// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_STORE_BUFFER_H_
#define V8_STORE_BUFFER_H_
#include "src/allocation.h"
#include "src/base/logging.h"
#include "src/base/platform/platform.h"
#include "src/cancelable-task.h"
#include "src/globals.h"
#include "src/heap/remembered-set.h"
#include "src/heap/slot-set.h"
namespace v8 {
namespace internal {
// Intermediate buffer that accumulates old-to-new stores from the generated
// code. Moreover, it stores invalid old-to-new slots with two entries.
// The first is a tagged address of the start of the invalid range, the second
// one is the end address of the invalid range or null if there is just one slot
// that needs to be removed from the remembered set. On buffer overflow the
// slots are moved to the remembered set.
class StoreBuffer {
public:
static const int kStoreBufferSize = 1 << (14 + kPointerSizeLog2);
static const int kStoreBufferMask = kStoreBufferSize - 1;
static const int kStoreBuffers = 2;
static const intptr_t kDeletionTag = 1;
V8_EXPORT_PRIVATE static void StoreBufferOverflow(Isolate* isolate);
explicit StoreBuffer(Heap* heap);
void SetUp();
void TearDown();
// Used to add entries from generated code.
inline Address* top_address() { return reinterpret_cast<Address*>(&top_); }
// Moves entries from a specific store buffer to the remembered set. This
// method takes a lock.
void MoveEntriesToRememberedSet(int index);
// This method ensures that all used store buffer entries are transfered to
// the remembered set.
void MoveAllEntriesToRememberedSet();
inline bool IsDeletionAddress(Address address) const {
return reinterpret_cast<intptr_t>(address) & kDeletionTag;
}
inline Address MarkDeletionAddress(Address address) {
return reinterpret_cast<Address>(reinterpret_cast<intptr_t>(address) |
kDeletionTag);
}
inline Address UnmarkDeletionAddress(Address address) {
return reinterpret_cast<Address>(reinterpret_cast<intptr_t>(address) &
~kDeletionTag);
}
// If we only want to delete a single slot, end should be set to null which
// will be written into the second field. When processing the store buffer
// the more efficient Remove method will be called in this case.
void DeleteEntry(Address start, Address end = nullptr);
void InsertEntry(Address slot) {
// Insertions coming from the GC are directly inserted into the remembered
// set. Insertions coming from the runtime are added to the store buffer to
// allow concurrent processing.
if (heap_->gc_state() == Heap::NOT_IN_GC) {
if (top_ + sizeof(Address) > limit_[current_]) {
StoreBufferOverflow(heap_->isolate());
}
*top_ = slot;
top_++;
} else {
// In GC the store buffer has to be empty at any time.
DCHECK(Empty());
RememberedSet<OLD_TO_NEW>::Insert(Page::FromAddress(slot), slot);
}
}
// Used by the concurrent processing thread to transfer entries from the
// store buffer to the remembered set.
void ConcurrentlyProcessStoreBuffer();
bool Empty() {
for (int i = 0; i < kStoreBuffers; i++) {
if (lazy_top_[i]) {
return false;
}
}
return top_ == start_[current_];
}
private:
// There are two store buffers. If one store buffer fills up, the main thread
// publishes the top pointer of the store buffer that needs processing in its
// global lazy_top_ field. After that it start the concurrent processing
// thread. The concurrent processing thread uses the pointer in lazy_top_.
// It will grab the given mutex and transfer its entries to the remembered
// set. If the concurrent thread does not make progress, the main thread will
// perform the work.
// Important: there is an ordering constrained. The store buffer with the
// older entries has to be processed first.
class Task : public CancelableTask {
public:
Task(Isolate* isolate, StoreBuffer* store_buffer)
: CancelableTask(isolate), store_buffer_(store_buffer) {}
virtual ~Task() {}
private:
void RunInternal() override {
store_buffer_->ConcurrentlyProcessStoreBuffer();
}
StoreBuffer* store_buffer_;
DISALLOW_COPY_AND_ASSIGN(Task);
};
void FlipStoreBuffers();
Heap* heap_;
Address* top_;
// The start and the limit of the buffer that contains store slots
// added from the generated code. We have two chunks of store buffers.
// Whenever one fills up, we notify a concurrent processing thread and
// use the other empty one in the meantime.
Address* start_[kStoreBuffers];
Address* limit_[kStoreBuffers];
// At most one lazy_top_ pointer is set at any time.
Address* lazy_top_[kStoreBuffers];
base::Mutex mutex_;
// We only want to have at most one concurrent processing tas running.
bool task_running_;
// Points to the current buffer in use.
int current_;
base::VirtualMemory* virtual_memory_;
};
} // namespace internal
} // namespace v8
#endif // V8_STORE_BUFFER_H_