// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_INSTRUCTION_SELECTOR_H_
#define V8_COMPILER_INSTRUCTION_SELECTOR_H_
#include <map>
#include "src/compiler/common-operator.h"
#include "src/compiler/instruction-scheduler.h"
#include "src/compiler/instruction.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node.h"
#include "src/globals.h"
#include "src/zone/zone-containers.h"
namespace v8 {
namespace internal {
namespace compiler {
// Forward declarations.
class BasicBlock;
struct CallBuffer; // TODO(bmeurer): Remove this.
class FlagsContinuation;
class Linkage;
class OperandGenerator;
struct SwitchInfo;
// This struct connects nodes of parameters which are going to be pushed on the
// call stack with their parameter index in the call descriptor of the callee.
class PushParameter {
public:
PushParameter() : node_(nullptr), type_(MachineType::None()) {}
PushParameter(Node* node, MachineType type) : node_(node), type_(type) {}
Node* node() const { return node_; }
MachineType type() const { return type_; }
private:
Node* node_;
MachineType type_;
};
// Instruction selection generates an InstructionSequence for a given Schedule.
class V8_EXPORT_PRIVATE InstructionSelector final {
public:
// Forward declarations.
class Features;
enum SourcePositionMode { kCallSourcePositions, kAllSourcePositions };
enum EnableScheduling { kDisableScheduling, kEnableScheduling };
enum EnableSerialization { kDisableSerialization, kEnableSerialization };
InstructionSelector(
Zone* zone, size_t node_count, Linkage* linkage,
InstructionSequence* sequence, Schedule* schedule,
SourcePositionTable* source_positions, Frame* frame,
SourcePositionMode source_position_mode = kCallSourcePositions,
Features features = SupportedFeatures(),
EnableScheduling enable_scheduling = FLAG_turbo_instruction_scheduling
? kEnableScheduling
: kDisableScheduling,
EnableSerialization enable_serialization = kDisableSerialization);
// Visit code for the entire graph with the included schedule.
bool SelectInstructions();
void StartBlock(RpoNumber rpo);
void EndBlock(RpoNumber rpo);
void AddInstruction(Instruction* instr);
// ===========================================================================
// ============= Architecture-independent code emission methods. =============
// ===========================================================================
Instruction* Emit(InstructionCode opcode, InstructionOperand output,
size_t temp_count = 0, InstructionOperand* temps = nullptr);
Instruction* Emit(InstructionCode opcode, InstructionOperand output,
InstructionOperand a, size_t temp_count = 0,
InstructionOperand* temps = nullptr);
Instruction* Emit(InstructionCode opcode, InstructionOperand output,
InstructionOperand a, InstructionOperand b,
size_t temp_count = 0, InstructionOperand* temps = nullptr);
Instruction* Emit(InstructionCode opcode, InstructionOperand output,
InstructionOperand a, InstructionOperand b,
InstructionOperand c, size_t temp_count = 0,
InstructionOperand* temps = nullptr);
Instruction* Emit(InstructionCode opcode, InstructionOperand output,
InstructionOperand a, InstructionOperand b,
InstructionOperand c, InstructionOperand d,
size_t temp_count = 0, InstructionOperand* temps = nullptr);
Instruction* Emit(InstructionCode opcode, InstructionOperand output,
InstructionOperand a, InstructionOperand b,
InstructionOperand c, InstructionOperand d,
InstructionOperand e, size_t temp_count = 0,
InstructionOperand* temps = nullptr);
Instruction* Emit(InstructionCode opcode, InstructionOperand output,
InstructionOperand a, InstructionOperand b,
InstructionOperand c, InstructionOperand d,
InstructionOperand e, InstructionOperand f,
size_t temp_count = 0, InstructionOperand* temps = nullptr);
Instruction* Emit(InstructionCode opcode, size_t output_count,
InstructionOperand* outputs, size_t input_count,
InstructionOperand* inputs, size_t temp_count = 0,
InstructionOperand* temps = nullptr);
Instruction* Emit(Instruction* instr);
// ===========================================================================
// ===== Architecture-independent deoptimization exit emission methods. ======
// ===========================================================================
Instruction* EmitDeoptimize(InstructionCode opcode, InstructionOperand output,
InstructionOperand a, DeoptimizeReason reason,
Node* frame_state);
Instruction* EmitDeoptimize(InstructionCode opcode, InstructionOperand output,
InstructionOperand a, InstructionOperand b,
DeoptimizeReason reason, Node* frame_state);
Instruction* EmitDeoptimize(InstructionCode opcode, size_t output_count,
InstructionOperand* outputs, size_t input_count,
InstructionOperand* inputs,
DeoptimizeReason reason, Node* frame_state);
// ===========================================================================
// ============== Architecture-independent CPU feature methods. ==============
// ===========================================================================
class Features final {
public:
Features() : bits_(0) {}
explicit Features(unsigned bits) : bits_(bits) {}
explicit Features(CpuFeature f) : bits_(1u << f) {}
Features(CpuFeature f1, CpuFeature f2) : bits_((1u << f1) | (1u << f2)) {}
bool Contains(CpuFeature f) const { return (bits_ & (1u << f)); }
private:
unsigned bits_;
};
bool IsSupported(CpuFeature feature) const {
return features_.Contains(feature);
}
// Returns the features supported on the target platform.
static Features SupportedFeatures() {
return Features(CpuFeatures::SupportedFeatures());
}
// TODO(sigurds) This should take a CpuFeatures argument.
static MachineOperatorBuilder::Flags SupportedMachineOperatorFlags();
static MachineOperatorBuilder::AlignmentRequirements AlignmentRequirements();
// ===========================================================================
// ============ Architecture-independent graph covering methods. =============
// ===========================================================================
// Used in pattern matching during code generation.
// Check if {node} can be covered while generating code for the current
// instruction. A node can be covered if the {user} of the node has the only
// edge and the two are in the same basic block.
bool CanCover(Node* user, Node* node) const;
// Used in pattern matching during code generation.
// This function checks that {node} and {user} are in the same basic block,
// and that {user} is the only user of {node} in this basic block. This
// check guarantees that there are no users of {node} scheduled between
// {node} and {user}, and thus we can select a single instruction for both
// nodes, if such an instruction exists. This check can be used for example
// when selecting instructions for:
// n = Int32Add(a, b)
// c = Word32Compare(n, 0, cond)
// Branch(c, true_label, false_label)
// Here we can generate a flag-setting add instruction, even if the add has
// uses in other basic blocks, since the flag-setting add instruction will
// still generate the result of the addition and not just set the flags.
// However, if we had uses of the add in the same basic block, we could have:
// n = Int32Add(a, b)
// o = OtherOp(n, ...)
// c = Word32Compare(n, 0, cond)
// Branch(c, true_label, false_label)
// where we cannot select the add and the compare together. If we were to
// select a flag-setting add instruction for Word32Compare and Int32Add while
// visiting Word32Compare, we would then have to select an instruction for
// OtherOp *afterwards*, which means we would attempt to use the result of
// the add before we have defined it.
bool IsOnlyUserOfNodeInSameBlock(Node* user, Node* node) const;
// Checks if {node} was already defined, and therefore code was already
// generated for it.
bool IsDefined(Node* node) const;
// Checks if {node} has any uses, and therefore code has to be generated for
// it.
bool IsUsed(Node* node) const;
// Checks if {node} is currently live.
bool IsLive(Node* node) const { return !IsDefined(node) && IsUsed(node); }
// Gets the effect level of {node}.
int GetEffectLevel(Node* node) const;
int GetVirtualRegister(const Node* node);
const std::map<NodeId, int> GetVirtualRegistersForTesting() const;
// Check if we can generate loads and stores of ExternalConstants relative
// to the roots register, i.e. if both a root register is available for this
// compilation unit and the serializer is disabled.
bool CanAddressRelativeToRootsRegister() const;
// Check if we can use the roots register to access GC roots.
bool CanUseRootsRegister() const;
Isolate* isolate() const { return sequence()->isolate(); }
private:
friend class OperandGenerator;
bool UseInstructionScheduling() const {
return (enable_scheduling_ == kEnableScheduling) &&
InstructionScheduler::SchedulerSupported();
}
void EmitTableSwitch(const SwitchInfo& sw, InstructionOperand& index_operand);
void EmitLookupSwitch(const SwitchInfo& sw,
InstructionOperand& value_operand);
void TryRename(InstructionOperand* op);
int GetRename(int virtual_register);
void SetRename(const Node* node, const Node* rename);
void UpdateRenames(Instruction* instruction);
void UpdateRenamesInPhi(PhiInstruction* phi);
// Inform the instruction selection that {node} was just defined.
void MarkAsDefined(Node* node);
// Inform the instruction selection that {node} has at least one use and we
// will need to generate code for it.
void MarkAsUsed(Node* node);
// Sets the effect level of {node}.
void SetEffectLevel(Node* node, int effect_level);
// Inform the register allocation of the representation of the value produced
// by {node}.
void MarkAsRepresentation(MachineRepresentation rep, Node* node);
void MarkAsWord32(Node* node) {
MarkAsRepresentation(MachineRepresentation::kWord32, node);
}
void MarkAsWord64(Node* node) {
MarkAsRepresentation(MachineRepresentation::kWord64, node);
}
void MarkAsFloat32(Node* node) {
MarkAsRepresentation(MachineRepresentation::kFloat32, node);
}
void MarkAsFloat64(Node* node) {
MarkAsRepresentation(MachineRepresentation::kFloat64, node);
}
void MarkAsSimd128(Node* node) {
MarkAsRepresentation(MachineRepresentation::kSimd128, node);
}
void MarkAsReference(Node* node) {
MarkAsRepresentation(MachineRepresentation::kTagged, node);
}
// Inform the register allocation of the representation of the unallocated
// operand {op}.
void MarkAsRepresentation(MachineRepresentation rep,
const InstructionOperand& op);
enum CallBufferFlag {
kCallCodeImmediate = 1u << 0,
kCallAddressImmediate = 1u << 1,
kCallTail = 1u << 2
};
typedef base::Flags<CallBufferFlag> CallBufferFlags;
// Initialize the call buffer with the InstructionOperands, nodes, etc,
// corresponding
// to the inputs and outputs of the call.
// {call_code_immediate} to generate immediate operands to calls of code.
// {call_address_immediate} to generate immediate operands to address calls.
void InitializeCallBuffer(Node* call, CallBuffer* buffer,
CallBufferFlags flags, int stack_slot_delta = 0);
bool IsTailCallAddressImmediate();
int GetTempsCountForTailCallFromJSFunction();
FrameStateDescriptor* GetFrameStateDescriptor(Node* node);
// ===========================================================================
// ============= Architecture-specific graph covering methods. ===============
// ===========================================================================
// Visit nodes in the given block and generate code.
void VisitBlock(BasicBlock* block);
// Visit the node for the control flow at the end of the block, generating
// code if necessary.
void VisitControl(BasicBlock* block);
// Visit the node and generate code, if any.
void VisitNode(Node* node);
// Visit the node and generate code for IEEE 754 functions.
void VisitFloat64Ieee754Binop(Node*, InstructionCode code);
void VisitFloat64Ieee754Unop(Node*, InstructionCode code);
#define DECLARE_GENERATOR(x) void Visit##x(Node* node);
MACHINE_OP_LIST(DECLARE_GENERATOR)
MACHINE_SIMD_RETURN_NUM_OP_LIST(DECLARE_GENERATOR)
MACHINE_SIMD_RETURN_SIMD_OP_LIST(DECLARE_GENERATOR)
#undef DECLARE_GENERATOR
void VisitFinishRegion(Node* node);
void VisitParameter(Node* node);
void VisitIfException(Node* node);
void VisitOsrValue(Node* node);
void VisitPhi(Node* node);
void VisitProjection(Node* node);
void VisitConstant(Node* node);
void VisitCall(Node* call, BasicBlock* handler = nullptr);
void VisitDeoptimizeIf(Node* node);
void VisitDeoptimizeUnless(Node* node);
void VisitTailCall(Node* call);
void VisitGoto(BasicBlock* target);
void VisitBranch(Node* input, BasicBlock* tbranch, BasicBlock* fbranch);
void VisitSwitch(Node* node, const SwitchInfo& sw);
void VisitDeoptimize(DeoptimizeKind kind, DeoptimizeReason reason,
Node* value);
void VisitReturn(Node* ret);
void VisitThrow(Node* value);
void VisitRetain(Node* node);
void EmitPrepareArguments(ZoneVector<compiler::PushParameter>* arguments,
const CallDescriptor* descriptor, Node* node);
void EmitIdentity(Node* node);
bool CanProduceSignalingNaN(Node* node);
// ===========================================================================
Schedule* schedule() const { return schedule_; }
Linkage* linkage() const { return linkage_; }
InstructionSequence* sequence() const { return sequence_; }
Zone* instruction_zone() const { return sequence()->zone(); }
Zone* zone() const { return zone_; }
void set_instruction_selection_failed() {
instruction_selection_failed_ = true;
}
bool instruction_selection_failed() { return instruction_selection_failed_; }
void MarkPairProjectionsAsWord32(Node* node);
// ===========================================================================
Zone* const zone_;
Linkage* const linkage_;
InstructionSequence* const sequence_;
SourcePositionTable* const source_positions_;
SourcePositionMode const source_position_mode_;
Features features_;
Schedule* const schedule_;
BasicBlock* current_block_;
ZoneVector<Instruction*> instructions_;
BoolVector defined_;
BoolVector used_;
IntVector effect_level_;
IntVector virtual_registers_;
IntVector virtual_register_rename_;
InstructionScheduler* scheduler_;
EnableScheduling enable_scheduling_;
EnableSerialization enable_serialization_;
Frame* frame_;
bool instruction_selection_failed_;
};
} // namespace compiler
} // namespace internal
} // namespace v8
#endif // V8_COMPILER_INSTRUCTION_SELECTOR_H_