// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/load-elimination.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/simplified-operator.h"
namespace v8 {
namespace internal {
namespace compiler {
namespace {
enum Aliasing { kNoAlias, kMayAlias, kMustAlias };
Aliasing QueryAlias(Node* a, Node* b) {
if (a == b) return kMustAlias;
if (!NodeProperties::GetType(a)->Maybe(NodeProperties::GetType(b))) {
return kNoAlias;
}
switch (b->opcode()) {
case IrOpcode::kAllocate: {
switch (a->opcode()) {
case IrOpcode::kAllocate:
case IrOpcode::kHeapConstant:
case IrOpcode::kParameter:
return kNoAlias;
default:
break;
}
break;
}
case IrOpcode::kFinishRegion:
return QueryAlias(a, b->InputAt(0));
default:
break;
}
switch (a->opcode()) {
case IrOpcode::kAllocate: {
switch (b->opcode()) {
case IrOpcode::kHeapConstant:
case IrOpcode::kParameter:
return kNoAlias;
default:
break;
}
break;
}
case IrOpcode::kFinishRegion:
return QueryAlias(a->InputAt(0), b);
default:
break;
}
return kMayAlias;
}
bool MayAlias(Node* a, Node* b) { return QueryAlias(a, b) != kNoAlias; }
bool MustAlias(Node* a, Node* b) { return QueryAlias(a, b) == kMustAlias; }
} // namespace
Reduction LoadElimination::Reduce(Node* node) {
if (FLAG_trace_turbo_load_elimination) {
if (node->op()->EffectInputCount() > 0) {
PrintF(" visit #%d:%s", node->id(), node->op()->mnemonic());
if (node->op()->ValueInputCount() > 0) {
PrintF("(");
for (int i = 0; i < node->op()->ValueInputCount(); ++i) {
if (i > 0) PrintF(", ");
Node* const value = NodeProperties::GetValueInput(node, i);
PrintF("#%d:%s", value->id(), value->op()->mnemonic());
}
PrintF(")");
}
PrintF("\n");
for (int i = 0; i < node->op()->EffectInputCount(); ++i) {
Node* const effect = NodeProperties::GetEffectInput(node, i);
if (AbstractState const* const state = node_states_.Get(effect)) {
PrintF(" state[%i]: #%d:%s\n", i, effect->id(),
effect->op()->mnemonic());
state->Print();
} else {
PrintF(" no state[%i]: #%d:%s\n", i, effect->id(),
effect->op()->mnemonic());
}
}
}
}
switch (node->opcode()) {
case IrOpcode::kArrayBufferWasNeutered:
return ReduceArrayBufferWasNeutered(node);
case IrOpcode::kCheckMaps:
return ReduceCheckMaps(node);
case IrOpcode::kEnsureWritableFastElements:
return ReduceEnsureWritableFastElements(node);
case IrOpcode::kMaybeGrowFastElements:
return ReduceMaybeGrowFastElements(node);
case IrOpcode::kTransitionElementsKind:
return ReduceTransitionElementsKind(node);
case IrOpcode::kLoadField:
return ReduceLoadField(node);
case IrOpcode::kStoreField:
return ReduceStoreField(node);
case IrOpcode::kLoadElement:
return ReduceLoadElement(node);
case IrOpcode::kStoreElement:
return ReduceStoreElement(node);
case IrOpcode::kStoreTypedElement:
return ReduceStoreTypedElement(node);
case IrOpcode::kEffectPhi:
return ReduceEffectPhi(node);
case IrOpcode::kDead:
break;
case IrOpcode::kStart:
return ReduceStart(node);
default:
return ReduceOtherNode(node);
}
return NoChange();
}
namespace {
bool IsCompatibleCheck(Node const* a, Node const* b) {
if (a->op() != b->op()) return false;
for (int i = a->op()->ValueInputCount(); --i >= 0;) {
if (!MustAlias(a->InputAt(i), b->InputAt(i))) return false;
}
return true;
}
} // namespace
Node* LoadElimination::AbstractChecks::Lookup(Node* node) const {
for (Node* const check : nodes_) {
if (check && IsCompatibleCheck(check, node)) {
return check;
}
}
return nullptr;
}
bool LoadElimination::AbstractChecks::Equals(AbstractChecks const* that) const {
if (this == that) return true;
for (size_t i = 0; i < arraysize(nodes_); ++i) {
if (Node* this_node = this->nodes_[i]) {
for (size_t j = 0;; ++j) {
if (j == arraysize(nodes_)) return false;
if (that->nodes_[j] == this_node) break;
}
}
}
for (size_t i = 0; i < arraysize(nodes_); ++i) {
if (Node* that_node = that->nodes_[i]) {
for (size_t j = 0;; ++j) {
if (j == arraysize(nodes_)) return false;
if (this->nodes_[j] == that_node) break;
}
}
}
return true;
}
LoadElimination::AbstractChecks const* LoadElimination::AbstractChecks::Merge(
AbstractChecks const* that, Zone* zone) const {
if (this->Equals(that)) return this;
AbstractChecks* copy = new (zone) AbstractChecks(zone);
for (Node* const this_node : this->nodes_) {
if (this_node == nullptr) continue;
for (Node* const that_node : that->nodes_) {
if (this_node == that_node) {
copy->nodes_[copy->next_index_++] = this_node;
break;
}
}
}
copy->next_index_ %= arraysize(nodes_);
return copy;
}
void LoadElimination::AbstractChecks::Print() const {
for (Node* const node : nodes_) {
if (node != nullptr) {
PrintF(" #%d:%s\n", node->id(), node->op()->mnemonic());
}
}
}
Node* LoadElimination::AbstractElements::Lookup(Node* object,
Node* index) const {
for (Element const element : elements_) {
if (element.object == nullptr) continue;
DCHECK_NOT_NULL(element.index);
DCHECK_NOT_NULL(element.value);
if (MustAlias(object, element.object) && MustAlias(index, element.index)) {
return element.value;
}
}
return nullptr;
}
LoadElimination::AbstractElements const*
LoadElimination::AbstractElements::Kill(Node* object, Node* index,
Zone* zone) const {
for (Element const element : this->elements_) {
if (element.object == nullptr) continue;
if (MayAlias(object, element.object)) {
AbstractElements* that = new (zone) AbstractElements(zone);
for (Element const element : this->elements_) {
if (element.object == nullptr) continue;
DCHECK_NOT_NULL(element.index);
DCHECK_NOT_NULL(element.value);
if (!MayAlias(object, element.object) ||
!NodeProperties::GetType(index)->Maybe(
NodeProperties::GetType(element.index))) {
that->elements_[that->next_index_++] = element;
}
}
that->next_index_ %= arraysize(elements_);
return that;
}
}
return this;
}
bool LoadElimination::AbstractElements::Equals(
AbstractElements const* that) const {
if (this == that) return true;
for (size_t i = 0; i < arraysize(elements_); ++i) {
Element this_element = this->elements_[i];
if (this_element.object == nullptr) continue;
for (size_t j = 0;; ++j) {
if (j == arraysize(elements_)) return false;
Element that_element = that->elements_[j];
if (this_element.object == that_element.object &&
this_element.index == that_element.index &&
this_element.value == that_element.value) {
break;
}
}
}
for (size_t i = 0; i < arraysize(elements_); ++i) {
Element that_element = that->elements_[i];
if (that_element.object == nullptr) continue;
for (size_t j = 0;; ++j) {
if (j == arraysize(elements_)) return false;
Element this_element = this->elements_[j];
if (that_element.object == this_element.object &&
that_element.index == this_element.index &&
that_element.value == this_element.value) {
break;
}
}
}
return true;
}
LoadElimination::AbstractElements const*
LoadElimination::AbstractElements::Merge(AbstractElements const* that,
Zone* zone) const {
if (this->Equals(that)) return this;
AbstractElements* copy = new (zone) AbstractElements(zone);
for (Element const this_element : this->elements_) {
if (this_element.object == nullptr) continue;
for (Element const that_element : that->elements_) {
if (this_element.object == that_element.object &&
this_element.index == that_element.index &&
this_element.value == that_element.value) {
copy->elements_[copy->next_index_++] = this_element;
break;
}
}
}
copy->next_index_ %= arraysize(elements_);
return copy;
}
void LoadElimination::AbstractElements::Print() const {
for (Element const& element : elements_) {
if (element.object) {
PrintF(" #%d:%s @ #%d:%s -> #%d:%s\n", element.object->id(),
element.object->op()->mnemonic(), element.index->id(),
element.index->op()->mnemonic(), element.value->id(),
element.value->op()->mnemonic());
}
}
}
Node* LoadElimination::AbstractField::Lookup(Node* object) const {
for (auto pair : info_for_node_) {
if (MustAlias(object, pair.first)) return pair.second;
}
return nullptr;
}
LoadElimination::AbstractField const* LoadElimination::AbstractField::Kill(
Node* object, Zone* zone) const {
for (auto pair : this->info_for_node_) {
if (MayAlias(object, pair.first)) {
AbstractField* that = new (zone) AbstractField(zone);
for (auto pair : this->info_for_node_) {
if (!MayAlias(object, pair.first)) that->info_for_node_.insert(pair);
}
return that;
}
}
return this;
}
void LoadElimination::AbstractField::Print() const {
for (auto pair : info_for_node_) {
PrintF(" #%d:%s -> #%d:%s\n", pair.first->id(),
pair.first->op()->mnemonic(), pair.second->id(),
pair.second->op()->mnemonic());
}
}
bool LoadElimination::AbstractState::Equals(AbstractState const* that) const {
if (this->checks_) {
if (!that->checks_ || !that->checks_->Equals(this->checks_)) {
return false;
}
} else if (that->checks_) {
return false;
}
if (this->elements_) {
if (!that->elements_ || !that->elements_->Equals(this->elements_)) {
return false;
}
} else if (that->elements_) {
return false;
}
for (size_t i = 0u; i < arraysize(fields_); ++i) {
AbstractField const* this_field = this->fields_[i];
AbstractField const* that_field = that->fields_[i];
if (this_field) {
if (!that_field || !that_field->Equals(this_field)) return false;
} else if (that_field) {
return false;
}
}
return true;
}
void LoadElimination::AbstractState::Merge(AbstractState const* that,
Zone* zone) {
// Merge the information we have about the checks.
if (this->checks_) {
this->checks_ =
that->checks_ ? that->checks_->Merge(this->checks_, zone) : nullptr;
}
// Merge the information we have about the elements.
if (this->elements_) {
this->elements_ = that->elements_
? that->elements_->Merge(this->elements_, zone)
: nullptr;
}
// Merge the information we have about the fields.
for (size_t i = 0; i < arraysize(fields_); ++i) {
if (this->fields_[i]) {
if (that->fields_[i]) {
this->fields_[i] = this->fields_[i]->Merge(that->fields_[i], zone);
} else {
this->fields_[i] = nullptr;
}
}
}
}
Node* LoadElimination::AbstractState::LookupCheck(Node* node) const {
return this->checks_ ? this->checks_->Lookup(node) : nullptr;
}
LoadElimination::AbstractState const* LoadElimination::AbstractState::AddCheck(
Node* node, Zone* zone) const {
AbstractState* that = new (zone) AbstractState(*this);
if (that->checks_) {
that->checks_ = that->checks_->Extend(node, zone);
} else {
that->checks_ = new (zone) AbstractChecks(node, zone);
}
return that;
}
Node* LoadElimination::AbstractState::LookupElement(Node* object,
Node* index) const {
if (this->elements_) {
return this->elements_->Lookup(object, index);
}
return nullptr;
}
LoadElimination::AbstractState const*
LoadElimination::AbstractState::AddElement(Node* object, Node* index,
Node* value, Zone* zone) const {
AbstractState* that = new (zone) AbstractState(*this);
if (that->elements_) {
that->elements_ = that->elements_->Extend(object, index, value, zone);
} else {
that->elements_ = new (zone) AbstractElements(object, index, value, zone);
}
return that;
}
LoadElimination::AbstractState const*
LoadElimination::AbstractState::KillElement(Node* object, Node* index,
Zone* zone) const {
if (this->elements_) {
AbstractElements const* that_elements =
this->elements_->Kill(object, index, zone);
if (this->elements_ != that_elements) {
AbstractState* that = new (zone) AbstractState(*this);
that->elements_ = that_elements;
return that;
}
}
return this;
}
LoadElimination::AbstractState const* LoadElimination::AbstractState::AddField(
Node* object, size_t index, Node* value, Zone* zone) const {
AbstractState* that = new (zone) AbstractState(*this);
if (that->fields_[index]) {
that->fields_[index] = that->fields_[index]->Extend(object, value, zone);
} else {
that->fields_[index] = new (zone) AbstractField(object, value, zone);
}
return that;
}
LoadElimination::AbstractState const* LoadElimination::AbstractState::KillField(
Node* object, size_t index, Zone* zone) const {
if (AbstractField const* this_field = this->fields_[index]) {
this_field = this_field->Kill(object, zone);
if (this->fields_[index] != this_field) {
AbstractState* that = new (zone) AbstractState(*this);
that->fields_[index] = this_field;
return that;
}
}
return this;
}
LoadElimination::AbstractState const*
LoadElimination::AbstractState::KillFields(Node* object, Zone* zone) const {
for (size_t i = 0;; ++i) {
if (i == arraysize(fields_)) return this;
if (AbstractField const* this_field = this->fields_[i]) {
AbstractField const* that_field = this_field->Kill(object, zone);
if (that_field != this_field) {
AbstractState* that = new (zone) AbstractState(*this);
that->fields_[i] = this_field;
while (++i < arraysize(fields_)) {
if (this->fields_[i] != nullptr) {
that->fields_[i] = this->fields_[i]->Kill(object, zone);
}
}
return that;
}
}
}
}
Node* LoadElimination::AbstractState::LookupField(Node* object,
size_t index) const {
if (AbstractField const* this_field = this->fields_[index]) {
return this_field->Lookup(object);
}
return nullptr;
}
void LoadElimination::AbstractState::Print() const {
if (checks_) {
PrintF(" checks:\n");
checks_->Print();
}
if (elements_) {
PrintF(" elements:\n");
elements_->Print();
}
for (size_t i = 0; i < arraysize(fields_); ++i) {
if (AbstractField const* const field = fields_[i]) {
PrintF(" field %zu:\n", i);
field->Print();
}
}
}
LoadElimination::AbstractState const*
LoadElimination::AbstractStateForEffectNodes::Get(Node* node) const {
size_t const id = node->id();
if (id < info_for_node_.size()) return info_for_node_[id];
return nullptr;
}
void LoadElimination::AbstractStateForEffectNodes::Set(
Node* node, AbstractState const* state) {
size_t const id = node->id();
if (id >= info_for_node_.size()) info_for_node_.resize(id + 1, nullptr);
info_for_node_[id] = state;
}
Reduction LoadElimination::ReduceArrayBufferWasNeutered(Node* node) {
Node* const effect = NodeProperties::GetEffectInput(node);
AbstractState const* state = node_states_.Get(effect);
if (state == nullptr) return NoChange();
if (Node* const check = state->LookupCheck(node)) {
ReplaceWithValue(node, check, effect);
return Replace(check);
}
state = state->AddCheck(node, zone());
return UpdateState(node, state);
}
Reduction LoadElimination::ReduceCheckMaps(Node* node) {
Node* const object = NodeProperties::GetValueInput(node, 0);
Node* const effect = NodeProperties::GetEffectInput(node);
AbstractState const* state = node_states_.Get(effect);
if (state == nullptr) return NoChange();
int const map_input_count = node->op()->ValueInputCount() - 1;
if (Node* const object_map =
state->LookupField(object, FieldIndexOf(HeapObject::kMapOffset))) {
for (int i = 0; i < map_input_count; ++i) {
Node* map = NodeProperties::GetValueInput(node, 1 + i);
if (map == object_map) return Replace(effect);
}
}
if (map_input_count == 1) {
Node* const map0 = NodeProperties::GetValueInput(node, 1);
state = state->AddField(object, FieldIndexOf(HeapObject::kMapOffset), map0,
zone());
}
return UpdateState(node, state);
}
Reduction LoadElimination::ReduceEnsureWritableFastElements(Node* node) {
Node* const object = NodeProperties::GetValueInput(node, 0);
Node* const elements = NodeProperties::GetValueInput(node, 1);
Node* const effect = NodeProperties::GetEffectInput(node);
AbstractState const* state = node_states_.Get(effect);
if (state == nullptr) return NoChange();
Node* fixed_array_map = jsgraph()->FixedArrayMapConstant();
if (Node* const elements_map =
state->LookupField(elements, FieldIndexOf(HeapObject::kMapOffset))) {
// Check if the {elements} already have the fixed array map.
if (elements_map == fixed_array_map) {
ReplaceWithValue(node, elements, effect);
return Replace(elements);
}
}
// We know that the resulting elements have the fixed array map.
state = state->AddField(node, FieldIndexOf(HeapObject::kMapOffset),
fixed_array_map, zone());
// Kill the previous elements on {object}.
state =
state->KillField(object, FieldIndexOf(JSObject::kElementsOffset), zone());
// Add the new elements on {object}.
state = state->AddField(object, FieldIndexOf(JSObject::kElementsOffset), node,
zone());
return UpdateState(node, state);
}
Reduction LoadElimination::ReduceMaybeGrowFastElements(Node* node) {
GrowFastElementsFlags flags = GrowFastElementsFlagsOf(node->op());
Node* const object = NodeProperties::GetValueInput(node, 0);
Node* const effect = NodeProperties::GetEffectInput(node);
AbstractState const* state = node_states_.Get(effect);
if (state == nullptr) return NoChange();
if (flags & GrowFastElementsFlag::kDoubleElements) {
// We know that the resulting elements have the fixed double array map.
Node* fixed_double_array_map = jsgraph()->FixedDoubleArrayMapConstant();
state = state->AddField(node, FieldIndexOf(HeapObject::kMapOffset),
fixed_double_array_map, zone());
} else {
// We know that the resulting elements have the fixed array map.
Node* fixed_array_map = jsgraph()->FixedArrayMapConstant();
state = state->AddField(node, FieldIndexOf(HeapObject::kMapOffset),
fixed_array_map, zone());
}
if (flags & GrowFastElementsFlag::kArrayObject) {
// Kill the previous Array::length on {object}.
state =
state->KillField(object, FieldIndexOf(JSArray::kLengthOffset), zone());
}
// Kill the previous elements on {object}.
state =
state->KillField(object, FieldIndexOf(JSObject::kElementsOffset), zone());
// Add the new elements on {object}.
state = state->AddField(object, FieldIndexOf(JSObject::kElementsOffset), node,
zone());
return UpdateState(node, state);
}
Reduction LoadElimination::ReduceTransitionElementsKind(Node* node) {
Node* const object = NodeProperties::GetValueInput(node, 0);
Node* const source_map = NodeProperties::GetValueInput(node, 1);
Node* const target_map = NodeProperties::GetValueInput(node, 2);
Node* const effect = NodeProperties::GetEffectInput(node);
AbstractState const* state = node_states_.Get(effect);
if (state == nullptr) return NoChange();
if (Node* const object_map =
state->LookupField(object, FieldIndexOf(HeapObject::kMapOffset))) {
if (target_map == object_map) {
// The {object} already has the {target_map}, so this TransitionElements
// {node} is fully redundant (independent of what {source_map} is).
return Replace(effect);
}
state =
state->KillField(object, FieldIndexOf(HeapObject::kMapOffset), zone());
if (source_map == object_map) {
state = state->AddField(object, FieldIndexOf(HeapObject::kMapOffset),
target_map, zone());
}
} else {
state =
state->KillField(object, FieldIndexOf(HeapObject::kMapOffset), zone());
}
ElementsTransition transition = ElementsTransitionOf(node->op());
switch (transition) {
case ElementsTransition::kFastTransition:
break;
case ElementsTransition::kSlowTransition:
// Kill the elements as well.
state = state->KillField(object, FieldIndexOf(JSObject::kElementsOffset),
zone());
break;
}
return UpdateState(node, state);
}
Reduction LoadElimination::ReduceLoadField(Node* node) {
FieldAccess const& access = FieldAccessOf(node->op());
Node* const object = NodeProperties::GetValueInput(node, 0);
Node* const effect = NodeProperties::GetEffectInput(node);
Node* const control = NodeProperties::GetControlInput(node);
AbstractState const* state = node_states_.Get(effect);
if (state == nullptr) return NoChange();
int field_index = FieldIndexOf(access);
if (field_index >= 0) {
if (Node* replacement = state->LookupField(object, field_index)) {
// Make sure we don't resurrect dead {replacement} nodes.
if (!replacement->IsDead()) {
// We might need to guard the {replacement} if the type of the
// {node} is more precise than the type of the {replacement}.
Type* const node_type = NodeProperties::GetType(node);
if (!NodeProperties::GetType(replacement)->Is(node_type)) {
replacement = graph()->NewNode(common()->TypeGuard(node_type),
replacement, control);
}
ReplaceWithValue(node, replacement, effect);
return Replace(replacement);
}
}
state = state->AddField(object, field_index, node, zone());
}
return UpdateState(node, state);
}
Reduction LoadElimination::ReduceStoreField(Node* node) {
FieldAccess const& access = FieldAccessOf(node->op());
Node* const object = NodeProperties::GetValueInput(node, 0);
Node* const new_value = NodeProperties::GetValueInput(node, 1);
Node* const effect = NodeProperties::GetEffectInput(node);
AbstractState const* state = node_states_.Get(effect);
if (state == nullptr) return NoChange();
int field_index = FieldIndexOf(access);
if (field_index >= 0) {
Node* const old_value = state->LookupField(object, field_index);
if (old_value == new_value) {
// This store is fully redundant.
return Replace(effect);
}
// Kill all potentially aliasing fields and record the new value.
state = state->KillField(object, field_index, zone());
state = state->AddField(object, field_index, new_value, zone());
} else {
// Unsupported StoreField operator.
state = state->KillFields(object, zone());
}
return UpdateState(node, state);
}
Reduction LoadElimination::ReduceLoadElement(Node* node) {
Node* const object = NodeProperties::GetValueInput(node, 0);
Node* const index = NodeProperties::GetValueInput(node, 1);
Node* const effect = NodeProperties::GetEffectInput(node);
Node* const control = NodeProperties::GetControlInput(node);
AbstractState const* state = node_states_.Get(effect);
if (state == nullptr) return NoChange();
if (Node* replacement = state->LookupElement(object, index)) {
// Make sure we don't resurrect dead {replacement} nodes.
if (!replacement->IsDead()) {
// We might need to guard the {replacement} if the type of the
// {node} is more precise than the type of the {replacement}.
Type* const node_type = NodeProperties::GetType(node);
if (!NodeProperties::GetType(replacement)->Is(node_type)) {
replacement = graph()->NewNode(common()->TypeGuard(node_type),
replacement, control);
}
ReplaceWithValue(node, replacement, effect);
return Replace(replacement);
}
}
state = state->AddElement(object, index, node, zone());
return UpdateState(node, state);
}
Reduction LoadElimination::ReduceStoreElement(Node* node) {
ElementAccess const& access = ElementAccessOf(node->op());
Node* const object = NodeProperties::GetValueInput(node, 0);
Node* const index = NodeProperties::GetValueInput(node, 1);
Node* const new_value = NodeProperties::GetValueInput(node, 2);
Node* const effect = NodeProperties::GetEffectInput(node);
AbstractState const* state = node_states_.Get(effect);
if (state == nullptr) return NoChange();
Node* const old_value = state->LookupElement(object, index);
if (old_value == new_value) {
// This store is fully redundant.
return Replace(effect);
}
// Kill all potentially aliasing elements.
state = state->KillElement(object, index, zone());
// Only record the new value if the store doesn't have an implicit truncation.
switch (access.machine_type.representation()) {
case MachineRepresentation::kNone:
case MachineRepresentation::kBit:
UNREACHABLE();
break;
case MachineRepresentation::kWord8:
case MachineRepresentation::kWord16:
case MachineRepresentation::kWord32:
case MachineRepresentation::kWord64:
case MachineRepresentation::kFloat32:
// TODO(turbofan): Add support for doing the truncations.
break;
case MachineRepresentation::kFloat64:
case MachineRepresentation::kSimd128:
case MachineRepresentation::kTaggedSigned:
case MachineRepresentation::kTaggedPointer:
case MachineRepresentation::kTagged:
state = state->AddElement(object, index, new_value, zone());
break;
}
return UpdateState(node, state);
}
Reduction LoadElimination::ReduceStoreTypedElement(Node* node) {
Node* const effect = NodeProperties::GetEffectInput(node);
AbstractState const* state = node_states_.Get(effect);
if (state == nullptr) return NoChange();
return UpdateState(node, state);
}
Reduction LoadElimination::ReduceEffectPhi(Node* node) {
Node* const effect0 = NodeProperties::GetEffectInput(node, 0);
Node* const control = NodeProperties::GetControlInput(node);
AbstractState const* state0 = node_states_.Get(effect0);
if (state0 == nullptr) return NoChange();
if (control->opcode() == IrOpcode::kLoop) {
// Here we rely on having only reducible loops:
// The loop entry edge always dominates the header, so we can just take
// the state from the first input, and compute the loop state based on it.
AbstractState const* state = ComputeLoopState(node, state0);
return UpdateState(node, state);
}
DCHECK_EQ(IrOpcode::kMerge, control->opcode());
// Shortcut for the case when we do not know anything about some input.
int const input_count = node->op()->EffectInputCount();
for (int i = 1; i < input_count; ++i) {
Node* const effect = NodeProperties::GetEffectInput(node, i);
if (node_states_.Get(effect) == nullptr) return NoChange();
}
// Make a copy of the first input's state and merge with the state
// from other inputs.
AbstractState* state = new (zone()) AbstractState(*state0);
for (int i = 1; i < input_count; ++i) {
Node* const input = NodeProperties::GetEffectInput(node, i);
state->Merge(node_states_.Get(input), zone());
}
return UpdateState(node, state);
}
Reduction LoadElimination::ReduceStart(Node* node) {
return UpdateState(node, empty_state());
}
Reduction LoadElimination::ReduceOtherNode(Node* node) {
if (node->op()->EffectInputCount() == 1) {
if (node->op()->EffectOutputCount() == 1) {
Node* const effect = NodeProperties::GetEffectInput(node);
AbstractState const* state = node_states_.Get(effect);
// If we do not know anything about the predecessor, do not propagate
// just yet because we will have to recompute anyway once we compute
// the predecessor.
if (state == nullptr) return NoChange();
// Check if this {node} has some uncontrolled side effects.
if (!node->op()->HasProperty(Operator::kNoWrite)) {
state = empty_state();
}
return UpdateState(node, state);
} else {
// Effect terminators should be handled specially.
return NoChange();
}
}
DCHECK_EQ(0, node->op()->EffectInputCount());
DCHECK_EQ(0, node->op()->EffectOutputCount());
return NoChange();
}
Reduction LoadElimination::UpdateState(Node* node, AbstractState const* state) {
AbstractState const* original = node_states_.Get(node);
// Only signal that the {node} has Changed, if the information about {state}
// has changed wrt. the {original}.
if (state != original) {
if (original == nullptr || !state->Equals(original)) {
node_states_.Set(node, state);
return Changed(node);
}
}
return NoChange();
}
LoadElimination::AbstractState const* LoadElimination::ComputeLoopState(
Node* node, AbstractState const* state) const {
Node* const control = NodeProperties::GetControlInput(node);
ZoneQueue<Node*> queue(zone());
ZoneSet<Node*> visited(zone());
visited.insert(node);
for (int i = 1; i < control->InputCount(); ++i) {
queue.push(node->InputAt(i));
}
while (!queue.empty()) {
Node* const current = queue.front();
queue.pop();
if (visited.find(current) == visited.end()) {
visited.insert(current);
if (!current->op()->HasProperty(Operator::kNoWrite)) {
switch (current->opcode()) {
case IrOpcode::kEnsureWritableFastElements: {
Node* const object = NodeProperties::GetValueInput(current, 0);
state = state->KillField(
object, FieldIndexOf(JSObject::kElementsOffset), zone());
break;
}
case IrOpcode::kMaybeGrowFastElements: {
GrowFastElementsFlags flags =
GrowFastElementsFlagsOf(current->op());
Node* const object = NodeProperties::GetValueInput(current, 0);
state = state->KillField(
object, FieldIndexOf(JSObject::kElementsOffset), zone());
if (flags & GrowFastElementsFlag::kArrayObject) {
state = state->KillField(
object, FieldIndexOf(JSArray::kLengthOffset), zone());
}
break;
}
case IrOpcode::kTransitionElementsKind: {
Node* const object = NodeProperties::GetValueInput(current, 0);
state = state->KillField(
object, FieldIndexOf(HeapObject::kMapOffset), zone());
state = state->KillField(
object, FieldIndexOf(JSObject::kElementsOffset), zone());
break;
}
case IrOpcode::kStoreField: {
FieldAccess const& access = FieldAccessOf(current->op());
Node* const object = NodeProperties::GetValueInput(current, 0);
int field_index = FieldIndexOf(access);
if (field_index < 0) {
state = state->KillFields(object, zone());
} else {
state = state->KillField(object, field_index, zone());
}
break;
}
case IrOpcode::kStoreElement: {
Node* const object = NodeProperties::GetValueInput(current, 0);
Node* const index = NodeProperties::GetValueInput(current, 1);
state = state->KillElement(object, index, zone());
break;
}
case IrOpcode::kStoreBuffer:
case IrOpcode::kStoreTypedElement: {
// Doesn't affect anything we track with the state currently.
break;
}
default:
return empty_state();
}
}
for (int i = 0; i < current->op()->EffectInputCount(); ++i) {
queue.push(NodeProperties::GetEffectInput(current, i));
}
}
}
return state;
}
// static
int LoadElimination::FieldIndexOf(int offset) {
DCHECK_EQ(0, offset % kPointerSize);
int field_index = offset / kPointerSize;
if (field_index >= static_cast<int>(kMaxTrackedFields)) return -1;
return field_index;
}
// static
int LoadElimination::FieldIndexOf(FieldAccess const& access) {
MachineRepresentation rep = access.machine_type.representation();
switch (rep) {
case MachineRepresentation::kNone:
case MachineRepresentation::kBit:
case MachineRepresentation::kSimd128:
UNREACHABLE();
break;
case MachineRepresentation::kWord32:
case MachineRepresentation::kWord64:
if (rep != MachineType::PointerRepresentation()) {
return -1; // We currently only track pointer size fields.
}
break;
case MachineRepresentation::kWord8:
case MachineRepresentation::kWord16:
case MachineRepresentation::kFloat32:
return -1; // Currently untracked.
case MachineRepresentation::kFloat64:
if (kDoubleSize != kPointerSize) {
return -1; // We currently only track pointer size fields.
}
// Fall through.
case MachineRepresentation::kTaggedSigned:
case MachineRepresentation::kTaggedPointer:
case MachineRepresentation::kTagged:
// TODO(bmeurer): Check that we never do overlapping load/stores of
// individual parts of Float64 values.
break;
}
if (access.base_is_tagged != kTaggedBase) {
return -1; // We currently only track tagged objects.
}
return FieldIndexOf(access.offset);
}
CommonOperatorBuilder* LoadElimination::common() const {
return jsgraph()->common();
}
Graph* LoadElimination::graph() const { return jsgraph()->graph(); }
} // namespace compiler
} // namespace internal
} // namespace v8