);
j(not_equal, failure);
}
void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register object1,
Register object2,
Register scratch1,
Register scratch2,
Label* failure) {
// Check that both objects are not smis.
STATIC_ASSERT(kSmiTag == 0);
mov(scratch1, object1);
and_(scratch1, object2);
JumpIfSmi(scratch1, failure);
// Load instance type for both strings.
mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
// Check that both are flat one-byte strings.
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
const int kFlatOneByteStringTag =
kStringTag | kOneByteStringTag | kSeqStringTag;
// Interleave bits from both instance types and compare them in one check.
DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3));
and_(scratch1, kFlatOneByteStringMask);
and_(scratch2, kFlatOneByteStringMask);
lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
cmp(scratch1, kFlatOneByteStringTag | (kFlatOneByteStringTag << 3));
j(not_equal, failure);
}
void MacroAssembler::JumpIfNotUniqueNameInstanceType(Operand operand,
Label* not_unique_name,
Label::Distance distance) {
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
Label succeed;
test(operand, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
j(zero, &succeed);
cmpb(operand, Immediate(SYMBOL_TYPE));
j(not_equal, not_unique_name, distance);
bind(&succeed);
}
void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
Register index,
Register value,
uint32_t encoding_mask) {
Label is_object;
JumpIfNotSmi(string, &is_object, Label::kNear);
Abort(kNonObject);
bind(&is_object);
push(value);
mov(value, FieldOperand(string, HeapObject::kMapOffset));
movzx_b(value, FieldOperand(value, Map::kInstanceTypeOffset));
and_(value, Immediate(kStringRepresentationMask | kStringEncodingMask));
cmp(value, Immediate(encoding_mask));
pop(value);
Check(equal, kUnexpectedStringType);
// The index is assumed to be untagged coming in, tag it to compare with the
// string length without using a temp register, it is restored at the end of
// this function.
SmiTag(index);
Check(no_overflow, kIndexIsTooLarge);
cmp(index, FieldOperand(string, String::kLengthOffset));
Check(less, kIndexIsTooLarge);
cmp(index, Immediate(Smi::kZero));
Check(greater_equal, kIndexIsNegative);
// Restore the index
SmiUntag(index);
}
void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
int frame_alignment = base::OS::ActivationFrameAlignment();
if (frame_alignment != 0) {
// Make stack end at alignment and make room for num_arguments words
// and the original value of esp.
mov(scratch, esp);
sub(esp, Immediate((num_arguments + 1) * kPointerSize));
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
and_(esp, -frame_alignment);
mov(Operand(esp, num_arguments * kPointerSize), scratch);
} else {
sub(esp, Immediate(num_arguments * kPointerSize));
}
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_arguments) {
// Trashing eax is ok as it will be the return value.
mov(eax, Immediate(function));
CallCFunction(eax, num_arguments);
}
void MacroAssembler::CallCFunction(Register function,
int num_arguments) {
DCHECK(has_frame());
// Check stack alignment.
if (emit_debug_code()) {
CheckStackAlignment();
}
call(function);
if (base::OS::ActivationFrameAlignment() != 0) {
mov(esp, Operand(esp, num_arguments * kPointerSize));
} else {
add(esp, Immediate(num_arguments * kPointerSize));
}
}
#ifdef DEBUG
bool AreAliased(Register reg1,
Register reg2,
Register reg3,
Register reg4,
Register reg5,
Register reg6,
Register reg7,
Register reg8) {
int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
reg7.is_valid() + reg8.is_valid();
RegList regs = 0;
if (reg1.is_valid()) regs |= reg1.bit();
if (reg2.is_valid()) regs |= reg2.bit();
if (reg3.is_valid()) regs |= reg3.bit();
if (reg4.is_valid()) regs |= reg4.bit();
if (reg5.is_valid()) regs |= reg5.bit();
if (reg6.is_valid()) regs |= reg6.bit();
if (reg7.is_valid()) regs |= reg7.bit();
if (reg8.is_valid()) regs |= reg8.bit();
int n_of_non_aliasing_regs = NumRegs(regs);
return n_of_valid_regs != n_of_non_aliasing_regs;
}
#endif
CodePatcher::CodePatcher(Isolate* isolate, byte* address, int size)
: address_(address),
size_(size),
masm_(isolate, address, size + Assembler::kGap, CodeObjectRequired::kNo) {
// Create a new macro assembler pointing to the address of the code to patch.
// The size is adjusted with kGap on order for the assembler to generate size
// bytes of instructions without failing with buffer size constraints.
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
CodePatcher::~CodePatcher() {
// Indicate that code has changed.
Assembler::FlushICache(masm_.isolate(), address_, size_);
// Check that the code was patched as expected.
DCHECK(masm_.pc_ == address_ + size_);
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
void MacroAssembler::CheckPageFlag(
Register object,
Register scratch,
int mask,
Condition cc,
Label* condition_met,
Label::Distance condition_met_distance) {
DCHECK(cc == zero || cc == not_zero);
if (scratch.is(object)) {
and_(scratch, Immediate(~Page::kPageAlignmentMask));
} else {
mov(scratch, Immediate(~Page::kPageAlignmentMask));
and_(scratch, object);
}
if (mask < (1 << kBitsPerByte)) {
test_b(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
} else {
test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
}
j(cc, condition_met, condition_met_distance);
}
void MacroAssembler::CheckPageFlagForMap(
Handle<Map> map,
int mask,
Condition cc,
Label* condition_met,
Label::Distance condition_met_distance) {
DCHECK(cc == zero || cc == not_zero);
Page* page = Page::FromAddress(map->address());
DCHECK(!serializer_enabled()); // Serializer cannot match page_flags.
ExternalReference reference(ExternalReference::page_flags(page));
// The inlined static address check of the page's flags relies
// on maps never being compacted.
DCHECK(!isolate()->heap()->mark_compact_collector()->
IsOnEvacuationCandidate(*map));
if (mask < (1 << kBitsPerByte)) {
test_b(Operand::StaticVariable(reference), Immediate(mask));
} else {
test(Operand::StaticVariable(reference), Immediate(mask));
}
j(cc, condition_met, condition_met_distance);
}
void MacroAssembler::JumpIfBlack(Register object,
Register scratch0,
Register scratch1,
Label* on_black,
Label::Distance on_black_near) {
HasColor(object, scratch0, scratch1, on_black, on_black_near, 1,
1); // kBlackBitPattern.
DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
}
void MacroAssembler::HasColor(Register object,
Register bitmap_scratch,
Register mask_scratch,
Label* has_color,
Label::Distance has_color_distance,
int first_bit,
int second_bit) {
DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, ecx));
GetMarkBits(object, bitmap_scratch, mask_scratch);
Label other_color, word_boundary;
test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear);
add(mask_scratch, mask_scratch); // Shift left 1 by adding.
j(zero, &word_boundary, Label::kNear);
test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
jmp(&other_color, Label::kNear);
bind(&word_boundary);
test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize),
Immediate(1));
j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
bind(&other_color);
}
void MacroAssembler::GetMarkBits(Register addr_reg,
Register bitmap_reg,
Register mask_reg) {
DCHECK(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx));
mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
and_(bitmap_reg, addr_reg);
mov(ecx, addr_reg);
int shift =
Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
shr(ecx, shift);
and_(ecx,
(Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1));
add(bitmap_reg, ecx);
mov(ecx, addr_reg);
shr(ecx, kPointerSizeLog2);
and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1);
mov(mask_reg, Immediate(1));
shl_cl(mask_reg);
}
void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch,
Register mask_scratch, Label* value_is_white,
Label::Distance distance) {
DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ecx));
GetMarkBits(value, bitmap_scratch, mask_scratch);
// If the value is black or grey we don't need to do anything.
DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
// Since both black and grey have a 1 in the first position and white does
// not have a 1 there we only need to check one bit.
test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
j(zero, value_is_white, Label::kNear);
}
void MacroAssembler::EnumLength(Register dst, Register map) {
STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
mov(dst, FieldOperand(map, Map::kBitField3Offset));
and_(dst, Immediate(Map::EnumLengthBits::kMask));
SmiTag(dst);
}
void MacroAssembler::CheckEnumCache(Label* call_runtime) {
Label next, start;
mov(ecx, eax);
// Check if the enum length field is properly initialized, indicating that
// there is an enum cache.
mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
EnumLength(edx, ebx);
cmp(edx, Immediate(Smi::FromInt(kInvalidEnumCacheSentinel)));
j(equal, call_runtime);
jmp(&start);
bind(&next);
mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
// For all objects but the receiver, check that the cache is empty.
EnumLength(edx, ebx);
cmp(edx, Immediate(Smi::kZero));
j(not_equal, call_runtime);
bind(&start);
// Check that there are no elements. Register rcx contains the current JS
// object we've reached through the prototype chain.
Label no_elements;
mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset));
cmp(ecx, isolate()->factory()->empty_fixed_array());
j(equal, &no_elements);
// Second chance, the object may be using the empty slow element dictionary.
cmp(ecx, isolate()->factory()->empty_slow_element_dictionary());
j(not_equal, call_runtime);
bind(&no_elements);
mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
cmp(ecx, isolate()->factory()->null_value());
j(not_equal, &next);
}
void MacroAssembler::TestJSArrayForAllocationMemento(
Register receiver_reg,
Register scratch_reg,
Label* no_memento_found) {
Label map_check;
Label top_check;
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
const int kMementoMapOffset = JSArray::kSize - kHeapObjectTag;
const int kMementoLastWordOffset =
kMementoMapOffset + AllocationMemento::kSize - kPointerSize;
// Bail out if the object is not in new space.
JumpIfNotInNewSpace(receiver_reg, scratch_reg, no_memento_found);
// If the object is in new space, we need to check whether it is on the same
// page as the current top.
lea(scratch_reg, Operand(receiver_reg, kMementoLastWordOffset));
xor_(scratch_reg, Operand::StaticVariable(new_space_allocation_top));
test(scratch_reg, Immediate(~Page::kPageAlignmentMask));
j(zero, &top_check);
// The object is on a different page than allocation top. Bail out if the
// object sits on the page boundary as no memento can follow and we cannot
// touch the memory following it.
lea(scratch_reg, Operand(receiver_reg, kMementoLastWordOffset));
xor_(scratch_reg, receiver_reg);
test(scratch_reg, Immediate(~Page::kPageAlignmentMask));
j(not_zero, no_memento_found);
// Continue with the actual map check.
jmp(&map_check);
// If top is on the same page as the current object, we need to check whether
// we are below top.
bind(&top_check);
lea(scratch_reg, Operand(receiver_reg, kMementoLastWordOffset));
cmp(scratch_reg, Operand::StaticVariable(new_space_allocation_top));
j(greater_equal, no_memento_found);
// Memento map check.
bind(&map_check);
mov(scratch_reg, Operand(receiver_reg, kMementoMapOffset));
cmp(scratch_reg, Immediate(isolate()->factory()->allocation_memento_map()));
}
void MacroAssembler::JumpIfDictionaryInPrototypeChain(
Register object,
Register scratch0,
Register scratch1,
Label* found) {
DCHECK(!scratch1.is(scratch0));
Factory* factory = isolate()->factory();
Register current = scratch0;
Label loop_again, end;
// scratch contained elements pointer.
mov(current, object);
mov(current, FieldOperand(current, HeapObject::kMapOffset));
mov(current, FieldOperand(current, Map::kPrototypeOffset));
cmp(current, Immediate(factory->null_value()));
j(equal, &end);
// Loop based on the map going up the prototype chain.
bind(&loop_again);
mov(current, FieldOperand(current, HeapObject::kMapOffset));
STATIC_ASSERT(JS_PROXY_TYPE < JS_OBJECT_TYPE);
STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE);
CmpInstanceType(current, JS_OBJECT_TYPE);
j(below, found);
mov(scratch1, FieldOperand(current, Map::kBitField2Offset));
DecodeField<Map::ElementsKindBits>(scratch1);
cmp(scratch1, Immediate(DICTIONARY_ELEMENTS));
j(equal, found);
mov(current, FieldOperand(current, Map::kPrototypeOffset));
cmp(current, Immediate(factory->null_value()));
j(not_equal, &loop_again);
bind(&end);
}
void MacroAssembler::TruncatingDiv(Register dividend, int32_t divisor) {
DCHECK(!dividend.is(eax));
DCHECK(!dividend.is(edx));
base::MagicNumbersForDivision<uint32_t> mag =
base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
mov(eax, Immediate(mag.multiplier));
imul(dividend);
bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
if (divisor > 0 && neg) add(edx, dividend);
if (divisor < 0 && !neg && mag.multiplier > 0) sub(edx, dividend);
if (mag.shift > 0) sar(edx, mag.shift);
mov(eax, dividend);
shr(eax, 31);
add(edx, eax);
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_IA32