// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CODE_STUB_ASSEMBLER_H_
#define V8_CODE_STUB_ASSEMBLER_H_
#include <functional>
#include "src/compiler/code-assembler.h"
#include "src/globals.h"
#include "src/objects.h"
namespace v8 {
namespace internal {
class CallInterfaceDescriptor;
class StatsCounter;
class StubCache;
enum class PrimitiveType { kBoolean, kNumber, kString, kSymbol };
#define HEAP_CONSTANT_LIST(V) \
V(BooleanMap, BooleanMap) \
V(CodeMap, CodeMap) \
V(empty_string, EmptyString) \
V(EmptyFixedArray, EmptyFixedArray) \
V(FalseValue, False) \
V(FixedArrayMap, FixedArrayMap) \
V(FixedCOWArrayMap, FixedCOWArrayMap) \
V(FixedDoubleArrayMap, FixedDoubleArrayMap) \
V(HeapNumberMap, HeapNumberMap) \
V(MinusZeroValue, MinusZero) \
V(NanValue, Nan) \
V(NullValue, Null) \
V(TheHoleValue, TheHole) \
V(TrueValue, True) \
V(UndefinedValue, Undefined)
// Provides JavaScript-specific "macro-assembler" functionality on top of the
// CodeAssembler. By factoring the JavaScript-isms out of the CodeAssembler,
// it's possible to add JavaScript-specific useful CodeAssembler "macros"
// without modifying files in the compiler directory (and requiring a review
// from a compiler directory OWNER).
class V8_EXPORT_PRIVATE CodeStubAssembler : public compiler::CodeAssembler {
public:
// Create with CallStub linkage.
// |result_size| specifies the number of results returned by the stub.
// TODO(rmcilroy): move result_size to the CallInterfaceDescriptor.
CodeStubAssembler(Isolate* isolate, Zone* zone,
const CallInterfaceDescriptor& descriptor,
Code::Flags flags, const char* name,
size_t result_size = 1);
// Create with JSCall linkage.
CodeStubAssembler(Isolate* isolate, Zone* zone, int parameter_count,
Code::Flags flags, const char* name);
enum AllocationFlag : uint8_t {
kNone = 0,
kDoubleAlignment = 1,
kPretenured = 1 << 1
};
typedef base::Flags<AllocationFlag> AllocationFlags;
// TODO(ishell): Fix all loads/stores from arrays by int32 offsets/indices
// and eventually remove INTEGER_PARAMETERS in favour of INTPTR_PARAMETERS.
enum ParameterMode { INTEGER_PARAMETERS, SMI_PARAMETERS, INTPTR_PARAMETERS };
// On 32-bit platforms, there is a slight performance advantage to doing all
// of the array offset/index arithmetic with SMIs, since it's possible
// to save a few tag/untag operations without paying an extra expense when
// calculating array offset (the smi math can be folded away) and there are
// fewer live ranges. Thus only convert indices to untagged value on 64-bit
// platforms.
ParameterMode OptimalParameterMode() const {
return Is64() ? INTPTR_PARAMETERS : SMI_PARAMETERS;
}
compiler::Node* UntagParameter(compiler::Node* value, ParameterMode mode) {
if (mode != SMI_PARAMETERS) value = SmiUntag(value);
return value;
}
compiler::Node* TagParameter(compiler::Node* value, ParameterMode mode) {
if (mode != SMI_PARAMETERS) value = SmiTag(value);
return value;
}
compiler::Node* NoContextConstant();
#define HEAP_CONSTANT_ACCESSOR(rootName, name) compiler::Node* name##Constant();
HEAP_CONSTANT_LIST(HEAP_CONSTANT_ACCESSOR)
#undef HEAP_CONSTANT_ACCESSOR
#define HEAP_CONSTANT_TEST(rootName, name) \
compiler::Node* Is##name(compiler::Node* value);
HEAP_CONSTANT_LIST(HEAP_CONSTANT_TEST)
#undef HEAP_CONSTANT_TEST
compiler::Node* HashSeed();
compiler::Node* StaleRegisterConstant();
compiler::Node* IntPtrOrSmiConstant(int value, ParameterMode mode);
compiler::Node* IntPtrAddFoldConstants(compiler::Node* left,
compiler::Node* right);
compiler::Node* IntPtrSubFoldConstants(compiler::Node* left,
compiler::Node* right);
// Round the 32bits payload of the provided word up to the next power of two.
compiler::Node* IntPtrRoundUpToPowerOfTwo32(compiler::Node* value);
compiler::Node* IntPtrMax(compiler::Node* left, compiler::Node* right);
// Float64 operations.
compiler::Node* Float64Ceil(compiler::Node* x);
compiler::Node* Float64Floor(compiler::Node* x);
compiler::Node* Float64Round(compiler::Node* x);
compiler::Node* Float64RoundToEven(compiler::Node* x);
compiler::Node* Float64Trunc(compiler::Node* x);
// Tag a Word as a Smi value.
compiler::Node* SmiTag(compiler::Node* value);
// Untag a Smi value as a Word.
compiler::Node* SmiUntag(compiler::Node* value);
// Smi conversions.
compiler::Node* SmiToFloat64(compiler::Node* value);
compiler::Node* SmiFromWord(compiler::Node* value) { return SmiTag(value); }
compiler::Node* SmiFromWord32(compiler::Node* value);
compiler::Node* SmiToWord(compiler::Node* value) { return SmiUntag(value); }
compiler::Node* SmiToWord32(compiler::Node* value);
// Smi operations.
compiler::Node* SmiAdd(compiler::Node* a, compiler::Node* b);
compiler::Node* SmiSub(compiler::Node* a, compiler::Node* b);
compiler::Node* SmiEqual(compiler::Node* a, compiler::Node* b);
compiler::Node* SmiAbove(compiler::Node* a, compiler::Node* b);
compiler::Node* SmiAboveOrEqual(compiler::Node* a, compiler::Node* b);
compiler::Node* SmiBelow(compiler::Node* a, compiler::Node* b);
compiler::Node* SmiLessThan(compiler::Node* a, compiler::Node* b);
compiler::Node* SmiLessThanOrEqual(compiler::Node* a, compiler::Node* b);
compiler::Node* SmiMax(compiler::Node* a, compiler::Node* b);
compiler::Node* SmiMin(compiler::Node* a, compiler::Node* b);
// Computes a % b for Smi inputs a and b; result is not necessarily a Smi.
compiler::Node* SmiMod(compiler::Node* a, compiler::Node* b);
// Computes a * b for Smi inputs a and b; result is not necessarily a Smi.
compiler::Node* SmiMul(compiler::Node* a, compiler::Node* b);
compiler::Node* SmiOr(compiler::Node* a, compiler::Node* b) {
return BitcastWordToTaggedSigned(
WordOr(BitcastTaggedToWord(a), BitcastTaggedToWord(b)));
}
// Smi | HeapNumber operations.
compiler::Node* NumberInc(compiler::Node* value);
// Allocate an object of the given size.
compiler::Node* Allocate(compiler::Node* size, AllocationFlags flags = kNone);
compiler::Node* Allocate(int size, AllocationFlags flags = kNone);
compiler::Node* InnerAllocate(compiler::Node* previous, int offset);
compiler::Node* InnerAllocate(compiler::Node* previous,
compiler::Node* offset);
compiler::Node* IsRegularHeapObjectSize(compiler::Node* size);
typedef std::function<compiler::Node*()> ConditionBody;
void Assert(ConditionBody condition_body, const char* string = nullptr,
const char* file = nullptr, int line = 0);
// Check a value for smi-ness
compiler::Node* TaggedIsSmi(compiler::Node* a);
// Check that the value is a non-negative smi.
compiler::Node* WordIsPositiveSmi(compiler::Node* a);
// Check that a word has a word-aligned address.
compiler::Node* WordIsWordAligned(compiler::Node* word);
compiler::Node* WordIsPowerOfTwo(compiler::Node* value);
void BranchIfSmiEqual(compiler::Node* a, compiler::Node* b, Label* if_true,
Label* if_false) {
Branch(SmiEqual(a, b), if_true, if_false);
}
void BranchIfSmiLessThan(compiler::Node* a, compiler::Node* b, Label* if_true,
Label* if_false) {
Branch(SmiLessThan(a, b), if_true, if_false);
}
void BranchIfSmiLessThanOrEqual(compiler::Node* a, compiler::Node* b,
Label* if_true, Label* if_false) {
Branch(SmiLessThanOrEqual(a, b), if_true, if_false);
}
void BranchIfFloat64IsNaN(compiler::Node* value, Label* if_true,
Label* if_false) {
Branch(Float64Equal(value, value), if_false, if_true);
}
// Branches to {if_true} if ToBoolean applied to {value} yields true,
// otherwise goes to {if_false}.
void BranchIfToBooleanIsTrue(compiler::Node* value, Label* if_true,
Label* if_false);
void BranchIfSimd128Equal(compiler::Node* lhs, compiler::Node* lhs_map,
compiler::Node* rhs, compiler::Node* rhs_map,
Label* if_equal, Label* if_notequal);
void BranchIfSimd128Equal(compiler::Node* lhs, compiler::Node* rhs,
Label* if_equal, Label* if_notequal) {
BranchIfSimd128Equal(lhs, LoadMap(lhs), rhs, LoadMap(rhs), if_equal,
if_notequal);
}
void BranchIfJSReceiver(compiler::Node* object, Label* if_true,
Label* if_false);
void BranchIfJSObject(compiler::Node* object, Label* if_true,
Label* if_false);
void BranchIfFastJSArray(compiler::Node* object, compiler::Node* context,
Label* if_true, Label* if_false);
// Load value from current frame by given offset in bytes.
compiler::Node* LoadFromFrame(int offset,
MachineType rep = MachineType::AnyTagged());
// Load value from current parent frame by given offset in bytes.
compiler::Node* LoadFromParentFrame(
int offset, MachineType rep = MachineType::AnyTagged());
// Load an object pointer from a buffer that isn't in the heap.
compiler::Node* LoadBufferObject(compiler::Node* buffer, int offset,
MachineType rep = MachineType::AnyTagged());
// Load a field from an object on the heap.
compiler::Node* LoadObjectField(compiler::Node* object, int offset,
MachineType rep = MachineType::AnyTagged());
compiler::Node* LoadObjectField(compiler::Node* object,
compiler::Node* offset,
MachineType rep = MachineType::AnyTagged());
// Load a SMI field and untag it.
compiler::Node* LoadAndUntagObjectField(compiler::Node* object, int offset);
// Load a SMI field, untag it, and convert to Word32.
compiler::Node* LoadAndUntagToWord32ObjectField(compiler::Node* object,
int offset);
// Load a SMI and untag it.
compiler::Node* LoadAndUntagSmi(compiler::Node* base, int index);
// Load a SMI root, untag it, and convert to Word32.
compiler::Node* LoadAndUntagToWord32Root(Heap::RootListIndex root_index);
// Load the floating point value of a HeapNumber.
compiler::Node* LoadHeapNumberValue(compiler::Node* object);
// Load the Map of an HeapObject.
compiler::Node* LoadMap(compiler::Node* object);
// Load the instance type of an HeapObject.
compiler::Node* LoadInstanceType(compiler::Node* object);
// Compare the instance the type of the object against the provided one.
compiler::Node* HasInstanceType(compiler::Node* object, InstanceType type);
// Load the properties backing store of a JSObject.
compiler::Node* LoadProperties(compiler::Node* object);
// Load the elements backing store of a JSObject.
compiler::Node* LoadElements(compiler::Node* object);
// Load the length of a JSArray instance.
compiler::Node* LoadJSArrayLength(compiler::Node* array);
// Load the length of a fixed array base instance.
compiler::Node* LoadFixedArrayBaseLength(compiler::Node* array);
// Load the length of a fixed array base instance.
compiler::Node* LoadAndUntagFixedArrayBaseLength(compiler::Node* array);
// Load the bit field of a Map.
compiler::Node* LoadMapBitField(compiler::Node* map);
// Load bit field 2 of a map.
compiler::Node* LoadMapBitField2(compiler::Node* map);
// Load bit field 3 of a map.
compiler::Node* LoadMapBitField3(compiler::Node* map);
// Load the instance type of a map.
compiler::Node* LoadMapInstanceType(compiler::Node* map);
// Load the ElementsKind of a map.
compiler::Node* LoadMapElementsKind(compiler::Node* map);
// Load the instance descriptors of a map.
compiler::Node* LoadMapDescriptors(compiler::Node* map);
// Load the prototype of a map.
compiler::Node* LoadMapPrototype(compiler::Node* map);
// Load the prototype info of a map. The result has to be checked if it is a
// prototype info object or not.
compiler::Node* LoadMapPrototypeInfo(compiler::Node* map,
Label* if_has_no_proto_info);
// Load the instance size of a Map.
compiler::Node* LoadMapInstanceSize(compiler::Node* map);
// Load the inobject properties count of a Map (valid only for JSObjects).
compiler::Node* LoadMapInobjectProperties(compiler::Node* map);
// Load the constructor function index of a Map (only for primitive maps).
compiler::Node* LoadMapConstructorFunctionIndex(compiler::Node* map);
// Load the constructor of a Map (equivalent to Map::GetConstructor()).
compiler::Node* LoadMapConstructor(compiler::Node* map);
// Check if the map is set for slow properties.
compiler::Node* IsDictionaryMap(compiler::Node* map);
// Load the hash field of a name as an uint32 value.
compiler::Node* LoadNameHashField(compiler::Node* name);
// Load the hash value of a name as an uint32 value.
// If {if_hash_not_computed} label is specified then it also checks if
// hash is actually computed.
compiler::Node* LoadNameHash(compiler::Node* name,
Label* if_hash_not_computed = nullptr);
// Load length field of a String object.
compiler::Node* LoadStringLength(compiler::Node* object);
// Load value field of a JSValue object.
compiler::Node* LoadJSValueValue(compiler::Node* object);
// Load value field of a WeakCell object.
compiler::Node* LoadWeakCellValueUnchecked(compiler::Node* weak_cell);
compiler::Node* LoadWeakCellValue(compiler::Node* weak_cell,
Label* if_cleared = nullptr);
// Load an array element from a FixedArray.
compiler::Node* LoadFixedArrayElement(
compiler::Node* object, compiler::Node* index, int additional_offset = 0,
ParameterMode parameter_mode = INTEGER_PARAMETERS);
// Load an array element from a FixedArray, untag it and return it as Word32.
compiler::Node* LoadAndUntagToWord32FixedArrayElement(
compiler::Node* object, compiler::Node* index, int additional_offset = 0,
ParameterMode parameter_mode = INTEGER_PARAMETERS);
// Load an array element from a FixedDoubleArray.
compiler::Node* LoadFixedDoubleArrayElement(
compiler::Node* object, compiler::Node* index, MachineType machine_type,
int additional_offset = 0,
ParameterMode parameter_mode = INTEGER_PARAMETERS,
Label* if_hole = nullptr);
// Load Float64 value by |base| + |offset| address. If the value is a double
// hole then jump to |if_hole|. If |machine_type| is None then only the hole
// check is generated.
compiler::Node* LoadDoubleWithHoleCheck(
compiler::Node* base, compiler::Node* offset, Label* if_hole,
MachineType machine_type = MachineType::Float64());
compiler::Node* LoadFixedTypedArrayElement(
compiler::Node* data_pointer, compiler::Node* index_node,
ElementsKind elements_kind,
ParameterMode parameter_mode = INTEGER_PARAMETERS);
// Context manipulation
compiler::Node* LoadContextElement(compiler::Node* context, int slot_index);
compiler::Node* LoadContextElement(compiler::Node* context,
compiler::Node* slot_index);
compiler::Node* StoreContextElement(compiler::Node* context, int slot_index,
compiler::Node* value);
compiler::Node* StoreContextElement(compiler::Node* context,
compiler::Node* slot_index,
compiler::Node* value);
compiler::Node* LoadNativeContext(compiler::Node* context);
compiler::Node* LoadJSArrayElementsMap(ElementsKind kind,
compiler::Node* native_context);
// Store the floating point value of a HeapNumber.
compiler::Node* StoreHeapNumberValue(compiler::Node* object,
compiler::Node* value);
// Store a field to an object on the heap.
compiler::Node* StoreObjectField(
compiler::Node* object, int offset, compiler::Node* value);
compiler::Node* StoreObjectField(compiler::Node* object,
compiler::Node* offset,
compiler::Node* value);
compiler::Node* StoreObjectFieldNoWriteBarrier(
compiler::Node* object, int offset, compiler::Node* value,
MachineRepresentation rep = MachineRepresentation::kTagged);
compiler::Node* StoreObjectFieldNoWriteBarrier(
compiler::Node* object, compiler::Node* offset, compiler::Node* value,
MachineRepresentation rep = MachineRepresentation::kTagged);
// Store the Map of an HeapObject.
compiler::Node* StoreMapNoWriteBarrier(compiler::Node* object,
compiler::Node* map);
compiler::Node* StoreObjectFieldRoot(compiler::Node* object, int offset,
Heap::RootListIndex root);
// Store an array element to a FixedArray.
compiler::Node* StoreFixedArrayElement(
compiler::Node* object, int index, compiler::Node* value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
ParameterMode parameter_mode = INTEGER_PARAMETERS) {
return StoreFixedArrayElement(object, Int32Constant(index), value,
barrier_mode, parameter_mode);
}
compiler::Node* StoreFixedArrayElement(
compiler::Node* object, compiler::Node* index, compiler::Node* value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
ParameterMode parameter_mode = INTEGER_PARAMETERS);
compiler::Node* StoreFixedDoubleArrayElement(
compiler::Node* object, compiler::Node* index, compiler::Node* value,
ParameterMode parameter_mode = INTEGER_PARAMETERS);
void StoreFieldsNoWriteBarrier(compiler::Node* start_address,
compiler::Node* end_address,
compiler::Node* value);
// Allocate a HeapNumber without initializing its value.
compiler::Node* AllocateHeapNumber(MutableMode mode = IMMUTABLE);
// Allocate a HeapNumber with a specific value.
compiler::Node* AllocateHeapNumberWithValue(compiler::Node* value,
MutableMode mode = IMMUTABLE);
// Allocate a SeqOneByteString with the given length.
compiler::Node* AllocateSeqOneByteString(int length,
AllocationFlags flags = kNone);
compiler::Node* AllocateSeqOneByteString(
compiler::Node* context, compiler::Node* length,
ParameterMode mode = INTPTR_PARAMETERS, AllocationFlags flags = kNone);
// Allocate a SeqTwoByteString with the given length.
compiler::Node* AllocateSeqTwoByteString(int length,
AllocationFlags flags = kNone);
compiler::Node* AllocateSeqTwoByteString(
compiler::Node* context, compiler::Node* length,
ParameterMode mode = INTPTR_PARAMETERS, AllocationFlags flags = kNone);
// Allocate a SlicedOneByteString with the given length, parent and offset.
// |length| and |offset| are expected to be tagged.
compiler::Node* AllocateSlicedOneByteString(compiler::Node* length,
compiler::Node* parent,
compiler::Node* offset);
// Allocate a SlicedTwoByteString with the given length, parent and offset.
// |length| and |offset| are expected to be tagged.
compiler::Node* AllocateSlicedTwoByteString(compiler::Node* length,
compiler::Node* parent,
compiler::Node* offset);
// Allocate a one-byte ConsString with the given length, first and second
// parts. |length| is expected to be tagged, and |first| and |second| are
// expected to be one-byte strings.
compiler::Node* AllocateOneByteConsString(compiler::Node* length,
compiler::Node* first,
compiler::Node* second,
AllocationFlags flags = kNone);
// Allocate a two-byte ConsString with the given length, first and second
// parts. |length| is expected to be tagged, and |first| and |second| are
// expected to be two-byte strings.
compiler::Node* AllocateTwoByteConsString(compiler::Node* length,
compiler::Node* first,
compiler::Node* second,
AllocationFlags flags = kNone);
// Allocate an appropriate one- or two-byte ConsString with the first and
// second parts specified by |first| and |second|.
compiler::Node* NewConsString(compiler::Node* context, compiler::Node* length,
compiler::Node* left, compiler::Node* right,
AllocationFlags flags = kNone);
// Allocate a RegExpResult with the given length (the number of captures,
// including the match itself), index (the index where the match starts),
// and input string. |length| and |index| are expected to be tagged, and
// |input| must be a string.
compiler::Node* AllocateRegExpResult(compiler::Node* context,
compiler::Node* length,
compiler::Node* index,
compiler::Node* input);
compiler::Node* AllocateNameDictionary(int capacity);
compiler::Node* AllocateNameDictionary(compiler::Node* capacity);
compiler::Node* AllocateJSObjectFromMap(compiler::Node* map,
compiler::Node* properties = nullptr,
compiler::Node* elements = nullptr);
void InitializeJSObjectFromMap(compiler::Node* object, compiler::Node* map,
compiler::Node* size,
compiler::Node* properties = nullptr,
compiler::Node* elements = nullptr);
void InitializeJSObjectBody(compiler::Node* object, compiler::Node* map,
compiler::Node* size,
int start_offset = JSObject::kHeaderSize);
// Allocate a JSArray without elements and initialize the header fields.
compiler::Node* AllocateUninitializedJSArrayWithoutElements(
ElementsKind kind, compiler::Node* array_map, compiler::Node* length,
compiler::Node* allocation_site);
// Allocate and return a JSArray with initialized header fields and its
// uninitialized elements.
// The ParameterMode argument is only used for the capacity parameter.
std::pair<compiler::Node*, compiler::Node*>
AllocateUninitializedJSArrayWithElements(
ElementsKind kind, compiler::Node* array_map, compiler::Node* length,
compiler::Node* allocation_site, compiler::Node* capacity,
ParameterMode capacity_mode = INTEGER_PARAMETERS);
// Allocate a JSArray and fill elements with the hole.
// The ParameterMode argument is only used for the capacity parameter.
compiler::Node* AllocateJSArray(
ElementsKind kind, compiler::Node* array_map, compiler::Node* capacity,
compiler::Node* length, compiler::Node* allocation_site = nullptr,
ParameterMode capacity_mode = INTEGER_PARAMETERS);
compiler::Node* AllocateFixedArray(ElementsKind kind,
compiler::Node* capacity,
ParameterMode mode = INTEGER_PARAMETERS,
AllocationFlags flags = kNone);
// Perform CreateArrayIterator (ES6 #sec-createarrayiterator).
compiler::Node* CreateArrayIterator(compiler::Node* array,
compiler::Node* array_map,
compiler::Node* array_type,
compiler::Node* context,
IterationKind mode);
compiler::Node* AllocateJSArrayIterator(compiler::Node* array,
compiler::Node* array_map,
compiler::Node* map);
void FillFixedArrayWithValue(ElementsKind kind, compiler::Node* array,
compiler::Node* from_index,
compiler::Node* to_index,
Heap::RootListIndex value_root_index,
ParameterMode mode = INTEGER_PARAMETERS);
// Copies all elements from |from_array| of |length| size to
// |to_array| of the same size respecting the elements kind.
void CopyFixedArrayElements(
ElementsKind kind, compiler::Node* from_array, compiler::Node* to_array,
compiler::Node* length,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
ParameterMode mode = INTEGER_PARAMETERS) {
CopyFixedArrayElements(kind, from_array, kind, to_array, length, length,
barrier_mode, mode);
}
// Copies |element_count| elements from |from_array| to |to_array| of
// |capacity| size respecting both array's elements kinds.
void CopyFixedArrayElements(
ElementsKind from_kind, compiler::Node* from_array, ElementsKind to_kind,
compiler::Node* to_array, compiler::Node* element_count,
compiler::Node* capacity,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
ParameterMode mode = INTEGER_PARAMETERS);
// Copies |character_count| elements from |from_string| to |to_string|
// starting at the |from_index|'th character. |from_string| and |to_string|
// can either be one-byte strings or two-byte strings, although if
// |from_string| is two-byte, then |to_string| must be two-byte.
// |from_index|, |to_index| and |character_count| must be either Smis or
// intptr_ts depending on |mode| s.t. 0 <= |from_index| <= |from_index| +
// |character_count| <= from_string.length and 0 <= |to_index| <= |to_index| +
// |character_count| <= to_string.length.
void CopyStringCharacters(compiler::Node* from_string,
compiler::Node* to_string,
compiler::Node* from_index,
compiler::Node* to_index,
compiler::Node* character_count,
String::Encoding from_encoding,
String::Encoding to_encoding, ParameterMode mode);
// Loads an element from |array| of |from_kind| elements by given |offset|
// (NOTE: not index!), does a hole check if |if_hole| is provided and
// converts the value so that it becomes ready for storing to array of
// |to_kind| elements.
compiler::Node* LoadElementAndPrepareForStore(compiler::Node* array,
compiler::Node* offset,
ElementsKind from_kind,
ElementsKind to_kind,
Label* if_hole);
compiler::Node* CalculateNewElementsCapacity(
compiler::Node* old_capacity, ParameterMode mode = INTEGER_PARAMETERS);
// Tries to grow the |elements| array of given |object| to store the |key|
// or bails out if the growing gap is too big. Returns new elements.
compiler::Node* TryGrowElementsCapacity(compiler::Node* object,
compiler::Node* elements,
ElementsKind kind,
compiler::Node* key, Label* bailout);
// Tries to grow the |capacity|-length |elements| array of given |object|
// to store the |key| or bails out if the growing gap is too big. Returns
// new elements.
compiler::Node* TryGrowElementsCapacity(compiler::Node* object,
compiler::Node* elements,
ElementsKind kind,
compiler::Node* key,
compiler::Node* capacity,
ParameterMode mode, Label* bailout);
// Grows elements capacity of given object. Returns new elements.
compiler::Node* GrowElementsCapacity(
compiler::Node* object, compiler::Node* elements, ElementsKind from_kind,
ElementsKind to_kind, compiler::Node* capacity,
compiler::Node* new_capacity, ParameterMode mode, Label* bailout);
// Allocation site manipulation
void InitializeAllocationMemento(compiler::Node* base_allocation,
int base_allocation_size,
compiler::Node* allocation_site);
compiler::Node* TryTaggedToFloat64(compiler::Node* value,
Label* if_valueisnotnumber);
compiler::Node* TruncateTaggedToFloat64(compiler::Node* context,
compiler::Node* value);
compiler::Node* TruncateTaggedToWord32(compiler::Node* context,
compiler::Node* value);
// Truncate the floating point value of a HeapNumber to an Int32.
compiler::Node* TruncateHeapNumberValueToWord32(compiler::Node* object);
// Conversions.
compiler::Node* ChangeFloat64ToTagged(compiler::Node* value);
compiler::Node* ChangeInt32ToTagged(compiler::Node* value);
compiler::Node* ChangeUint32ToTagged(compiler::Node* value);
// Type conversions.
// Throws a TypeError for {method_name} if {value} is not coercible to Object,
// or returns the {value} converted to a String otherwise.
compiler::Node* ToThisString(compiler::Node* context, compiler::Node* value,
char const* method_name);
// Throws a TypeError for {method_name} if {value} is neither of the given
// {primitive_type} nor a JSValue wrapping a value of {primitive_type}, or
// returns the {value} (or wrapped value) otherwise.
compiler::Node* ToThisValue(compiler::Node* context, compiler::Node* value,
PrimitiveType primitive_type,
char const* method_name);
// Throws a TypeError for {method_name} if {value} is not of the given
// instance type. Returns {value}'s map.
compiler::Node* ThrowIfNotInstanceType(compiler::Node* context,
compiler::Node* value,
InstanceType instance_type,
char const* method_name);
// Type checks.
// Check whether the map is for an object with special properties, such as a
// JSProxy or an object with interceptors.
compiler::Node* IsSpecialReceiverMap(compiler::Node* map);
compiler::Node* IsSpecialReceiverInstanceType(compiler::Node* instance_type);
compiler::Node* IsStringInstanceType(compiler::Node* instance_type);
compiler::Node* IsString(compiler::Node* object);
compiler::Node* IsJSObject(compiler::Node* object);
compiler::Node* IsJSGlobalProxy(compiler::Node* object);
compiler::Node* IsJSReceiverInstanceType(compiler::Node* instance_type);
compiler::Node* IsJSReceiver(compiler::Node* object);
compiler::Node* IsMap(compiler::Node* object);
compiler::Node* IsCallableMap(compiler::Node* map);
compiler::Node* IsName(compiler::Node* object);
compiler::Node* IsJSValue(compiler::Node* object);
compiler::Node* IsJSArray(compiler::Node* object);
compiler::Node* IsNativeContext(compiler::Node* object);
compiler::Node* IsWeakCell(compiler::Node* object);
compiler::Node* IsFixedDoubleArray(compiler::Node* object);
compiler::Node* IsHashTable(compiler::Node* object);
compiler::Node* IsDictionary(compiler::Node* object);
compiler::Node* IsUnseededNumberDictionary(compiler::Node* object);
// ElementsKind helpers:
compiler::Node* IsFastElementsKind(compiler::Node* elements_kind);
compiler::Node* IsHoleyFastElementsKind(compiler::Node* elements_kind);
// String helpers.
// Load a character from a String (might flatten a ConsString).
compiler::Node* StringCharCodeAt(compiler::Node* string,
compiler::Node* smi_index);
// Return the single character string with only {code}.
compiler::Node* StringFromCharCode(compiler::Node* code);
// Return a new string object which holds a substring containing the range
// [from,to[ of string. |from| and |to| are expected to be tagged.
compiler::Node* SubString(compiler::Node* context, compiler::Node* string,
compiler::Node* from, compiler::Node* to);
// Return a new string object produced by concatenating |first| with |second|.
compiler::Node* StringAdd(compiler::Node* context, compiler::Node* first,
compiler::Node* second,
AllocationFlags flags = kNone);
// Return the first index >= {from} at which {needle_char} was found in
// {string}, or -1 if such an index does not exist. The returned value is
// a Smi, {string} is expected to be a String, {needle_char} is an intptr,
// and {from} is expected to be tagged.
compiler::Node* StringIndexOfChar(compiler::Node* context,
compiler::Node* string,
compiler::Node* needle_char,
compiler::Node* from);
compiler::Node* StringFromCodePoint(compiler::Node* codepoint,
UnicodeEncoding encoding);
// Type conversion helpers.
// Convert a String to a Number.
compiler::Node* StringToNumber(compiler::Node* context,
compiler::Node* input);
compiler::Node* NumberToString(compiler::Node* context,
compiler::Node* input);
// Convert an object to a name.
compiler::Node* ToName(compiler::Node* context, compiler::Node* input);
// Convert a Non-Number object to a Number.
compiler::Node* NonNumberToNumber(compiler::Node* context,
compiler::Node* input);
// Convert any object to a Number.
compiler::Node* ToNumber(compiler::Node* context, compiler::Node* input);
// Convert any object to a String.
compiler::Node* ToString(compiler::Node* context, compiler::Node* input);
// Convert any object to a Primitive.
compiler::Node* JSReceiverToPrimitive(compiler::Node* context,
compiler::Node* input);
// Convert a String to a flat String.
compiler::Node* FlattenString(compiler::Node* string);
enum ToIntegerTruncationMode {
kNoTruncation,
kTruncateMinusZero,
};
// Convert any object to an Integer.
compiler::Node* ToInteger(compiler::Node* context, compiler::Node* input,
ToIntegerTruncationMode mode = kNoTruncation);
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |T| in |word32|. Returns result as an uint32 node.
template <typename T>
compiler::Node* DecodeWord32(compiler::Node* word32) {
return DecodeWord32(word32, T::kShift, T::kMask);
}
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |T| in |word|. Returns result as a word-size node.
template <typename T>
compiler::Node* DecodeWord(compiler::Node* word) {
return DecodeWord(word, T::kShift, T::kMask);
}
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |T| in |word32|. Returns result as a word-size node.
template <typename T>
compiler::Node* DecodeWordFromWord32(compiler::Node* word32) {
return DecodeWord<T>(ChangeUint32ToWord(word32));
}
// Decodes an unsigned (!) value from |word32| to an uint32 node.
compiler::Node* DecodeWord32(compiler::Node* word32, uint32_t shift,
uint32_t mask);
// Decodes an unsigned (!) value from |word| to a word-size node.
compiler::Node* DecodeWord(compiler::Node* word, uint32_t shift,
uint32_t mask);
// Returns true if any of the |T|'s bits in given |word32| are set.
template <typename T>
compiler::Node* IsSetWord32(compiler::Node* word32) {
return IsSetWord32(word32, T::kMask);
}
// Returns true if any of the mask's bits in given |word32| are set.
compiler::Node* IsSetWord32(compiler::Node* word32, uint32_t mask) {
return Word32NotEqual(Word32And(word32, Int32Constant(mask)),
Int32Constant(0));
}
// Returns true if any of the |T|'s bits in given |word| are set.
template <typename T>
compiler::Node* IsSetWord(compiler::Node* word) {
return WordNotEqual(WordAnd(word, IntPtrConstant(T::kMask)),
IntPtrConstant(0));
}
void SetCounter(StatsCounter* counter, int value);
void IncrementCounter(StatsCounter* counter, int delta);
void DecrementCounter(StatsCounter* counter, int delta);
// Generates "if (false) goto label" code. Useful for marking a label as
// "live" to avoid assertion failures during graph building. In the resulting
// code this check will be eliminated.
void Use(Label* label);
// Various building blocks for stubs doing property lookups.
void TryToName(compiler::Node* key, Label* if_keyisindex, Variable* var_index,
Label* if_keyisunique, Label* if_bailout);
// Calculates array index for given dictionary entry and entry field.
// See Dictionary::EntryToIndex().
template <typename Dictionary>
compiler::Node* EntryToIndex(compiler::Node* entry, int field_index);
template <typename Dictionary>
compiler::Node* EntryToIndex(compiler::Node* entry) {
return EntryToIndex<Dictionary>(entry, Dictionary::kEntryKeyIndex);
}
// Calculate a valid size for the a hash table.
compiler::Node* HashTableComputeCapacity(compiler::Node* at_least_space_for);
// Looks up an entry in a NameDictionaryBase successor. If the entry is found
// control goes to {if_found} and {var_name_index} contains an index of the
// key field of the entry found. If the key is not found control goes to
// {if_not_found}.
static const int kInlinedDictionaryProbes = 4;
template <typename Dictionary>
void NameDictionaryLookup(compiler::Node* dictionary,
compiler::Node* unique_name, Label* if_found,
Variable* var_name_index, Label* if_not_found,
int inlined_probes = kInlinedDictionaryProbes);
compiler::Node* ComputeIntegerHash(compiler::Node* key, compiler::Node* seed);
template <typename Dictionary>
void NumberDictionaryLookup(compiler::Node* dictionary,
compiler::Node* intptr_index, Label* if_found,
Variable* var_entry, Label* if_not_found);
// Tries to check if {object} has own {unique_name} property.
void TryHasOwnProperty(compiler::Node* object, compiler::Node* map,
compiler::Node* instance_type,
compiler::Node* unique_name, Label* if_found,
Label* if_not_found, Label* if_bailout);
// Tries to get {object}'s own {unique_name} property value. If the property
// is an accessor then it also calls a getter. If the property is a double
// field it re-wraps value in an immutable heap number.
void TryGetOwnProperty(compiler::Node* context, compiler::Node* receiver,
compiler::Node* object, compiler::Node* map,
compiler::Node* instance_type,
compiler::Node* unique_name, Label* if_found,
Variable* var_value, Label* if_not_found,
Label* if_bailout);
void LoadPropertyFromFastObject(compiler::Node* object, compiler::Node* map,
compiler::Node* descriptors,
compiler::Node* name_index,
Variable* var_details, Variable* var_value);
void LoadPropertyFromNameDictionary(compiler::Node* dictionary,
compiler::Node* entry,
Variable* var_details,
Variable* var_value);
void LoadPropertyFromGlobalDictionary(compiler::Node* dictionary,
compiler::Node* entry,
Variable* var_details,
Variable* var_value, Label* if_deleted);
// Generic property lookup generator. If the {object} is fast and
// {unique_name} property is found then the control goes to {if_found_fast}
// label and {var_meta_storage} and {var_name_index} will contain
// DescriptorArray and an index of the descriptor's name respectively.
// If the {object} is slow or global then the control goes to {if_found_dict}
// or {if_found_global} and the {var_meta_storage} and {var_name_index} will
// contain a dictionary and an index of the key field of the found entry.
// If property is not found or given lookup is not supported then
// the control goes to {if_not_found} or {if_bailout} respectively.
//
// Note: this code does not check if the global dictionary points to deleted
// entry! This has to be done by the caller.
void TryLookupProperty(compiler::Node* object, compiler::Node* map,
compiler::Node* instance_type,
compiler::Node* unique_name, Label* if_found_fast,
Label* if_found_dict, Label* if_found_global,
Variable* var_meta_storage, Variable* var_name_index,
Label* if_not_found, Label* if_bailout);
void TryLookupElement(compiler::Node* object, compiler::Node* map,
compiler::Node* instance_type,
compiler::Node* intptr_index, Label* if_found,
Label* if_not_found, Label* if_bailout);
// This is a type of a lookup in holder generator function. In case of a
// property lookup the {key} is guaranteed to be a unique name and in case of
// element lookup the key is an Int32 index.
typedef std::function<void(compiler::Node* receiver, compiler::Node* holder,
compiler::Node* map, compiler::Node* instance_type,
compiler::Node* key, Label* next_holder,
Label* if_bailout)>
LookupInHolder;
// Generic property prototype chain lookup generator.
// For properties it generates lookup using given {lookup_property_in_holder}
// and for elements it uses {lookup_element_in_holder}.
// Upon reaching the end of prototype chain the control goes to {if_end}.
// If it can't handle the case {receiver}/{key} case then the control goes
// to {if_bailout}.
void TryPrototypeChainLookup(compiler::Node* receiver, compiler::Node* key,
LookupInHolder& lookup_property_in_holder,
LookupInHolder& lookup_element_in_holder,
Label* if_end, Label* if_bailout);
// Instanceof helpers.
// ES6 section 7.3.19 OrdinaryHasInstance (C, O)
compiler::Node* OrdinaryHasInstance(compiler::Node* context,
compiler::Node* callable,
compiler::Node* object);
// Load/StoreIC helpers.
struct LoadICParameters {
LoadICParameters(compiler::Node* context, compiler::Node* receiver,
compiler::Node* name, compiler::Node* slot,
compiler::Node* vector)
: context(context),
receiver(receiver),
name(name),
slot(slot),
vector(vector) {}
compiler::Node* context;
compiler::Node* receiver;
compiler::Node* name;
compiler::Node* slot;
compiler::Node* vector;
};
struct StoreICParameters : public LoadICParameters {
StoreICParameters(compiler::Node* context, compiler::Node* receiver,
compiler::Node* name, compiler::Node* value,
compiler::Node* slot, compiler::Node* vector)
: LoadICParameters(context, receiver, name, slot, vector),
value(value) {}
compiler::Node* value;
};
// Load type feedback vector from the stub caller's frame.
compiler::Node* LoadTypeFeedbackVectorForStub();
// Update the type feedback vector.
void UpdateFeedback(compiler::Node* feedback,
compiler::Node* type_feedback_vector,
compiler::Node* slot_id);
compiler::Node* LoadReceiverMap(compiler::Node* receiver);
// Checks monomorphic case. Returns {feedback} entry of the vector.
compiler::Node* TryMonomorphicCase(compiler::Node* slot,
compiler::Node* vector,
compiler::Node* receiver_map,
Label* if_handler, Variable* var_handler,
Label* if_miss);
void HandlePolymorphicCase(compiler::Node* receiver_map,
compiler::Node* feedback, Label* if_handler,
Variable* var_handler, Label* if_miss,
int unroll_count);
void HandleKeyedStorePolymorphicCase(compiler::Node* receiver_map,
compiler::Node* feedback,
Label* if_handler, Variable* var_handler,
Label* if_transition_handler,
Variable* var_transition_map_cell,
Label* if_miss);
compiler::Node* StubCachePrimaryOffset(compiler::Node* name,
compiler::Node* map);
compiler::Node* StubCacheSecondaryOffset(compiler::Node* name,
compiler::Node* seed);
// This enum is used here as a replacement for StubCache::Table to avoid
// including stub cache header.
enum StubCacheTable : int;
void TryProbeStubCacheTable(StubCache* stub_cache, StubCacheTable table_id,
compiler::Node* entry_offset,
compiler::Node* name, compiler::Node* map,
Label* if_handler, Variable* var_handler,
Label* if_miss);
void TryProbeStubCache(StubCache* stub_cache, compiler::Node* receiver,
compiler::Node* name, Label* if_handler,
Variable* var_handler, Label* if_miss);
// Extends properties backing store by JSObject::kFieldsAdded elements.
void ExtendPropertiesBackingStore(compiler::Node* object);
compiler::Node* PrepareValueForWrite(compiler::Node* value,
Representation representation,
Label* bailout);
void StoreNamedField(compiler::Node* object, FieldIndex index,
Representation representation, compiler::Node* value,
bool transition_to_field);
void StoreNamedField(compiler::Node* object, compiler::Node* offset,
bool is_inobject, Representation representation,
compiler::Node* value, bool transition_to_field);
// Emits keyed sloppy arguments load. Returns either the loaded value.
compiler::Node* LoadKeyedSloppyArguments(compiler::Node* receiver,
compiler::Node* key,
Label* bailout) {
return EmitKeyedSloppyArguments(receiver, key, nullptr, bailout);
}
// Emits keyed sloppy arguments store.
void StoreKeyedSloppyArguments(compiler::Node* receiver, compiler::Node* key,
compiler::Node* value, Label* bailout) {
DCHECK_NOT_NULL(value);
EmitKeyedSloppyArguments(receiver, key, value, bailout);
}
// Loads script context from the script context table.
compiler::Node* LoadScriptContext(compiler::Node* context, int context_index);
compiler::Node* Int32ToUint8Clamped(compiler::Node* int32_value);
compiler::Node* Float64ToUint8Clamped(compiler::Node* float64_value);
compiler::Node* PrepareValueForWriteToTypedArray(compiler::Node* key,
ElementsKind elements_kind,
Label* bailout);
// Store value to an elements array with given elements kind.
void StoreElement(compiler::Node* elements, ElementsKind kind,
compiler::Node* index, compiler::Node* value,
ParameterMode mode);
void EmitElementStore(compiler::Node* object, compiler::Node* key,
compiler::Node* value, bool is_jsarray,
ElementsKind elements_kind,
KeyedAccessStoreMode store_mode, Label* bailout);
compiler::Node* CheckForCapacityGrow(compiler::Node* object,
compiler::Node* elements,
ElementsKind kind,
compiler::Node* length,
compiler::Node* key, ParameterMode mode,
bool is_js_array, Label* bailout);
compiler::Node* CopyElementsOnWrite(compiler::Node* object,
compiler::Node* elements,
ElementsKind kind, compiler::Node* length,
ParameterMode mode, Label* bailout);
void LoadIC(const LoadICParameters* p);
void LoadICProtoArray(const LoadICParameters* p, compiler::Node* handler);
void LoadGlobalIC(const LoadICParameters* p);
void KeyedLoadIC(const LoadICParameters* p);
void KeyedLoadICGeneric(const LoadICParameters* p);
void StoreIC(const StoreICParameters* p);
void KeyedStoreIC(const StoreICParameters* p, LanguageMode language_mode);
void TransitionElementsKind(compiler::Node* object, compiler::Node* map,
ElementsKind from_kind, ElementsKind to_kind,
bool is_jsarray, Label* bailout);
void TrapAllocationMemento(compiler::Node* object, Label* memento_found);
compiler::Node* PageFromAddress(compiler::Node* address);
// Get the enumerable length from |map| and return the result as a Smi.
compiler::Node* EnumLength(compiler::Node* map);
// Check the cache validity for |receiver|. Branch to |use_cache| if
// the cache is valid, otherwise branch to |use_runtime|.
void CheckEnumCache(compiler::Node* receiver,
CodeStubAssembler::Label* use_cache,
CodeStubAssembler::Label* use_runtime);
// Create a new weak cell with a specified value and install it into a
// feedback vector.
compiler::Node* CreateWeakCellInFeedbackVector(
compiler::Node* feedback_vector, compiler::Node* slot,
compiler::Node* value);
// Create a new AllocationSite and install it into a feedback vector.
compiler::Node* CreateAllocationSiteInFeedbackVector(
compiler::Node* feedback_vector, compiler::Node* slot);
enum class IndexAdvanceMode { kPre, kPost };
void BuildFastLoop(
const VariableList& var_list, MachineRepresentation index_rep,
compiler::Node* start_index, compiler::Node* end_index,
std::function<void(CodeStubAssembler* assembler, compiler::Node* index)>
body,
int increment, IndexAdvanceMode mode = IndexAdvanceMode::kPre);
void BuildFastLoop(
MachineRepresentation index_rep, compiler::Node* start_index,
compiler::Node* end_index,
std::function<void(CodeStubAssembler* assembler, compiler::Node* index)>
body,
int increment, IndexAdvanceMode mode = IndexAdvanceMode::kPre) {
BuildFastLoop(VariableList(0, zone()), index_rep, start_index, end_index,
body, increment, mode);
}
enum class ForEachDirection { kForward, kReverse };
void BuildFastFixedArrayForEach(
compiler::Node* fixed_array, ElementsKind kind,
compiler::Node* first_element_inclusive,
compiler::Node* last_element_exclusive,
std::function<void(CodeStubAssembler* assembler,
compiler::Node* fixed_array, compiler::Node* offset)>
body,
ParameterMode mode = INTPTR_PARAMETERS,
ForEachDirection direction = ForEachDirection::kReverse);
compiler::Node* GetArrayAllocationSize(compiler::Node* element_count,
ElementsKind kind, ParameterMode mode,
int header_size) {
return ElementOffsetFromIndex(element_count, kind, mode, header_size);
}
compiler::Node* GetFixedArrayAllocationSize(compiler::Node* element_count,
ElementsKind kind,
ParameterMode mode) {
return GetArrayAllocationSize(element_count, kind, mode,
FixedArray::kHeaderSize);
}
enum RelationalComparisonMode {
kLessThan,
kLessThanOrEqual,
kGreaterThan,
kGreaterThanOrEqual
};
compiler::Node* RelationalComparison(RelationalComparisonMode mode,
compiler::Node* lhs, compiler::Node* rhs,
compiler::Node* context);
void BranchIfNumericRelationalComparison(RelationalComparisonMode mode,
compiler::Node* lhs,
compiler::Node* rhs, Label* if_true,
Label* if_false);
void GotoUnlessNumberLessThan(compiler::Node* lhs, compiler::Node* rhs,
Label* if_false);
enum ResultMode { kDontNegateResult, kNegateResult };
compiler::Node* Equal(ResultMode mode, compiler::Node* lhs,
compiler::Node* rhs, compiler::Node* context);
compiler::Node* StrictEqual(ResultMode mode, compiler::Node* lhs,
compiler::Node* rhs, compiler::Node* context);
// ECMA#sec-samevalue
// Similar to StrictEqual except that NaNs are treated as equal and minus zero
// differs from positive zero.
// Unlike Equal and StrictEqual, returns a value suitable for use in Branch
// instructions, e.g. Branch(SameValue(...), &label).
compiler::Node* SameValue(compiler::Node* lhs, compiler::Node* rhs,
compiler::Node* context);
compiler::Node* HasProperty(
compiler::Node* object, compiler::Node* key, compiler::Node* context,
Runtime::FunctionId fallback_runtime_function_id = Runtime::kHasProperty);
compiler::Node* ForInFilter(compiler::Node* key, compiler::Node* object,
compiler::Node* context);
compiler::Node* Typeof(compiler::Node* value, compiler::Node* context);
compiler::Node* InstanceOf(compiler::Node* object, compiler::Node* callable,
compiler::Node* context);
// TypedArray/ArrayBuffer helpers
compiler::Node* IsDetachedBuffer(compiler::Node* buffer);
compiler::Node* ElementOffsetFromIndex(compiler::Node* index,
ElementsKind kind, ParameterMode mode,
int base_size = 0);
protected:
void HandleStoreICHandlerCase(const StoreICParameters* p,
compiler::Node* handler, Label* miss);
private:
friend class CodeStubArguments;
enum ElementSupport { kOnlyProperties, kSupportElements };
void DescriptorLookupLinear(compiler::Node* unique_name,
compiler::Node* descriptors, compiler::Node* nof,
Label* if_found, Variable* var_name_index,
Label* if_not_found);
compiler::Node* CallGetterIfAccessor(compiler::Node* value,
compiler::Node* details,
compiler::Node* context,
compiler::Node* receiver,
Label* if_bailout);
void HandleLoadICHandlerCase(
const LoadICParameters* p, compiler::Node* handler, Label* miss,
ElementSupport support_elements = kOnlyProperties);
void HandleLoadICSmiHandlerCase(const LoadICParameters* p,
compiler::Node* holder,
compiler::Node* smi_handler, Label* miss,
ElementSupport support_elements);
void HandleLoadICProtoHandler(const LoadICParameters* p,
compiler::Node* handler, Variable* var_holder,
Variable* var_smi_handler,
Label* if_smi_handler, Label* miss);
compiler::Node* EmitLoadICProtoArrayCheck(const LoadICParameters* p,
compiler::Node* handler,
compiler::Node* handler_length,
compiler::Node* handler_flags,
Label* miss);
void CheckPrototype(compiler::Node* prototype_cell, compiler::Node* name,
Label* miss);
void NameDictionaryNegativeLookup(compiler::Node* object,
compiler::Node* name, Label* miss);
// If |transition| is nullptr then the normal field store is generated or
// transitioning store otherwise.
void HandleStoreFieldAndReturn(compiler::Node* handler_word,
compiler::Node* holder,
Representation representation,
compiler::Node* value,
compiler::Node* transition, Label* miss);
// If |transition| is nullptr then the normal field store is generated or
// transitioning store otherwise.
void HandleStoreICSmiHandlerCase(compiler::Node* handler_word,
compiler::Node* holder,
compiler::Node* value,
compiler::Node* transition, Label* miss);
void HandleStoreICProtoHandler(const StoreICParameters* p,
compiler::Node* handler, Label* miss);
compiler::Node* TryToIntptr(compiler::Node* key, Label* miss);
void EmitFastElementsBoundsCheck(compiler::Node* object,
compiler::Node* elements,
compiler::Node* intptr_index,
compiler::Node* is_jsarray_condition,
Label* miss);
void EmitElementLoad(compiler::Node* object, compiler::Node* elements,
compiler::Node* elements_kind, compiler::Node* key,
compiler::Node* is_jsarray_condition, Label* if_hole,
Label* rebox_double, Variable* var_double_value,
Label* unimplemented_elements_kind, Label* out_of_bounds,
Label* miss);
void BranchIfPrototypesHaveNoElements(compiler::Node* receiver_map,
Label* definitely_no_elements,
Label* possibly_elements);
compiler::Node* AllocateRawAligned(compiler::Node* size_in_bytes,
AllocationFlags flags,
compiler::Node* top_address,
compiler::Node* limit_address);
compiler::Node* AllocateRawUnaligned(compiler::Node* size_in_bytes,
AllocationFlags flags,
compiler::Node* top_adddress,
compiler::Node* limit_address);
// Allocate and return a JSArray of given total size in bytes with header
// fields initialized.
compiler::Node* AllocateUninitializedJSArray(ElementsKind kind,
compiler::Node* array_map,
compiler::Node* length,
compiler::Node* allocation_site,
compiler::Node* size_in_bytes);
compiler::Node* SmiShiftBitsConstant();
// Emits keyed sloppy arguments load if the |value| is nullptr or store
// otherwise. Returns either the loaded value or |value|.
compiler::Node* EmitKeyedSloppyArguments(compiler::Node* receiver,
compiler::Node* key,
compiler::Node* value,
Label* bailout);
compiler::Node* AllocateSlicedString(Heap::RootListIndex map_root_index,
compiler::Node* length,
compiler::Node* parent,
compiler::Node* offset);
compiler::Node* AllocateConsString(Heap::RootListIndex map_root_index,
compiler::Node* length,
compiler::Node* first,
compiler::Node* second,
AllocationFlags flags);
static const int kElementLoopUnrollThreshold = 8;
};
class CodeStubArguments {
public:
// |argc| specifies the number of arguments passed to the builtin excluding
// the receiver.
CodeStubArguments(CodeStubAssembler* assembler, compiler::Node* argc,
CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS);
compiler::Node* GetReceiver();
// |index| is zero-based and does not include the receiver
compiler::Node* AtIndex(compiler::Node* index,
CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS);
compiler::Node* AtIndex(int index);
typedef std::function<void(CodeStubAssembler* assembler, compiler::Node* arg)>
ForEachBodyFunction;
// Iteration doesn't include the receiver. |first| and |last| are zero-based.
void ForEach(ForEachBodyFunction body, compiler::Node* first = nullptr,
compiler::Node* last = nullptr,
CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS) {
CodeStubAssembler::VariableList list(0, assembler_->zone());
ForEach(list, body, first, last);
}
// Iteration doesn't include the receiver. |first| and |last| are zero-based.
void ForEach(const CodeStubAssembler::VariableList& vars,
ForEachBodyFunction body, compiler::Node* first = nullptr,
compiler::Node* last = nullptr,
CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS);
void PopAndReturn(compiler::Node* value);
private:
compiler::Node* GetArguments();
CodeStubAssembler* assembler_;
compiler::Node* argc_;
compiler::Node* arguments_;
compiler::Node* fp_;
};
#ifdef DEBUG
#define CSA_ASSERT(csa, x) \
(csa)->Assert([&] { return (x); }, #x, __FILE__, __LINE__)
#else
#define CSA_ASSERT(csa, x) ((void)0)
#endif
#ifdef ENABLE_SLOW_DCHECKS
#define CSA_SLOW_ASSERT(csa, x) \
if (FLAG_enable_slow_asserts) { \
(csa)->Assert([&] { return (x); }, #x, __FILE__, __LINE__); \
}
#else
#define CSA_SLOW_ASSERT(csa, x) ((void)0)
#endif
DEFINE_OPERATORS_FOR_FLAGS(CodeStubAssembler::AllocationFlags);
} // namespace internal
} // namespace v8
#endif // V8_CODE_STUB_ASSEMBLER_H_