普通文本  |  2635行  |  99.07 KB

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"

#include "src/code-factory.h"
#include "src/contexts.h"
#include "src/elements.h"

namespace v8 {
namespace internal {

namespace {

inline bool ClampedToInteger(Isolate* isolate, Object* object, int* out) {
  // This is an extended version of ECMA-262 7.1.11 handling signed values
  // Try to convert object to a number and clamp values to [kMinInt, kMaxInt]
  if (object->IsSmi()) {
    *out = Smi::cast(object)->value();
    return true;
  } else if (object->IsHeapNumber()) {
    double value = HeapNumber::cast(object)->value();
    if (std::isnan(value)) {
      *out = 0;
    } else if (value > kMaxInt) {
      *out = kMaxInt;
    } else if (value < kMinInt) {
      *out = kMinInt;
    } else {
      *out = static_cast<int>(value);
    }
    return true;
  } else if (object->IsUndefined(isolate) || object->IsNull(isolate)) {
    *out = 0;
    return true;
  } else if (object->IsBoolean()) {
    *out = object->IsTrue(isolate);
    return true;
  }
  return false;
}

inline bool GetSloppyArgumentsLength(Isolate* isolate, Handle<JSObject> object,
                                     int* out) {
  Context* context = *isolate->native_context();
  Map* map = object->map();
  if (map != context->sloppy_arguments_map() &&
      map != context->strict_arguments_map() &&
      map != context->fast_aliased_arguments_map()) {
    return false;
  }
  DCHECK(object->HasFastElements() || object->HasFastArgumentsElements());
  Object* len_obj = object->InObjectPropertyAt(JSArgumentsObject::kLengthIndex);
  if (!len_obj->IsSmi()) return false;
  *out = Max(0, Smi::cast(len_obj)->value());
  return *out <= object->elements()->length();
}

inline bool IsJSArrayFastElementMovingAllowed(Isolate* isolate,
                                              JSArray* receiver) {
  return JSObject::PrototypeHasNoElements(isolate, receiver);
}

inline bool HasSimpleElements(JSObject* current) {
  return current->map()->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER &&
         !current->GetElementsAccessor()->HasAccessors(current);
}

inline bool HasOnlySimpleReceiverElements(Isolate* isolate,
                                          JSObject* receiver) {
  // Check that we have no accessors on the receiver's elements.
  if (!HasSimpleElements(receiver)) return false;
  return JSObject::PrototypeHasNoElements(isolate, receiver);
}

inline bool HasOnlySimpleElements(Isolate* isolate, JSReceiver* receiver) {
  DisallowHeapAllocation no_gc;
  PrototypeIterator iter(isolate, receiver, kStartAtReceiver);
  for (; !iter.IsAtEnd(); iter.Advance()) {
    if (iter.GetCurrent()->IsJSProxy()) return false;
    JSObject* current = iter.GetCurrent<JSObject>();
    if (!HasSimpleElements(current)) return false;
  }
  return true;
}

// Returns |false| if not applicable.
MUST_USE_RESULT
inline bool EnsureJSArrayWithWritableFastElements(Isolate* isolate,
                                                  Handle<Object> receiver,
                                                  BuiltinArguments* args,
                                                  int first_added_arg) {
  if (!receiver->IsJSArray()) return false;
  Handle<JSArray> array = Handle<JSArray>::cast(receiver);
  ElementsKind origin_kind = array->GetElementsKind();
  if (IsDictionaryElementsKind(origin_kind)) return false;
  if (!array->map()->is_extensible()) return false;
  if (args == nullptr) return true;

  // If there may be elements accessors in the prototype chain, the fast path
  // cannot be used if there arguments to add to the array.
  if (!IsJSArrayFastElementMovingAllowed(isolate, *array)) return false;

  // Adding elements to the array prototype would break code that makes sure
  // it has no elements. Handle that elsewhere.
  if (isolate->IsAnyInitialArrayPrototype(array)) return false;

  // Need to ensure that the arguments passed in args can be contained in
  // the array.
  int args_length = args->length();
  if (first_added_arg >= args_length) return true;

  if (IsFastObjectElementsKind(origin_kind)) return true;
  ElementsKind target_kind = origin_kind;
  {
    DisallowHeapAllocation no_gc;
    for (int i = first_added_arg; i < args_length; i++) {
      Object* arg = (*args)[i];
      if (arg->IsHeapObject()) {
        if (arg->IsHeapNumber()) {
          target_kind = FAST_DOUBLE_ELEMENTS;
        } else {
          target_kind = FAST_ELEMENTS;
          break;
        }
      }
    }
  }
  if (target_kind != origin_kind) {
    // Use a short-lived HandleScope to avoid creating several copies of the
    // elements handle which would cause issues when left-trimming later-on.
    HandleScope scope(isolate);
    JSObject::TransitionElementsKind(array, target_kind);
  }
  return true;
}

MUST_USE_RESULT static Object* CallJsIntrinsic(Isolate* isolate,
                                               Handle<JSFunction> function,
                                               BuiltinArguments args) {
  HandleScope handleScope(isolate);
  int argc = args.length() - 1;
  ScopedVector<Handle<Object>> argv(argc);
  for (int i = 0; i < argc; ++i) {
    argv[i] = args.at<Object>(i + 1);
  }
  RETURN_RESULT_OR_FAILURE(
      isolate,
      Execution::Call(isolate, function, args.receiver(), argc, argv.start()));
}

Object* DoArrayPush(Isolate* isolate, BuiltinArguments args) {
  HandleScope scope(isolate);
  Handle<Object> receiver = args.receiver();
  if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) {
    return CallJsIntrinsic(isolate, isolate->array_push(), args);
  }
  // Fast Elements Path
  int to_add = args.length() - 1;
  Handle<JSArray> array = Handle<JSArray>::cast(receiver);
  int len = Smi::cast(array->length())->value();
  if (to_add == 0) return Smi::FromInt(len);

  // Currently fixed arrays cannot grow too big, so we should never hit this.
  DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value());

  if (JSArray::HasReadOnlyLength(array)) {
    return CallJsIntrinsic(isolate, isolate->array_push(), args);
  }

  ElementsAccessor* accessor = array->GetElementsAccessor();
  int new_length = accessor->Push(array, &args, to_add);
  return Smi::FromInt(new_length);
}
}  // namespace

BUILTIN(ArrayPush) { return DoArrayPush(isolate, args); }

// TODO(verwaest): This is a temporary helper until the FastArrayPush stub can
// tailcall to the builtin directly.
RUNTIME_FUNCTION(Runtime_ArrayPush) {
  DCHECK_EQ(2, args.length());
  Arguments* incoming = reinterpret_cast<Arguments*>(args[0]);
  // Rewrap the arguments as builtins arguments.
  int argc = incoming->length() + BuiltinArguments::kNumExtraArgsWithReceiver;
  BuiltinArguments caller_args(argc, incoming->arguments() + 1);
  return DoArrayPush(isolate, caller_args);
}

BUILTIN(ArrayPop) {
  HandleScope scope(isolate);
  Handle<Object> receiver = args.receiver();
  if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0)) {
    return CallJsIntrinsic(isolate, isolate->array_pop(), args);
  }

  Handle<JSArray> array = Handle<JSArray>::cast(receiver);

  uint32_t len = static_cast<uint32_t>(Smi::cast(array->length())->value());
  if (len == 0) return isolate->heap()->undefined_value();

  if (JSArray::HasReadOnlyLength(array)) {
    return CallJsIntrinsic(isolate, isolate->array_pop(), args);
  }

  Handle<Object> result;
  if (IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) {
    // Fast Elements Path
    result = array->GetElementsAccessor()->Pop(array);
  } else {
    // Use Slow Lookup otherwise
    uint32_t new_length = len - 1;
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
        isolate, result, JSReceiver::GetElement(isolate, array, new_length));
    JSArray::SetLength(array, new_length);
  }
  return *result;
}

BUILTIN(ArrayShift) {
  HandleScope scope(isolate);
  Heap* heap = isolate->heap();
  Handle<Object> receiver = args.receiver();
  if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0) ||
      !IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) {
    return CallJsIntrinsic(isolate, isolate->array_shift(), args);
  }
  Handle<JSArray> array = Handle<JSArray>::cast(receiver);

  int len = Smi::cast(array->length())->value();
  if (len == 0) return heap->undefined_value();

  if (JSArray::HasReadOnlyLength(array)) {
    return CallJsIntrinsic(isolate, isolate->array_shift(), args);
  }

  Handle<Object> first = array->GetElementsAccessor()->Shift(array);
  return *first;
}

BUILTIN(ArrayUnshift) {
  HandleScope scope(isolate);
  Handle<Object> receiver = args.receiver();
  if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) {
    return CallJsIntrinsic(isolate, isolate->array_unshift(), args);
  }
  Handle<JSArray> array = Handle<JSArray>::cast(receiver);
  int to_add = args.length() - 1;
  if (to_add == 0) return array->length();

  // Currently fixed arrays cannot grow too big, so we should never hit this.
  DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value());

  if (JSArray::HasReadOnlyLength(array)) {
    return CallJsIntrinsic(isolate, isolate->array_unshift(), args);
  }

  ElementsAccessor* accessor = array->GetElementsAccessor();
  int new_length = accessor->Unshift(array, &args, to_add);
  return Smi::FromInt(new_length);
}

BUILTIN(ArraySlice) {
  HandleScope scope(isolate);
  Handle<Object> receiver = args.receiver();
  int len = -1;
  int relative_start = 0;
  int relative_end = 0;

  if (receiver->IsJSArray()) {
    DisallowHeapAllocation no_gc;
    JSArray* array = JSArray::cast(*receiver);
    if (V8_UNLIKELY(!array->HasFastElements() ||
                    !IsJSArrayFastElementMovingAllowed(isolate, array) ||
                    !isolate->IsArraySpeciesLookupChainIntact() ||
                    // If this is a subclass of Array, then call out to JS
                    !array->HasArrayPrototype(isolate))) {
      AllowHeapAllocation allow_allocation;
      return CallJsIntrinsic(isolate, isolate->array_slice(), args);
    }
    len = Smi::cast(array->length())->value();
  } else if (receiver->IsJSObject() &&
             GetSloppyArgumentsLength(isolate, Handle<JSObject>::cast(receiver),
                                      &len)) {
    // Array.prototype.slice.call(arguments, ...) is quite a common idiom
    // (notably more than 50% of invocations in Web apps).
    // Treat it in C++ as well.
    DCHECK(JSObject::cast(*receiver)->HasFastElements() ||
           JSObject::cast(*receiver)->HasFastArgumentsElements());
  } else {
    AllowHeapAllocation allow_allocation;
    return CallJsIntrinsic(isolate, isolate->array_slice(), args);
  }
  DCHECK_LE(0, len);
  int argument_count = args.length() - 1;
  // Note carefully chosen defaults---if argument is missing,
  // it's undefined which gets converted to 0 for relative_start
  // and to len for relative_end.
  relative_start = 0;
  relative_end = len;
  if (argument_count > 0) {
    DisallowHeapAllocation no_gc;
    if (!ClampedToInteger(isolate, args[1], &relative_start)) {
      AllowHeapAllocation allow_allocation;
      return CallJsIntrinsic(isolate, isolate->array_slice(), args);
    }
    if (argument_count > 1) {
      Object* end_arg = args[2];
      // slice handles the end_arg specially
      if (end_arg->IsUndefined(isolate)) {
        relative_end = len;
      } else if (!ClampedToInteger(isolate, end_arg, &relative_end)) {
        AllowHeapAllocation allow_allocation;
        return CallJsIntrinsic(isolate, isolate->array_slice(), args);
      }
    }
  }

  // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6.
  uint32_t actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
                                               : Min(relative_start, len);

  // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8.
  uint32_t actual_end =
      (relative_end < 0) ? Max(len + relative_end, 0) : Min(relative_end, len);

  Handle<JSObject> object = Handle<JSObject>::cast(receiver);
  ElementsAccessor* accessor = object->GetElementsAccessor();
  return *accessor->Slice(object, actual_start, actual_end);
}

BUILTIN(ArraySplice) {
  HandleScope scope(isolate);
  Handle<Object> receiver = args.receiver();
  if (V8_UNLIKELY(
          !EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3) ||
          // If this is a subclass of Array, then call out to JS.
          !Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) ||
          // If anything with @@species has been messed with, call out to JS.
          !isolate->IsArraySpeciesLookupChainIntact())) {
    return CallJsIntrinsic(isolate, isolate->array_splice(), args);
  }
  Handle<JSArray> array = Handle<JSArray>::cast(receiver);

  int argument_count = args.length() - 1;
  int relative_start = 0;
  if (argument_count > 0) {
    DisallowHeapAllocation no_gc;
    if (!ClampedToInteger(isolate, args[1], &relative_start)) {
      AllowHeapAllocation allow_allocation;
      return CallJsIntrinsic(isolate, isolate->array_splice(), args);
    }
  }
  int len = Smi::cast(array->length())->value();
  // clip relative start to [0, len]
  int actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
                                          : Min(relative_start, len);

  int actual_delete_count;
  if (argument_count == 1) {
    // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is
    // given as a request to delete all the elements from the start.
    // And it differs from the case of undefined delete count.
    // This does not follow ECMA-262, but we do the same for compatibility.
    DCHECK(len - actual_start >= 0);
    actual_delete_count = len - actual_start;
  } else {
    int delete_count = 0;
    DisallowHeapAllocation no_gc;
    if (argument_count > 1) {
      if (!ClampedToInteger(isolate, args[2], &delete_count)) {
        AllowHeapAllocation allow_allocation;
        return CallJsIntrinsic(isolate, isolate->array_splice(), args);
      }
    }
    actual_delete_count = Min(Max(delete_count, 0), len - actual_start);
  }

  int add_count = (argument_count > 1) ? (argument_count - 2) : 0;
  int new_length = len - actual_delete_count + add_count;

  if (new_length != len && JSArray::HasReadOnlyLength(array)) {
    AllowHeapAllocation allow_allocation;
    return CallJsIntrinsic(isolate, isolate->array_splice(), args);
  }
  ElementsAccessor* accessor = array->GetElementsAccessor();
  Handle<JSArray> result_array = accessor->Splice(
      array, actual_start, actual_delete_count, &args, add_count);
  return *result_array;
}

// Array Concat -------------------------------------------------------------

namespace {

/**
 * A simple visitor visits every element of Array's.
 * The backend storage can be a fixed array for fast elements case,
 * or a dictionary for sparse array. Since Dictionary is a subtype
 * of FixedArray, the class can be used by both fast and slow cases.
 * The second parameter of the constructor, fast_elements, specifies
 * whether the storage is a FixedArray or Dictionary.
 *
 * An index limit is used to deal with the situation that a result array
 * length overflows 32-bit non-negative integer.
 */
class ArrayConcatVisitor {
 public:
  ArrayConcatVisitor(Isolate* isolate, Handle<HeapObject> storage,
                     bool fast_elements)
      : isolate_(isolate),
        storage_(isolate->global_handles()->Create(*storage)),
        index_offset_(0u),
        bit_field_(
            FastElementsField::encode(fast_elements) |
            ExceedsLimitField::encode(false) |
            IsFixedArrayField::encode(storage->IsFixedArray()) |
            HasSimpleElementsField::encode(storage->IsFixedArray() ||
                                           storage->map()->instance_type() >
                                               LAST_CUSTOM_ELEMENTS_RECEIVER)) {
    DCHECK(!(this->fast_elements() && !is_fixed_array()));
  }

  ~ArrayConcatVisitor() { clear_storage(); }

  MUST_USE_RESULT bool visit(uint32_t i, Handle<Object> elm) {
    uint32_t index = index_offset_ + i;

    if (i >= JSObject::kMaxElementCount - index_offset_) {
      set_exceeds_array_limit(true);
      // Exception hasn't been thrown at this point. Return true to
      // break out, and caller will throw. !visit would imply that
      // there is already a pending exception.
      return true;
    }

    if (!is_fixed_array()) {
      LookupIterator it(isolate_, storage_, index, LookupIterator::OWN);
      MAYBE_RETURN(
          JSReceiver::CreateDataProperty(&it, elm, Object::THROW_ON_ERROR),
          false);
      return true;
    }

    if (fast_elements()) {
      if (index < static_cast<uint32_t>(storage_fixed_array()->length())) {
        storage_fixed_array()->set(index, *elm);
        return true;
      }
      // Our initial estimate of length was foiled, possibly by
      // getters on the arrays increasing the length of later arrays
      // during iteration.
      // This shouldn't happen in anything but pathological cases.
      SetDictionaryMode();
      // Fall-through to dictionary mode.
    }
    DCHECK(!fast_elements());
    Handle<SeededNumberDictionary> dict(
        SeededNumberDictionary::cast(*storage_));
    // The object holding this backing store has just been allocated, so
    // it cannot yet be used as a prototype.
    Handle<SeededNumberDictionary> result =
        SeededNumberDictionary::AtNumberPut(dict, index, elm, false);
    if (!result.is_identical_to(dict)) {
      // Dictionary needed to grow.
      clear_storage();
      set_storage(*result);
    }
    return true;
  }

  void increase_index_offset(uint32_t delta) {
    if (JSObject::kMaxElementCount - index_offset_ < delta) {
      index_offset_ = JSObject::kMaxElementCount;
    } else {
      index_offset_ += delta;
    }
    // If the initial length estimate was off (see special case in visit()),
    // but the array blowing the limit didn't contain elements beyond the
    // provided-for index range, go to dictionary mode now.
    if (fast_elements() &&
        index_offset_ >
            static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) {
      SetDictionaryMode();
    }
  }

  bool exceeds_array_limit() const {
    return ExceedsLimitField::decode(bit_field_);
  }

  Handle<JSArray> ToArray() {
    DCHECK(is_fixed_array());
    Handle<JSArray> array = isolate_->factory()->NewJSArray(0);
    Handle<Object> length =
        isolate_->factory()->NewNumber(static_cast<double>(index_offset_));
    Handle<Map> map = JSObject::GetElementsTransitionMap(
        array, fast_elements() ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS);
    array->set_map(*map);
    array->set_length(*length);
    array->set_elements(*storage_fixed_array());
    return array;
  }

  // Storage is either a FixedArray (if is_fixed_array()) or a JSReciever
  // (otherwise)
  Handle<FixedArray> storage_fixed_array() {
    DCHECK(is_fixed_array());
    DCHECK(has_simple_elements());
    return Handle<FixedArray>::cast(storage_);
  }
  Handle<JSReceiver> storage_jsreceiver() {
    DCHECK(!is_fixed_array());
    return Handle<JSReceiver>::cast(storage_);
  }
  bool has_simple_elements() const {
    return HasSimpleElementsField::decode(bit_field_);
  }

 private:
  // Convert storage to dictionary mode.
  void SetDictionaryMode() {
    DCHECK(fast_elements() && is_fixed_array());
    Handle<FixedArray> current_storage = storage_fixed_array();
    Handle<SeededNumberDictionary> slow_storage(
        SeededNumberDictionary::New(isolate_, current_storage->length()));
    uint32_t current_length = static_cast<uint32_t>(current_storage->length());
    FOR_WITH_HANDLE_SCOPE(
        isolate_, uint32_t, i = 0, i, i < current_length, i++, {
          Handle<Object> element(current_storage->get(i), isolate_);
          if (!element->IsTheHole(isolate_)) {
            // The object holding this backing store has just been allocated, so
            // it cannot yet be used as a prototype.
            Handle<SeededNumberDictionary> new_storage =
                SeededNumberDictionary::AtNumberPut(slow_storage, i, element,
                                                    false);
            if (!new_storage.is_identical_to(slow_storage)) {
              slow_storage = loop_scope.CloseAndEscape(new_storage);
            }
          }
        });
    clear_storage();
    set_storage(*slow_storage);
    set_fast_elements(false);
  }

  inline void clear_storage() { GlobalHandles::Destroy(storage_.location()); }

  inline void set_storage(FixedArray* storage) {
    DCHECK(is_fixed_array());
    DCHECK(has_simple_elements());
    storage_ = isolate_->global_handles()->Create(storage);
  }

  class FastElementsField : public BitField<bool, 0, 1> {};
  class ExceedsLimitField : public BitField<bool, 1, 1> {};
  class IsFixedArrayField : public BitField<bool, 2, 1> {};
  class HasSimpleElementsField : public BitField<bool, 3, 1> {};

  bool fast_elements() const { return FastElementsField::decode(bit_field_); }
  void set_fast_elements(bool fast) {
    bit_field_ = FastElementsField::update(bit_field_, fast);
  }
  void set_exceeds_array_limit(bool exceeds) {
    bit_field_ = ExceedsLimitField::update(bit_field_, exceeds);
  }
  bool is_fixed_array() const { return IsFixedArrayField::decode(bit_field_); }

  Isolate* isolate_;
  Handle<Object> storage_;  // Always a global handle.
  // Index after last seen index. Always less than or equal to
  // JSObject::kMaxElementCount.
  uint32_t index_offset_;
  uint32_t bit_field_;
};

uint32_t EstimateElementCount(Handle<JSArray> array) {
  DisallowHeapAllocation no_gc;
  uint32_t length = static_cast<uint32_t>(array->length()->Number());
  int element_count = 0;
  switch (array->GetElementsKind()) {
    case FAST_SMI_ELEMENTS:
    case FAST_HOLEY_SMI_ELEMENTS:
    case FAST_ELEMENTS:
    case FAST_HOLEY_ELEMENTS: {
      // Fast elements can't have lengths that are not representable by
      // a 32-bit signed integer.
      DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
      int fast_length = static_cast<int>(length);
      Isolate* isolate = array->GetIsolate();
      FixedArray* elements = FixedArray::cast(array->elements());
      for (int i = 0; i < fast_length; i++) {
        if (!elements->get(i)->IsTheHole(isolate)) element_count++;
      }
      break;
    }
    case FAST_DOUBLE_ELEMENTS:
    case FAST_HOLEY_DOUBLE_ELEMENTS: {
      // Fast elements can't have lengths that are not representable by
      // a 32-bit signed integer.
      DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0);
      int fast_length = static_cast<int>(length);
      if (array->elements()->IsFixedArray()) {
        DCHECK(FixedArray::cast(array->elements())->length() == 0);
        break;
      }
      FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements());
      for (int i = 0; i < fast_length; i++) {
        if (!elements->is_the_hole(i)) element_count++;
      }
      break;
    }
    case DICTIONARY_ELEMENTS: {
      SeededNumberDictionary* dictionary =
          SeededNumberDictionary::cast(array->elements());
      Isolate* isolate = dictionary->GetIsolate();
      int capacity = dictionary->Capacity();
      for (int i = 0; i < capacity; i++) {
        Object* key = dictionary->KeyAt(i);
        if (dictionary->IsKey(isolate, key)) {
          element_count++;
        }
      }
      break;
    }
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:

      TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
      // External arrays are always dense.
      return length;
    case NO_ELEMENTS:
      return 0;
    case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
    case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
    case FAST_STRING_WRAPPER_ELEMENTS:
    case SLOW_STRING_WRAPPER_ELEMENTS:
      UNREACHABLE();
      return 0;
  }
  // As an estimate, we assume that the prototype doesn't contain any
  // inherited elements.
  return element_count;
}

// Used for sorting indices in a List<uint32_t>.
int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
  uint32_t a = *ap;
  uint32_t b = *bp;
  return (a == b) ? 0 : (a < b) ? -1 : 1;
}

void CollectElementIndices(Handle<JSObject> object, uint32_t range,
                           List<uint32_t>* indices) {
  Isolate* isolate = object->GetIsolate();
  ElementsKind kind = object->GetElementsKind();
  switch (kind) {
    case FAST_SMI_ELEMENTS:
    case FAST_ELEMENTS:
    case FAST_HOLEY_SMI_ELEMENTS:
    case FAST_HOLEY_ELEMENTS: {
      DisallowHeapAllocation no_gc;
      FixedArray* elements = FixedArray::cast(object->elements());
      uint32_t length = static_cast<uint32_t>(elements->length());
      if (range < length) length = range;
      for (uint32_t i = 0; i < length; i++) {
        if (!elements->get(i)->IsTheHole(isolate)) {
          indices->Add(i);
        }
      }
      break;
    }
    case FAST_HOLEY_DOUBLE_ELEMENTS:
    case FAST_DOUBLE_ELEMENTS: {
      if (object->elements()->IsFixedArray()) {
        DCHECK(object->elements()->length() == 0);
        break;
      }
      Handle<FixedDoubleArray> elements(
          FixedDoubleArray::cast(object->elements()));
      uint32_t length = static_cast<uint32_t>(elements->length());
      if (range < length) length = range;
      for (uint32_t i = 0; i < length; i++) {
        if (!elements->is_the_hole(i)) {
          indices->Add(i);
        }
      }
      break;
    }
    case DICTIONARY_ELEMENTS: {
      DisallowHeapAllocation no_gc;
      SeededNumberDictionary* dict =
          SeededNumberDictionary::cast(object->elements());
      uint32_t capacity = dict->Capacity();
      FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, j = 0, j, j < capacity, j++, {
        Object* k = dict->KeyAt(j);
        if (!dict->IsKey(isolate, k)) continue;
        DCHECK(k->IsNumber());
        uint32_t index = static_cast<uint32_t>(k->Number());
        if (index < range) {
          indices->Add(index);
        }
      });
      break;
    }
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:

      TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
      {
        uint32_t length = static_cast<uint32_t>(
            FixedArrayBase::cast(object->elements())->length());
        if (range <= length) {
          length = range;
          // We will add all indices, so we might as well clear it first
          // and avoid duplicates.
          indices->Clear();
        }
        for (uint32_t i = 0; i < length; i++) {
          indices->Add(i);
        }
        if (length == range) return;  // All indices accounted for already.
        break;
      }
    case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
    case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
      ElementsAccessor* accessor = object->GetElementsAccessor();
      for (uint32_t i = 0; i < range; i++) {
        if (accessor->HasElement(object, i)) {
          indices->Add(i);
        }
      }
      break;
    }
    case FAST_STRING_WRAPPER_ELEMENTS:
    case SLOW_STRING_WRAPPER_ELEMENTS: {
      DCHECK(object->IsJSValue());
      Handle<JSValue> js_value = Handle<JSValue>::cast(object);
      DCHECK(js_value->value()->IsString());
      Handle<String> string(String::cast(js_value->value()), isolate);
      uint32_t length = static_cast<uint32_t>(string->length());
      uint32_t i = 0;
      uint32_t limit = Min(length, range);
      for (; i < limit; i++) {
        indices->Add(i);
      }
      ElementsAccessor* accessor = object->GetElementsAccessor();
      for (; i < range; i++) {
        if (accessor->HasElement(object, i)) {
          indices->Add(i);
        }
      }
      break;
    }
    case NO_ELEMENTS:
      break;
  }

  PrototypeIterator iter(isolate, object);
  if (!iter.IsAtEnd()) {
    // The prototype will usually have no inherited element indices,
    // but we have to check.
    CollectElementIndices(PrototypeIterator::GetCurrent<JSObject>(iter), range,
                          indices);
  }
}

bool IterateElementsSlow(Isolate* isolate, Handle<JSReceiver> receiver,
                         uint32_t length, ArrayConcatVisitor* visitor) {
  FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, i = 0, i, i < length, ++i, {
    Maybe<bool> maybe = JSReceiver::HasElement(receiver, i);
    if (!maybe.IsJust()) return false;
    if (maybe.FromJust()) {
      Handle<Object> element_value;
      ASSIGN_RETURN_ON_EXCEPTION_VALUE(
          isolate, element_value, JSReceiver::GetElement(isolate, receiver, i),
          false);
      if (!visitor->visit(i, element_value)) return false;
    }
  });
  visitor->increase_index_offset(length);
  return true;
}
/**
 * A helper function that visits "array" elements of a JSReceiver in numerical
 * order.
 *
 * The visitor argument called for each existing element in the array
 * with the element index and the element's value.
 * Afterwards it increments the base-index of the visitor by the array
 * length.
 * Returns false if any access threw an exception, otherwise true.
 */
bool IterateElements(Isolate* isolate, Handle<JSReceiver> receiver,
                     ArrayConcatVisitor* visitor) {
  uint32_t length = 0;

  if (receiver->IsJSArray()) {
    Handle<JSArray> array = Handle<JSArray>::cast(receiver);
    length = static_cast<uint32_t>(array->length()->Number());
  } else {
    Handle<Object> val;
    ASSIGN_RETURN_ON_EXCEPTION_VALUE(
        isolate, val, Object::GetLengthFromArrayLike(isolate, receiver), false);
    // TODO(caitp): Support larger element indexes (up to 2^53-1).
    if (!val->ToUint32(&length)) {
      length = 0;
    }
    // TODO(cbruni): handle other element kind as well
    return IterateElementsSlow(isolate, receiver, length, visitor);
  }

  if (!HasOnlySimpleElements(isolate, *receiver) ||
      !visitor->has_simple_elements()) {
    return IterateElementsSlow(isolate, receiver, length, visitor);
  }
  Handle<JSObject> array = Handle<JSObject>::cast(receiver);

  switch (array->GetElementsKind()) {
    case FAST_SMI_ELEMENTS:
    case FAST_ELEMENTS:
    case FAST_HOLEY_SMI_ELEMENTS:
    case FAST_HOLEY_ELEMENTS: {
      // Run through the elements FixedArray and use HasElement and GetElement
      // to check the prototype for missing elements.
      Handle<FixedArray> elements(FixedArray::cast(array->elements()));
      int fast_length = static_cast<int>(length);
      DCHECK(fast_length <= elements->length());
      FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, {
        Handle<Object> element_value(elements->get(j), isolate);
        if (!element_value->IsTheHole(isolate)) {
          if (!visitor->visit(j, element_value)) return false;
        } else {
          Maybe<bool> maybe = JSReceiver::HasElement(array, j);
          if (!maybe.IsJust()) return false;
          if (maybe.FromJust()) {
            // Call GetElement on array, not its prototype, or getters won't
            // have the correct receiver.
            ASSIGN_RETURN_ON_EXCEPTION_VALUE(
                isolate, element_value,
                JSReceiver::GetElement(isolate, array, j), false);
            if (!visitor->visit(j, element_value)) return false;
          }
        }
      });
      break;
    }
    case FAST_HOLEY_DOUBLE_ELEMENTS:
    case FAST_DOUBLE_ELEMENTS: {
      // Empty array is FixedArray but not FixedDoubleArray.
      if (length == 0) break;
      // Run through the elements FixedArray and use HasElement and GetElement
      // to check the prototype for missing elements.
      if (array->elements()->IsFixedArray()) {
        DCHECK(array->elements()->length() == 0);
        break;
      }
      Handle<FixedDoubleArray> elements(
          FixedDoubleArray::cast(array->elements()));
      int fast_length = static_cast<int>(length);
      DCHECK(fast_length <= elements->length());
      FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, {
        if (!elements->is_the_hole(j)) {
          double double_value = elements->get_scalar(j);
          Handle<Object> element_value =
              isolate->factory()->NewNumber(double_value);
          if (!visitor->visit(j, element_value)) return false;
        } else {
          Maybe<bool> maybe = JSReceiver::HasElement(array, j);
          if (!maybe.IsJust()) return false;
          if (maybe.FromJust()) {
            // Call GetElement on array, not its prototype, or getters won't
            // have the correct receiver.
            Handle<Object> element_value;
            ASSIGN_RETURN_ON_EXCEPTION_VALUE(
                isolate, element_value,
                JSReceiver::GetElement(isolate, array, j), false);
            if (!visitor->visit(j, element_value)) return false;
          }
        }
      });
      break;
    }

    case DICTIONARY_ELEMENTS: {
      Handle<SeededNumberDictionary> dict(array->element_dictionary());
      List<uint32_t> indices(dict->Capacity() / 2);
      // Collect all indices in the object and the prototypes less
      // than length. This might introduce duplicates in the indices list.
      CollectElementIndices(array, length, &indices);
      indices.Sort(&compareUInt32);
      int n = indices.length();
      FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < n, (void)0, {
        uint32_t index = indices[j];
        Handle<Object> element;
        ASSIGN_RETURN_ON_EXCEPTION_VALUE(
            isolate, element, JSReceiver::GetElement(isolate, array, index),
            false);
        if (!visitor->visit(index, element)) return false;
        // Skip to next different index (i.e., omit duplicates).
        do {
          j++;
        } while (j < n && indices[j] == index);
      });
      break;
    }
    case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
    case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
      FOR_WITH_HANDLE_SCOPE(
          isolate, uint32_t, index = 0, index, index < length, index++, {
            Handle<Object> element;
            ASSIGN_RETURN_ON_EXCEPTION_VALUE(
                isolate, element, JSReceiver::GetElement(isolate, array, index),
                false);
            if (!visitor->visit(index, element)) return false;
          });
      break;
    }
    case NO_ELEMENTS:
      break;
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:
      TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
      return IterateElementsSlow(isolate, receiver, length, visitor);
    case FAST_STRING_WRAPPER_ELEMENTS:
    case SLOW_STRING_WRAPPER_ELEMENTS:
      // |array| is guaranteed to be an array or typed array.
      UNREACHABLE();
      break;
  }
  visitor->increase_index_offset(length);
  return true;
}

static Maybe<bool> IsConcatSpreadable(Isolate* isolate, Handle<Object> obj) {
  HandleScope handle_scope(isolate);
  if (!obj->IsJSReceiver()) return Just(false);
  if (!isolate->IsIsConcatSpreadableLookupChainIntact(JSReceiver::cast(*obj))) {
    // Slow path if @@isConcatSpreadable has been used.
    Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol());
    Handle<Object> value;
    MaybeHandle<Object> maybeValue =
        i::Runtime::GetObjectProperty(isolate, obj, key);
    if (!maybeValue.ToHandle(&value)) return Nothing<bool>();
    if (!value->IsUndefined(isolate)) return Just(value->BooleanValue());
  }
  return Object::IsArray(obj);
}

Object* Slow_ArrayConcat(BuiltinArguments* args, Handle<Object> species,
                         Isolate* isolate) {
  int argument_count = args->length();

  bool is_array_species = *species == isolate->context()->array_function();

  // Pass 1: estimate the length and number of elements of the result.
  // The actual length can be larger if any of the arguments have getters
  // that mutate other arguments (but will otherwise be precise).
  // The number of elements is precise if there are no inherited elements.

  ElementsKind kind = FAST_SMI_ELEMENTS;

  uint32_t estimate_result_length = 0;
  uint32_t estimate_nof_elements = 0;
  FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < argument_count, i++, {
    Handle<Object> obj((*args)[i], isolate);
    uint32_t length_estimate;
    uint32_t element_estimate;
    if (obj->IsJSArray()) {
      Handle<JSArray> array(Handle<JSArray>::cast(obj));
      length_estimate = static_cast<uint32_t>(array->length()->Number());
      if (length_estimate != 0) {
        ElementsKind array_kind =
            GetPackedElementsKind(array->GetElementsKind());
        kind = GetMoreGeneralElementsKind(kind, array_kind);
      }
      element_estimate = EstimateElementCount(array);
    } else {
      if (obj->IsHeapObject()) {
        kind = GetMoreGeneralElementsKind(
            kind, obj->IsNumber() ? FAST_DOUBLE_ELEMENTS : FAST_ELEMENTS);
      }
      length_estimate = 1;
      element_estimate = 1;
    }
    // Avoid overflows by capping at kMaxElementCount.
    if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) {
      estimate_result_length = JSObject::kMaxElementCount;
    } else {
      estimate_result_length += length_estimate;
    }
    if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) {
      estimate_nof_elements = JSObject::kMaxElementCount;
    } else {
      estimate_nof_elements += element_estimate;
    }
  });

  // If estimated number of elements is more than half of length, a
  // fixed array (fast case) is more time and space-efficient than a
  // dictionary.
  bool fast_case =
      is_array_species && (estimate_nof_elements * 2) >= estimate_result_length;

  if (fast_case && kind == FAST_DOUBLE_ELEMENTS) {
    Handle<FixedArrayBase> storage =
        isolate->factory()->NewFixedDoubleArray(estimate_result_length);
    int j = 0;
    bool failure = false;
    if (estimate_result_length > 0) {
      Handle<FixedDoubleArray> double_storage =
          Handle<FixedDoubleArray>::cast(storage);
      for (int i = 0; i < argument_count; i++) {
        Handle<Object> obj((*args)[i], isolate);
        if (obj->IsSmi()) {
          double_storage->set(j, Smi::cast(*obj)->value());
          j++;
        } else if (obj->IsNumber()) {
          double_storage->set(j, obj->Number());
          j++;
        } else {
          DisallowHeapAllocation no_gc;
          JSArray* array = JSArray::cast(*obj);
          uint32_t length = static_cast<uint32_t>(array->length()->Number());
          switch (array->GetElementsKind()) {
            case FAST_HOLEY_DOUBLE_ELEMENTS:
            case FAST_DOUBLE_ELEMENTS: {
              // Empty array is FixedArray but not FixedDoubleArray.
              if (length == 0) break;
              FixedDoubleArray* elements =
                  FixedDoubleArray::cast(array->elements());
              for (uint32_t i = 0; i < length; i++) {
                if (elements->is_the_hole(i)) {
                  // TODO(jkummerow/verwaest): We could be a bit more clever
                  // here: Check if there are no elements/getters on the
                  // prototype chain, and if so, allow creation of a holey
                  // result array.
                  // Same thing below (holey smi case).
                  failure = true;
                  break;
                }
                double double_value = elements->get_scalar(i);
                double_storage->set(j, double_value);
                j++;
              }
              break;
            }
            case FAST_HOLEY_SMI_ELEMENTS:
            case FAST_SMI_ELEMENTS: {
              Object* the_hole = isolate->heap()->the_hole_value();
              FixedArray* elements(FixedArray::cast(array->elements()));
              for (uint32_t i = 0; i < length; i++) {
                Object* element = elements->get(i);
                if (element == the_hole) {
                  failure = true;
                  break;
                }
                int32_t int_value = Smi::cast(element)->value();
                double_storage->set(j, int_value);
                j++;
              }
              break;
            }
            case FAST_HOLEY_ELEMENTS:
            case FAST_ELEMENTS:
            case DICTIONARY_ELEMENTS:
            case NO_ELEMENTS:
              DCHECK_EQ(0u, length);
              break;
            default:
              UNREACHABLE();
          }
        }
        if (failure) break;
      }
    }
    if (!failure) {
      return *isolate->factory()->NewJSArrayWithElements(storage, kind, j);
    }
    // In case of failure, fall through.
  }

  Handle<HeapObject> storage;
  if (fast_case) {
    // The backing storage array must have non-existing elements to preserve
    // holes across concat operations.
    storage =
        isolate->factory()->NewFixedArrayWithHoles(estimate_result_length);
  } else if (is_array_species) {
    // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
    uint32_t at_least_space_for =
        estimate_nof_elements + (estimate_nof_elements >> 2);
    storage = SeededNumberDictionary::New(isolate, at_least_space_for);
  } else {
    DCHECK(species->IsConstructor());
    Handle<Object> length(Smi::kZero, isolate);
    Handle<Object> storage_object;
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
        isolate, storage_object,
        Execution::New(isolate, species, species, 1, &length));
    storage = Handle<HeapObject>::cast(storage_object);
  }

  ArrayConcatVisitor visitor(isolate, storage, fast_case);

  for (int i = 0; i < argument_count; i++) {
    Handle<Object> obj((*args)[i], isolate);
    Maybe<bool> spreadable = IsConcatSpreadable(isolate, obj);
    MAYBE_RETURN(spreadable, isolate->heap()->exception());
    if (spreadable.FromJust()) {
      Handle<JSReceiver> object = Handle<JSReceiver>::cast(obj);
      if (!IterateElements(isolate, object, &visitor)) {
        return isolate->heap()->exception();
      }
    } else {
      if (!visitor.visit(0, obj)) return isolate->heap()->exception();
      visitor.increase_index_offset(1);
    }
  }

  if (visitor.exceeds_array_limit()) {
    THROW_NEW_ERROR_RETURN_FAILURE(
        isolate, NewRangeError(MessageTemplate::kInvalidArrayLength));
  }

  if (is_array_species) {
    return *visitor.ToArray();
  } else {
    return *visitor.storage_jsreceiver();
  }
}

bool IsSimpleArray(Isolate* isolate, Handle<JSArray> obj) {
  DisallowHeapAllocation no_gc;
  Map* map = obj->map();
  // If there is only the 'length' property we are fine.
  if (map->prototype() ==
          isolate->native_context()->initial_array_prototype() &&
      map->NumberOfOwnDescriptors() == 1) {
    return true;
  }
  // TODO(cbruni): slower lookup for array subclasses and support slow
  // @@IsConcatSpreadable lookup.
  return false;
}

MaybeHandle<JSArray> Fast_ArrayConcat(Isolate* isolate,
                                      BuiltinArguments* args) {
  if (!isolate->IsIsConcatSpreadableLookupChainIntact()) {
    return MaybeHandle<JSArray>();
  }
  // We shouldn't overflow when adding another len.
  const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2);
  STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt);
  STATIC_ASSERT(FixedDoubleArray::kMaxLength < kHalfOfMaxInt);
  USE(kHalfOfMaxInt);

  int n_arguments = args->length();
  int result_len = 0;
  {
    DisallowHeapAllocation no_gc;
    // Iterate through all the arguments performing checks
    // and calculating total length.
    for (int i = 0; i < n_arguments; i++) {
      Object* arg = (*args)[i];
      if (!arg->IsJSArray()) return MaybeHandle<JSArray>();
      if (!HasOnlySimpleReceiverElements(isolate, JSObject::cast(arg))) {
        return MaybeHandle<JSArray>();
      }
      // TODO(cbruni): support fast concatenation of DICTIONARY_ELEMENTS.
      if (!JSObject::cast(arg)->HasFastElements()) {
        return MaybeHandle<JSArray>();
      }
      Handle<JSArray> array(JSArray::cast(arg), isolate);
      if (!IsSimpleArray(isolate, array)) {
        return MaybeHandle<JSArray>();
      }
      // The Array length is guaranted to be <= kHalfOfMaxInt thus we won't
      // overflow.
      result_len += Smi::cast(array->length())->value();
      DCHECK(result_len >= 0);
      // Throw an Error if we overflow the FixedArray limits
      if (FixedDoubleArray::kMaxLength < result_len ||
          FixedArray::kMaxLength < result_len) {
        AllowHeapAllocation gc;
        THROW_NEW_ERROR(isolate,
                        NewRangeError(MessageTemplate::kInvalidArrayLength),
                        JSArray);
      }
    }
  }
  return ElementsAccessor::Concat(isolate, args, n_arguments, result_len);
}

}  // namespace

// ES6 22.1.3.1 Array.prototype.concat
BUILTIN(ArrayConcat) {
  HandleScope scope(isolate);

  Handle<Object> receiver = args.receiver();
  // TODO(bmeurer): Do we really care about the exact exception message here?
  if (receiver->IsNull(isolate) || receiver->IsUndefined(isolate)) {
    THROW_NEW_ERROR_RETURN_FAILURE(
        isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined,
                              isolate->factory()->NewStringFromAsciiChecked(
                                  "Array.prototype.concat")));
  }
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
      isolate, receiver, Object::ToObject(isolate, args.receiver()));
  args[0] = *receiver;

  Handle<JSArray> result_array;

  // Avoid a real species read to avoid extra lookups to the array constructor
  if (V8_LIKELY(receiver->IsJSArray() &&
                Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) &&
                isolate->IsArraySpeciesLookupChainIntact())) {
    if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) {
      return *result_array;
    }
    if (isolate->has_pending_exception()) return isolate->heap()->exception();
  }
  // Reading @@species happens before anything else with a side effect, so
  // we can do it here to determine whether to take the fast path.
  Handle<Object> species;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
      isolate, species, Object::ArraySpeciesConstructor(isolate, receiver));
  if (*species == *isolate->array_function()) {
    if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) {
      return *result_array;
    }
    if (isolate->has_pending_exception()) return isolate->heap()->exception();
  }
  return Slow_ArrayConcat(&args, species, isolate);
}

void Builtins::Generate_ArrayIsArray(CodeStubAssembler* assembler) {
  typedef compiler::Node Node;
  typedef CodeStubAssembler::Label Label;

  Node* object = assembler->Parameter(1);
  Node* context = assembler->Parameter(4);

  Label call_runtime(assembler), return_true(assembler),
      return_false(assembler);

  assembler->GotoIf(assembler->TaggedIsSmi(object), &return_false);
  Node* instance_type = assembler->LoadInstanceType(object);

  assembler->GotoIf(assembler->Word32Equal(
                        instance_type, assembler->Int32Constant(JS_ARRAY_TYPE)),
                    &return_true);

  // TODO(verwaest): Handle proxies in-place.
  assembler->Branch(assembler->Word32Equal(
                        instance_type, assembler->Int32Constant(JS_PROXY_TYPE)),
                    &call_runtime, &return_false);

  assembler->Bind(&return_true);
  assembler->Return(assembler->BooleanConstant(true));

  assembler->Bind(&return_false);
  assembler->Return(assembler->BooleanConstant(false));

  assembler->Bind(&call_runtime);
  assembler->Return(
      assembler->CallRuntime(Runtime::kArrayIsArray, context, object));
}

void Builtins::Generate_ArrayIncludes(CodeStubAssembler* assembler) {
  typedef compiler::Node Node;
  typedef CodeStubAssembler::Label Label;
  typedef CodeStubAssembler::Variable Variable;

  Node* array = assembler->Parameter(0);
  Node* search_element = assembler->Parameter(1);
  Node* start_from = assembler->Parameter(2);
  Node* context = assembler->Parameter(3 + 2);

  Node* intptr_zero = assembler->IntPtrConstant(0);
  Node* intptr_one = assembler->IntPtrConstant(1);

  Node* the_hole = assembler->TheHoleConstant();
  Node* undefined = assembler->UndefinedConstant();
  Node* heap_number_map = assembler->HeapNumberMapConstant();

  Variable len_var(assembler, MachineType::PointerRepresentation()),
      index_var(assembler, MachineType::PointerRepresentation()),
      start_from_var(assembler, MachineType::PointerRepresentation());

  Label init_k(assembler), return_true(assembler), return_false(assembler),
      call_runtime(assembler);

  Label init_len(assembler);

  index_var.Bind(intptr_zero);
  len_var.Bind(intptr_zero);

  // Take slow path if not a JSArray, if retrieving elements requires
  // traversing prototype, or if access checks are required.
  assembler->BranchIfFastJSArray(array, context, &init_len, &call_runtime);

  assembler->Bind(&init_len);
  {
    // Handle case where JSArray length is not an Smi in the runtime
    Node* len = assembler->LoadObjectField(array, JSArray::kLengthOffset);
    assembler->GotoUnless(assembler->TaggedIsSmi(len), &call_runtime);

    len_var.Bind(assembler->SmiToWord(len));
    assembler->Branch(assembler->WordEqual(len_var.value(), intptr_zero),
                      &return_false, &init_k);
  }

  assembler->Bind(&init_k);
  {
    Label done(assembler), init_k_smi(assembler), init_k_heap_num(assembler),
        init_k_zero(assembler), init_k_n(assembler);
    Node* tagged_n = assembler->ToInteger(context, start_from);

    assembler->Branch(assembler->TaggedIsSmi(tagged_n), &init_k_smi,
                      &init_k_heap_num);

    assembler->Bind(&init_k_smi);
    {
      start_from_var.Bind(assembler->SmiUntag(tagged_n));
      assembler->Goto(&init_k_n);
    }

    assembler->Bind(&init_k_heap_num);
    {
      Label do_return_false(assembler);
      // This round is lossless for all valid lengths.
      Node* fp_len = assembler->RoundIntPtrToFloat64(len_var.value());
      Node* fp_n = assembler->LoadHeapNumberValue(tagged_n);
      assembler->GotoIf(assembler->Float64GreaterThanOrEqual(fp_n, fp_len),
                        &do_return_false);
      start_from_var.Bind(assembler->ChangeInt32ToIntPtr(
          assembler->TruncateFloat64ToWord32(fp_n)));
      assembler->Goto(&init_k_n);

      assembler->Bind(&do_return_false);
      {
        index_var.Bind(intptr_zero);
        assembler->Goto(&return_false);
      }
    }

    assembler->Bind(&init_k_n);
    {
      Label if_positive(assembler), if_negative(assembler), done(assembler);
      assembler->Branch(
          assembler->IntPtrLessThan(start_from_var.value(), intptr_zero),
          &if_negative, &if_positive);

      assembler->Bind(&if_positive);
      {
        index_var.Bind(start_from_var.value());
        assembler->Goto(&done);
      }

      assembler->Bind(&if_negative);
      {
        index_var.Bind(
            assembler->IntPtrAdd(len_var.value(), start_from_var.value()));
        assembler->Branch(
            assembler->IntPtrLessThan(index_var.value(), intptr_zero),
            &init_k_zero, &done);
      }

      assembler->Bind(&init_k_zero);
      {
        index_var.Bind(intptr_zero);
        assembler->Goto(&done);
      }

      assembler->Bind(&done);
    }
  }

  static int32_t kElementsKind[] = {
      FAST_SMI_ELEMENTS,   FAST_HOLEY_SMI_ELEMENTS, FAST_ELEMENTS,
      FAST_HOLEY_ELEMENTS, FAST_DOUBLE_ELEMENTS,    FAST_HOLEY_DOUBLE_ELEMENTS,
  };

  Label if_smiorobjects(assembler), if_packed_doubles(assembler),
      if_holey_doubles(assembler);
  Label* element_kind_handlers[] = {&if_smiorobjects,   &if_smiorobjects,
                                    &if_smiorobjects,   &if_smiorobjects,
                                    &if_packed_doubles, &if_holey_doubles};

  Node* map = assembler->LoadMap(array);
  Node* elements_kind = assembler->LoadMapElementsKind(map);
  Node* elements = assembler->LoadElements(array);
  assembler->Switch(elements_kind, &return_false, kElementsKind,
                    element_kind_handlers, arraysize(kElementsKind));

  assembler->Bind(&if_smiorobjects);
  {
    Variable search_num(assembler, MachineRepresentation::kFloat64);
    Label ident_loop(assembler, &index_var),
        heap_num_loop(assembler, &search_num),
        string_loop(assembler, &index_var), simd_loop(assembler),
        undef_loop(assembler, &index_var), not_smi(assembler),
        not_heap_num(assembler);

    assembler->GotoUnless(assembler->TaggedIsSmi(search_element), &not_smi);
    search_num.Bind(assembler->SmiToFloat64(search_element));
    assembler->Goto(&heap_num_loop);

    assembler->Bind(&not_smi);
    assembler->GotoIf(assembler->WordEqual(search_element, undefined),
                      &undef_loop);
    Node* map = assembler->LoadMap(search_element);
    assembler->GotoIf(assembler->WordNotEqual(map, heap_number_map),
                      &not_heap_num);
    search_num.Bind(assembler->LoadHeapNumberValue(search_element));
    assembler->Goto(&heap_num_loop);

    assembler->Bind(&not_heap_num);
    Node* search_type = assembler->LoadMapInstanceType(map);
    assembler->GotoIf(assembler->IsStringInstanceType(search_type),
                      &string_loop);
    assembler->GotoIf(
        assembler->Word32Equal(search_type,
                               assembler->Int32Constant(SIMD128_VALUE_TYPE)),
        &simd_loop);
    assembler->Goto(&ident_loop);

    assembler->Bind(&ident_loop);
    {
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_false);
      Node* element_k = assembler->LoadFixedArrayElement(
          elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS);
      assembler->GotoIf(assembler->WordEqual(element_k, search_element),
                        &return_true);

      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&ident_loop);
    }

    assembler->Bind(&undef_loop);
    {
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_false);
      Node* element_k = assembler->LoadFixedArrayElement(
          elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS);
      assembler->GotoIf(assembler->WordEqual(element_k, undefined),
                        &return_true);
      assembler->GotoIf(assembler->WordEqual(element_k, the_hole),
                        &return_true);

      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&undef_loop);
    }

    assembler->Bind(&heap_num_loop);
    {
      Label nan_loop(assembler, &index_var),
          not_nan_loop(assembler, &index_var);
      assembler->BranchIfFloat64IsNaN(search_num.value(), &nan_loop,
                                      &not_nan_loop);

      assembler->Bind(&not_nan_loop);
      {
        Label continue_loop(assembler), not_smi(assembler);
        assembler->GotoUnless(
            assembler->UintPtrLessThan(index_var.value(), len_var.value()),
            &return_false);
        Node* element_k = assembler->LoadFixedArrayElement(
            elements, index_var.value(), 0,
            CodeStubAssembler::INTPTR_PARAMETERS);
        assembler->GotoUnless(assembler->TaggedIsSmi(element_k), &not_smi);
        assembler->Branch(
            assembler->Float64Equal(search_num.value(),
                                    assembler->SmiToFloat64(element_k)),
            &return_true, &continue_loop);

        assembler->Bind(&not_smi);
        assembler->GotoIf(assembler->WordNotEqual(assembler->LoadMap(element_k),
                                                  heap_number_map),
                          &continue_loop);
        assembler->Branch(
            assembler->Float64Equal(search_num.value(),
                                    assembler->LoadHeapNumberValue(element_k)),
            &return_true, &continue_loop);

        assembler->Bind(&continue_loop);
        index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
        assembler->Goto(&not_nan_loop);
      }

      assembler->Bind(&nan_loop);
      {
        Label continue_loop(assembler);
        assembler->GotoUnless(
            assembler->UintPtrLessThan(index_var.value(), len_var.value()),
            &return_false);
        Node* element_k = assembler->LoadFixedArrayElement(
            elements, index_var.value(), 0,
            CodeStubAssembler::INTPTR_PARAMETERS);
        assembler->GotoIf(assembler->TaggedIsSmi(element_k), &continue_loop);
        assembler->GotoIf(assembler->WordNotEqual(assembler->LoadMap(element_k),
                                                  heap_number_map),
                          &continue_loop);
        assembler->BranchIfFloat64IsNaN(
            assembler->LoadHeapNumberValue(element_k), &return_true,
            &continue_loop);

        assembler->Bind(&continue_loop);
        index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
        assembler->Goto(&nan_loop);
      }
    }

    assembler->Bind(&string_loop);
    {
      Label continue_loop(assembler);
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_false);
      Node* element_k = assembler->LoadFixedArrayElement(
          elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS);
      assembler->GotoIf(assembler->TaggedIsSmi(element_k), &continue_loop);
      assembler->GotoUnless(assembler->IsStringInstanceType(
                                assembler->LoadInstanceType(element_k)),
                            &continue_loop);

      // TODO(bmeurer): Consider inlining the StringEqual logic here.
      Callable callable = CodeFactory::StringEqual(assembler->isolate());
      Node* result =
          assembler->CallStub(callable, context, search_element, element_k);
      assembler->Branch(
          assembler->WordEqual(assembler->BooleanConstant(true), result),
          &return_true, &continue_loop);

      assembler->Bind(&continue_loop);
      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&string_loop);
    }

    assembler->Bind(&simd_loop);
    {
      Label continue_loop(assembler, &index_var),
          loop_body(assembler, &index_var);
      Node* map = assembler->LoadMap(search_element);

      assembler->Goto(&loop_body);
      assembler->Bind(&loop_body);
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_false);

      Node* element_k = assembler->LoadFixedArrayElement(
          elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS);
      assembler->GotoIf(assembler->TaggedIsSmi(element_k), &continue_loop);

      Node* map_k = assembler->LoadMap(element_k);
      assembler->BranchIfSimd128Equal(search_element, map, element_k, map_k,
                                      &return_true, &continue_loop);

      assembler->Bind(&continue_loop);
      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&loop_body);
    }
  }

  assembler->Bind(&if_packed_doubles);
  {
    Label nan_loop(assembler, &index_var), not_nan_loop(assembler, &index_var),
        hole_loop(assembler, &index_var), search_notnan(assembler);
    Variable search_num(assembler, MachineRepresentation::kFloat64);

    assembler->GotoUnless(assembler->TaggedIsSmi(search_element),
                          &search_notnan);
    search_num.Bind(assembler->SmiToFloat64(search_element));
    assembler->Goto(&not_nan_loop);

    assembler->Bind(&search_notnan);
    assembler->GotoIf(assembler->WordNotEqual(
                          assembler->LoadMap(search_element), heap_number_map),
                      &return_false);

    search_num.Bind(assembler->LoadHeapNumberValue(search_element));

    assembler->BranchIfFloat64IsNaN(search_num.value(), &nan_loop,
                                    &not_nan_loop);

    // Search for HeapNumber
    assembler->Bind(&not_nan_loop);
    {
      Label continue_loop(assembler);
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_false);
      Node* element_k = assembler->LoadFixedDoubleArrayElement(
          elements, index_var.value(), MachineType::Float64(), 0,
          CodeStubAssembler::INTPTR_PARAMETERS);
      assembler->Branch(assembler->Float64Equal(element_k, search_num.value()),
                        &return_true, &continue_loop);
      assembler->Bind(&continue_loop);
      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&not_nan_loop);
    }

    // Search for NaN
    assembler->Bind(&nan_loop);
    {
      Label continue_loop(assembler);
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_false);
      Node* element_k = assembler->LoadFixedDoubleArrayElement(
          elements, index_var.value(), MachineType::Float64(), 0,
          CodeStubAssembler::INTPTR_PARAMETERS);
      assembler->BranchIfFloat64IsNaN(element_k, &return_true, &continue_loop);
      assembler->Bind(&continue_loop);
      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&nan_loop);
    }
  }

  assembler->Bind(&if_holey_doubles);
  {
    Label nan_loop(assembler, &index_var), not_nan_loop(assembler, &index_var),
        hole_loop(assembler, &index_var), search_notnan(assembler);
    Variable search_num(assembler, MachineRepresentation::kFloat64);

    assembler->GotoUnless(assembler->TaggedIsSmi(search_element),
                          &search_notnan);
    search_num.Bind(assembler->SmiToFloat64(search_element));
    assembler->Goto(&not_nan_loop);

    assembler->Bind(&search_notnan);
    assembler->GotoIf(assembler->WordEqual(search_element, undefined),
                      &hole_loop);
    assembler->GotoIf(assembler->WordNotEqual(
                          assembler->LoadMap(search_element), heap_number_map),
                      &return_false);

    search_num.Bind(assembler->LoadHeapNumberValue(search_element));

    assembler->BranchIfFloat64IsNaN(search_num.value(), &nan_loop,
                                    &not_nan_loop);

    // Search for HeapNumber
    assembler->Bind(&not_nan_loop);
    {
      Label continue_loop(assembler);
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_false);

      // Load double value or continue if it contains a double hole.
      Node* element_k = assembler->LoadFixedDoubleArrayElement(
          elements, index_var.value(), MachineType::Float64(), 0,
          CodeStubAssembler::INTPTR_PARAMETERS, &continue_loop);

      assembler->Branch(assembler->Float64Equal(element_k, search_num.value()),
                        &return_true, &continue_loop);
      assembler->Bind(&continue_loop);
      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&not_nan_loop);
    }

    // Search for NaN
    assembler->Bind(&nan_loop);
    {
      Label continue_loop(assembler);
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_false);

      // Load double value or continue if it contains a double hole.
      Node* element_k = assembler->LoadFixedDoubleArrayElement(
          elements, index_var.value(), MachineType::Float64(), 0,
          CodeStubAssembler::INTPTR_PARAMETERS, &continue_loop);

      assembler->BranchIfFloat64IsNaN(element_k, &return_true, &continue_loop);
      assembler->Bind(&continue_loop);
      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&nan_loop);
    }

    // Search for the Hole
    assembler->Bind(&hole_loop);
    {
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_false);

      // Check if the element is a double hole, but don't load it.
      assembler->LoadFixedDoubleArrayElement(
          elements, index_var.value(), MachineType::None(), 0,
          CodeStubAssembler::INTPTR_PARAMETERS, &return_true);

      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&hole_loop);
    }
  }

  assembler->Bind(&return_true);
  assembler->Return(assembler->BooleanConstant(true));

  assembler->Bind(&return_false);
  assembler->Return(assembler->BooleanConstant(false));

  assembler->Bind(&call_runtime);
  assembler->Return(assembler->CallRuntime(Runtime::kArrayIncludes_Slow,
                                           context, array, search_element,
                                           start_from));
}

void Builtins::Generate_ArrayIndexOf(CodeStubAssembler* assembler) {
  typedef compiler::Node Node;
  typedef CodeStubAssembler::Label Label;
  typedef CodeStubAssembler::Variable Variable;

  Node* array = assembler->Parameter(0);
  Node* search_element = assembler->Parameter(1);
  Node* start_from = assembler->Parameter(2);
  Node* context = assembler->Parameter(3 + 2);

  Node* intptr_zero = assembler->IntPtrConstant(0);
  Node* intptr_one = assembler->IntPtrConstant(1);

  Node* undefined = assembler->UndefinedConstant();
  Node* heap_number_map = assembler->HeapNumberMapConstant();

  Variable len_var(assembler, MachineType::PointerRepresentation()),
      index_var(assembler, MachineType::PointerRepresentation()),
      start_from_var(assembler, MachineType::PointerRepresentation());

  Label init_k(assembler), return_found(assembler), return_not_found(assembler),
      call_runtime(assembler);

  Label init_len(assembler);

  index_var.Bind(intptr_zero);
  len_var.Bind(intptr_zero);

  // Take slow path if not a JSArray, if retrieving elements requires
  // traversing prototype, or if access checks are required.
  assembler->BranchIfFastJSArray(array, context, &init_len, &call_runtime);

  assembler->Bind(&init_len);
  {
    // Handle case where JSArray length is not an Smi in the runtime
    Node* len = assembler->LoadObjectField(array, JSArray::kLengthOffset);
    assembler->GotoUnless(assembler->TaggedIsSmi(len), &call_runtime);

    len_var.Bind(assembler->SmiToWord(len));
    assembler->Branch(assembler->WordEqual(len_var.value(), intptr_zero),
                      &return_not_found, &init_k);
  }

  assembler->Bind(&init_k);
  {
    Label done(assembler), init_k_smi(assembler), init_k_heap_num(assembler),
        init_k_zero(assembler), init_k_n(assembler);
    Node* tagged_n = assembler->ToInteger(context, start_from);

    assembler->Branch(assembler->TaggedIsSmi(tagged_n), &init_k_smi,
                      &init_k_heap_num);

    assembler->Bind(&init_k_smi);
    {
      start_from_var.Bind(assembler->SmiUntag(tagged_n));
      assembler->Goto(&init_k_n);
    }

    assembler->Bind(&init_k_heap_num);
    {
      Label do_return_not_found(assembler);
      // This round is lossless for all valid lengths.
      Node* fp_len = assembler->RoundIntPtrToFloat64(len_var.value());
      Node* fp_n = assembler->LoadHeapNumberValue(tagged_n);
      assembler->GotoIf(assembler->Float64GreaterThanOrEqual(fp_n, fp_len),
                        &do_return_not_found);
      start_from_var.Bind(assembler->ChangeInt32ToIntPtr(
          assembler->TruncateFloat64ToWord32(fp_n)));
      assembler->Goto(&init_k_n);

      assembler->Bind(&do_return_not_found);
      {
        index_var.Bind(intptr_zero);
        assembler->Goto(&return_not_found);
      }
    }

    assembler->Bind(&init_k_n);
    {
      Label if_positive(assembler), if_negative(assembler), done(assembler);
      assembler->Branch(
          assembler->IntPtrLessThan(start_from_var.value(), intptr_zero),
          &if_negative, &if_positive);

      assembler->Bind(&if_positive);
      {
        index_var.Bind(start_from_var.value());
        assembler->Goto(&done);
      }

      assembler->Bind(&if_negative);
      {
        index_var.Bind(
            assembler->IntPtrAdd(len_var.value(), start_from_var.value()));
        assembler->Branch(
            assembler->IntPtrLessThan(index_var.value(), intptr_zero),
            &init_k_zero, &done);
      }

      assembler->Bind(&init_k_zero);
      {
        index_var.Bind(intptr_zero);
        assembler->Goto(&done);
      }

      assembler->Bind(&done);
    }
  }

  static int32_t kElementsKind[] = {
      FAST_SMI_ELEMENTS,   FAST_HOLEY_SMI_ELEMENTS, FAST_ELEMENTS,
      FAST_HOLEY_ELEMENTS, FAST_DOUBLE_ELEMENTS,    FAST_HOLEY_DOUBLE_ELEMENTS,
  };

  Label if_smiorobjects(assembler), if_packed_doubles(assembler),
      if_holey_doubles(assembler);
  Label* element_kind_handlers[] = {&if_smiorobjects,   &if_smiorobjects,
                                    &if_smiorobjects,   &if_smiorobjects,
                                    &if_packed_doubles, &if_holey_doubles};

  Node* map = assembler->LoadMap(array);
  Node* elements_kind = assembler->LoadMapElementsKind(map);
  Node* elements = assembler->LoadElements(array);
  assembler->Switch(elements_kind, &return_not_found, kElementsKind,
                    element_kind_handlers, arraysize(kElementsKind));

  assembler->Bind(&if_smiorobjects);
  {
    Variable search_num(assembler, MachineRepresentation::kFloat64);
    Label ident_loop(assembler, &index_var),
        heap_num_loop(assembler, &search_num),
        string_loop(assembler, &index_var), simd_loop(assembler),
        undef_loop(assembler, &index_var), not_smi(assembler),
        not_heap_num(assembler);

    assembler->GotoUnless(assembler->TaggedIsSmi(search_element), &not_smi);
    search_num.Bind(assembler->SmiToFloat64(search_element));
    assembler->Goto(&heap_num_loop);

    assembler->Bind(&not_smi);
    assembler->GotoIf(assembler->WordEqual(search_element, undefined),
                      &undef_loop);
    Node* map = assembler->LoadMap(search_element);
    assembler->GotoIf(assembler->WordNotEqual(map, heap_number_map),
                      &not_heap_num);
    search_num.Bind(assembler->LoadHeapNumberValue(search_element));
    assembler->Goto(&heap_num_loop);

    assembler->Bind(&not_heap_num);
    Node* search_type = assembler->LoadMapInstanceType(map);
    assembler->GotoIf(assembler->IsStringInstanceType(search_type),
                      &string_loop);
    assembler->GotoIf(
        assembler->Word32Equal(search_type,
                               assembler->Int32Constant(SIMD128_VALUE_TYPE)),
        &simd_loop);
    assembler->Goto(&ident_loop);

    assembler->Bind(&ident_loop);
    {
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_not_found);
      Node* element_k = assembler->LoadFixedArrayElement(
          elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS);
      assembler->GotoIf(assembler->WordEqual(element_k, search_element),
                        &return_found);

      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&ident_loop);
    }

    assembler->Bind(&undef_loop);
    {
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_not_found);
      Node* element_k = assembler->LoadFixedArrayElement(
          elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS);
      assembler->GotoIf(assembler->WordEqual(element_k, undefined),
                        &return_found);

      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&undef_loop);
    }

    assembler->Bind(&heap_num_loop);
    {
      Label not_nan_loop(assembler, &index_var);
      assembler->BranchIfFloat64IsNaN(search_num.value(), &return_not_found,
                                      &not_nan_loop);

      assembler->Bind(&not_nan_loop);
      {
        Label continue_loop(assembler), not_smi(assembler);
        assembler->GotoUnless(
            assembler->UintPtrLessThan(index_var.value(), len_var.value()),
            &return_not_found);
        Node* element_k = assembler->LoadFixedArrayElement(
            elements, index_var.value(), 0,
            CodeStubAssembler::INTPTR_PARAMETERS);
        assembler->GotoUnless(assembler->TaggedIsSmi(element_k), &not_smi);
        assembler->Branch(
            assembler->Float64Equal(search_num.value(),
                                    assembler->SmiToFloat64(element_k)),
            &return_found, &continue_loop);

        assembler->Bind(&not_smi);
        assembler->GotoIf(assembler->WordNotEqual(assembler->LoadMap(element_k),
                                                  heap_number_map),
                          &continue_loop);
        assembler->Branch(
            assembler->Float64Equal(search_num.value(),
                                    assembler->LoadHeapNumberValue(element_k)),
            &return_found, &continue_loop);

        assembler->Bind(&continue_loop);
        index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
        assembler->Goto(&not_nan_loop);
      }
    }

    assembler->Bind(&string_loop);
    {
      Label continue_loop(assembler);
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_not_found);
      Node* element_k = assembler->LoadFixedArrayElement(
          elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS);
      assembler->GotoIf(assembler->TaggedIsSmi(element_k), &continue_loop);
      assembler->GotoUnless(assembler->IsStringInstanceType(
                                assembler->LoadInstanceType(element_k)),
                            &continue_loop);

      // TODO(bmeurer): Consider inlining the StringEqual logic here.
      Callable callable = CodeFactory::StringEqual(assembler->isolate());
      Node* result =
          assembler->CallStub(callable, context, search_element, element_k);
      assembler->Branch(
          assembler->WordEqual(assembler->BooleanConstant(true), result),
          &return_found, &continue_loop);

      assembler->Bind(&continue_loop);
      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&string_loop);
    }

    assembler->Bind(&simd_loop);
    {
      Label continue_loop(assembler, &index_var),
          loop_body(assembler, &index_var);
      Node* map = assembler->LoadMap(search_element);

      assembler->Goto(&loop_body);
      assembler->Bind(&loop_body);
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_not_found);

      Node* element_k = assembler->LoadFixedArrayElement(
          elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS);
      assembler->GotoIf(assembler->TaggedIsSmi(element_k), &continue_loop);

      Node* map_k = assembler->LoadMap(element_k);
      assembler->BranchIfSimd128Equal(search_element, map, element_k, map_k,
                                      &return_found, &continue_loop);

      assembler->Bind(&continue_loop);
      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&loop_body);
    }
  }

  assembler->Bind(&if_packed_doubles);
  {
    Label not_nan_loop(assembler, &index_var), search_notnan(assembler);
    Variable search_num(assembler, MachineRepresentation::kFloat64);

    assembler->GotoUnless(assembler->TaggedIsSmi(search_element),
                          &search_notnan);
    search_num.Bind(assembler->SmiToFloat64(search_element));
    assembler->Goto(&not_nan_loop);

    assembler->Bind(&search_notnan);
    assembler->GotoIf(assembler->WordNotEqual(
                          assembler->LoadMap(search_element), heap_number_map),
                      &return_not_found);

    search_num.Bind(assembler->LoadHeapNumberValue(search_element));

    assembler->BranchIfFloat64IsNaN(search_num.value(), &return_not_found,
                                    &not_nan_loop);

    // Search for HeapNumber
    assembler->Bind(&not_nan_loop);
    {
      Label continue_loop(assembler);
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_not_found);
      Node* element_k = assembler->LoadFixedDoubleArrayElement(
          elements, index_var.value(), MachineType::Float64(), 0,
          CodeStubAssembler::INTPTR_PARAMETERS);
      assembler->Branch(assembler->Float64Equal(element_k, search_num.value()),
                        &return_found, &continue_loop);
      assembler->Bind(&continue_loop);
      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&not_nan_loop);
    }
  }

  assembler->Bind(&if_holey_doubles);
  {
    Label not_nan_loop(assembler, &index_var), search_notnan(assembler);
    Variable search_num(assembler, MachineRepresentation::kFloat64);

    assembler->GotoUnless(assembler->TaggedIsSmi(search_element),
                          &search_notnan);
    search_num.Bind(assembler->SmiToFloat64(search_element));
    assembler->Goto(&not_nan_loop);

    assembler->Bind(&search_notnan);
    assembler->GotoIf(assembler->WordNotEqual(
                          assembler->LoadMap(search_element), heap_number_map),
                      &return_not_found);

    search_num.Bind(assembler->LoadHeapNumberValue(search_element));

    assembler->BranchIfFloat64IsNaN(search_num.value(), &return_not_found,
                                    &not_nan_loop);

    // Search for HeapNumber
    assembler->Bind(&not_nan_loop);
    {
      Label continue_loop(assembler);
      assembler->GotoUnless(
          assembler->UintPtrLessThan(index_var.value(), len_var.value()),
          &return_not_found);

      // Load double value or continue if it contains a double hole.
      Node* element_k = assembler->LoadFixedDoubleArrayElement(
          elements, index_var.value(), MachineType::Float64(), 0,
          CodeStubAssembler::INTPTR_PARAMETERS, &continue_loop);

      assembler->Branch(assembler->Float64Equal(element_k, search_num.value()),
                        &return_found, &continue_loop);
      assembler->Bind(&continue_loop);
      index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one));
      assembler->Goto(&not_nan_loop);
    }
  }

  assembler->Bind(&return_found);
  assembler->Return(assembler->ChangeInt32ToTagged(index_var.value()));

  assembler->Bind(&return_not_found);
  assembler->Return(assembler->NumberConstant(-1));

  assembler->Bind(&call_runtime);
  assembler->Return(assembler->CallRuntime(Runtime::kArrayIndexOf, context,
                                           array, search_element, start_from));
}

namespace {

template <IterationKind kIterationKind>
void Generate_ArrayPrototypeIterationMethod(CodeStubAssembler* assembler) {
  typedef compiler::Node Node;
  typedef CodeStubAssembler::Label Label;
  typedef CodeStubAssembler::Variable Variable;

  Node* receiver = assembler->Parameter(0);
  Node* context = assembler->Parameter(3);

  Variable var_array(assembler, MachineRepresentation::kTagged);
  Variable var_map(assembler, MachineRepresentation::kTagged);
  Variable var_type(assembler, MachineRepresentation::kWord32);

  Label if_isnotobject(assembler, Label::kDeferred);
  Label create_array_iterator(assembler);

  assembler->GotoIf(assembler->TaggedIsSmi(receiver), &if_isnotobject);
  var_array.Bind(receiver);
  var_map.Bind(assembler->LoadMap(receiver));
  var_type.Bind(assembler->LoadMapInstanceType(var_map.value()));
  assembler->Branch(assembler->IsJSReceiverInstanceType(var_type.value()),
                    &create_array_iterator, &if_isnotobject);

  assembler->Bind(&if_isnotobject);
  {
    Callable callable = CodeFactory::ToObject(assembler->isolate());
    Node* result = assembler->CallStub(callable, context, receiver);
    var_array.Bind(result);
    var_map.Bind(assembler->LoadMap(result));
    var_type.Bind(assembler->LoadMapInstanceType(var_map.value()));
    assembler->Goto(&create_array_iterator);
  }

  assembler->Bind(&create_array_iterator);
  assembler->Return(assembler->CreateArrayIterator(
      var_array.value(), var_map.value(), var_type.value(), context,
      kIterationKind));
}

}  // namespace

void Builtins::Generate_ArrayPrototypeValues(CodeStubAssembler* assembler) {
  Generate_ArrayPrototypeIterationMethod<IterationKind::kValues>(assembler);
}

void Builtins::Generate_ArrayPrototypeEntries(CodeStubAssembler* assembler) {
  Generate_ArrayPrototypeIterationMethod<IterationKind::kEntries>(assembler);
}

void Builtins::Generate_ArrayPrototypeKeys(CodeStubAssembler* assembler) {
  Generate_ArrayPrototypeIterationMethod<IterationKind::kKeys>(assembler);
}

void Builtins::Generate_ArrayIteratorPrototypeNext(
    CodeStubAssembler* assembler) {
  typedef compiler::Node Node;
  typedef CodeStubAssembler::Label Label;
  typedef CodeStubAssembler::Variable Variable;

  Node* iterator = assembler->Parameter(0);
  Node* context = assembler->Parameter(3);

  Variable var_value(assembler, MachineRepresentation::kTagged);
  Variable var_done(assembler, MachineRepresentation::kTagged);

  // Required, or else `throw_bad_receiver` fails a DCHECK due to these
  // variables not being bound along all paths, despite not being used.
  var_done.Bind(assembler->TrueConstant());
  var_value.Bind(assembler->UndefinedConstant());

  Label throw_bad_receiver(assembler, Label::kDeferred);
  Label set_done(assembler);
  Label allocate_key_result(assembler);
  Label allocate_entry_if_needed(assembler);
  Label allocate_iterator_result(assembler);
  Label generic_values(assembler);

  // If O does not have all of the internal slots of an Array Iterator Instance
  // (22.1.5.3), throw a TypeError exception
  assembler->GotoIf(assembler->TaggedIsSmi(iterator), &throw_bad_receiver);
  Node* instance_type = assembler->LoadInstanceType(iterator);
  assembler->GotoIf(
      assembler->Uint32LessThan(
          assembler->Int32Constant(LAST_ARRAY_ITERATOR_TYPE -
                                   FIRST_ARRAY_ITERATOR_TYPE),
          assembler->Int32Sub(instance_type, assembler->Int32Constant(
                                                 FIRST_ARRAY_ITERATOR_TYPE))),
      &throw_bad_receiver);

  // Let a be O.[[IteratedObject]].
  Node* array = assembler->LoadObjectField(
      iterator, JSArrayIterator::kIteratedObjectOffset);

  // Let index be O.[[ArrayIteratorNextIndex]].
  Node* index =
      assembler->LoadObjectField(iterator, JSArrayIterator::kNextIndexOffset);
  Node* orig_map = assembler->LoadObjectField(
      iterator, JSArrayIterator::kIteratedObjectMapOffset);
  Node* array_map = assembler->LoadMap(array);

  Label if_isfastarray(assembler), if_isnotfastarray(assembler);

  assembler->Branch(assembler->WordEqual(orig_map, array_map), &if_isfastarray,
                    &if_isnotfastarray);

  assembler->Bind(&if_isfastarray);
  {
    CSA_ASSERT(assembler,
               assembler->Word32Equal(assembler->LoadMapInstanceType(array_map),
                                      assembler->Int32Constant(JS_ARRAY_TYPE)));

    Node* length = assembler->LoadObjectField(array, JSArray::kLengthOffset);

    CSA_ASSERT(assembler, assembler->TaggedIsSmi(length));
    CSA_ASSERT(assembler, assembler->TaggedIsSmi(index));

    assembler->GotoUnless(assembler->SmiBelow(index, length), &set_done);

    Node* one = assembler->SmiConstant(Smi::FromInt(1));
    assembler->StoreObjectFieldNoWriteBarrier(
        iterator, JSArrayIterator::kNextIndexOffset,
        assembler->IntPtrAdd(assembler->BitcastTaggedToWord(index),
                             assembler->BitcastTaggedToWord(one)));

    var_done.Bind(assembler->FalseConstant());
    Node* elements = assembler->LoadElements(array);

    static int32_t kInstanceType[] = {
        JS_FAST_ARRAY_KEY_ITERATOR_TYPE,
        JS_FAST_SMI_ARRAY_KEY_VALUE_ITERATOR_TYPE,
        JS_FAST_HOLEY_SMI_ARRAY_KEY_VALUE_ITERATOR_TYPE,
        JS_FAST_ARRAY_KEY_VALUE_ITERATOR_TYPE,
        JS_FAST_HOLEY_ARRAY_KEY_VALUE_ITERATOR_TYPE,
        JS_FAST_DOUBLE_ARRAY_KEY_VALUE_ITERATOR_TYPE,
        JS_FAST_HOLEY_DOUBLE_ARRAY_KEY_VALUE_ITERATOR_TYPE,
        JS_FAST_SMI_ARRAY_VALUE_ITERATOR_TYPE,
        JS_FAST_HOLEY_SMI_ARRAY_VALUE_ITERATOR_TYPE,
        JS_FAST_ARRAY_VALUE_ITERATOR_TYPE,
        JS_FAST_HOLEY_ARRAY_VALUE_ITERATOR_TYPE,
        JS_FAST_DOUBLE_ARRAY_VALUE_ITERATOR_TYPE,
        JS_FAST_HOLEY_DOUBLE_ARRAY_VALUE_ITERATOR_TYPE,
    };

    Label packed_object_values(assembler), holey_object_values(assembler),
        packed_double_values(assembler), holey_double_values(assembler);
    Label* kInstanceTypeHandlers[] = {
        &allocate_key_result,  &packed_object_values, &holey_object_values,
        &packed_object_values, &holey_object_values,  &packed_double_values,
        &holey_double_values,  &packed_object_values, &holey_object_values,
        &packed_object_values, &holey_object_values,  &packed_double_values,
        &holey_double_values};

    assembler->Switch(instance_type, &throw_bad_receiver, kInstanceType,
                      kInstanceTypeHandlers, arraysize(kInstanceType));

    assembler->Bind(&packed_object_values);
    {
      var_value.Bind(assembler->LoadFixedArrayElement(
          elements, index, 0, CodeStubAssembler::SMI_PARAMETERS));
      assembler->Goto(&allocate_entry_if_needed);
    }

    assembler->Bind(&packed_double_values);
    {
      Node* value = assembler->LoadFixedDoubleArrayElement(
          elements, index, MachineType::Float64(), 0,
          CodeStubAssembler::SMI_PARAMETERS);
      var_value.Bind(assembler->AllocateHeapNumberWithValue(value));
      assembler->Goto(&allocate_entry_if_needed);
    }

    assembler->Bind(&holey_object_values);
    {
      // Check the array_protector cell, and take the slow path if it's invalid.
      Node* invalid =
          assembler->SmiConstant(Smi::FromInt(Isolate::kProtectorInvalid));
      Node* cell = assembler->LoadRoot(Heap::kArrayProtectorRootIndex);
      Node* cell_value =
          assembler->LoadObjectField(cell, PropertyCell::kValueOffset);
      assembler->GotoIf(assembler->WordEqual(cell_value, invalid),
                        &generic_values);

      var_value.Bind(assembler->UndefinedConstant());
      Node* value = assembler->LoadFixedArrayElement(
          elements, index, 0, CodeStubAssembler::SMI_PARAMETERS);
      assembler->GotoIf(
          assembler->WordEqual(value, assembler->TheHoleConstant()),
          &allocate_entry_if_needed);
      var_value.Bind(value);
      assembler->Goto(&allocate_entry_if_needed);
    }

    assembler->Bind(&holey_double_values);
    {
      // Check the array_protector cell, and take the slow path if it's invalid.
      Node* invalid =
          assembler->SmiConstant(Smi::FromInt(Isolate::kProtectorInvalid));
      Node* cell = assembler->LoadRoot(Heap::kArrayProtectorRootIndex);
      Node* cell_value =
          assembler->LoadObjectField(cell, PropertyCell::kValueOffset);
      assembler->GotoIf(assembler->WordEqual(cell_value, invalid),
                        &generic_values);

      var_value.Bind(assembler->UndefinedConstant());
      Node* value = assembler->LoadFixedDoubleArrayElement(
          elements, index, MachineType::Float64(), 0,
          CodeStubAssembler::SMI_PARAMETERS, &allocate_entry_if_needed);
      var_value.Bind(assembler->AllocateHeapNumberWithValue(value));
      assembler->Goto(&allocate_entry_if_needed);
    }
  }

  assembler->Bind(&if_isnotfastarray);
  {
    Label if_istypedarray(assembler), if_isgeneric(assembler);

    // If a is undefined, return CreateIterResultObject(undefined, true)
    assembler->GotoIf(
        assembler->WordEqual(array, assembler->UndefinedConstant()),
        &allocate_iterator_result);

    Node* array_type = assembler->LoadInstanceType(array);
    assembler->Branch(
        assembler->Word32Equal(array_type,
                               assembler->Int32Constant(JS_TYPED_ARRAY_TYPE)),
        &if_istypedarray, &if_isgeneric);

    assembler->Bind(&if_isgeneric);
    {
      Label if_wasfastarray(assembler);

      Node* length = nullptr;
      {
        Variable var_length(assembler, MachineRepresentation::kTagged);
        Label if_isarray(assembler), if_isnotarray(assembler), done(assembler);
        assembler->Branch(
            assembler->Word32Equal(array_type,
                                   assembler->Int32Constant(JS_ARRAY_TYPE)),
            &if_isarray, &if_isnotarray);

        assembler->Bind(&if_isarray);
        {
          var_length.Bind(
              assembler->LoadObjectField(array, JSArray::kLengthOffset));

          // Invalidate protector cell if needed
          assembler->Branch(
              assembler->WordNotEqual(orig_map, assembler->UndefinedConstant()),
              &if_wasfastarray, &done);

          assembler->Bind(&if_wasfastarray);
          {
            Label if_invalid(assembler, Label::kDeferred);
            // A fast array iterator transitioned to a slow iterator during
            // iteration. Invalidate fast_array_iteration_prtoector cell to
            // prevent potential deopt loops.
            assembler->StoreObjectFieldNoWriteBarrier(
                iterator, JSArrayIterator::kIteratedObjectMapOffset,
                assembler->UndefinedConstant());
            assembler->GotoIf(
                assembler->Uint32LessThanOrEqual(
                    instance_type, assembler->Int32Constant(
                                       JS_GENERIC_ARRAY_KEY_ITERATOR_TYPE)),
                &done);

            Node* invalid = assembler->SmiConstant(
                Smi::FromInt(Isolate::kProtectorInvalid));
            Node* cell = assembler->LoadRoot(
                Heap::kFastArrayIterationProtectorRootIndex);
            assembler->StoreObjectFieldNoWriteBarrier(cell, Cell::kValueOffset,
                                                      invalid);
            assembler->Goto(&done);
          }
        }

        assembler->Bind(&if_isnotarray);
        {
          Node* length_string = assembler->HeapConstant(
              assembler->isolate()->factory()->length_string());
          Callable get_property =
              CodeFactory::GetProperty(assembler->isolate());
          Node* length =
              assembler->CallStub(get_property, context, array, length_string);
          Callable to_length = CodeFactory::ToLength(assembler->isolate());
          var_length.Bind(assembler->CallStub(to_length, context, length));
          assembler->Goto(&done);
        }

        assembler->Bind(&done);
        length = var_length.value();
      }

      assembler->GotoUnlessNumberLessThan(index, length, &set_done);

      assembler->StoreObjectField(iterator, JSArrayIterator::kNextIndexOffset,
                                  assembler->NumberInc(index));
      var_done.Bind(assembler->FalseConstant());

      assembler->Branch(
          assembler->Uint32LessThanOrEqual(
              instance_type,
              assembler->Int32Constant(JS_GENERIC_ARRAY_KEY_ITERATOR_TYPE)),
          &allocate_key_result, &generic_values);

      assembler->Bind(&generic_values);
      {
        Callable get_property = CodeFactory::GetProperty(assembler->isolate());
        var_value.Bind(
            assembler->CallStub(get_property, context, array, index));
        assembler->Goto(&allocate_entry_if_needed);
      }
    }

    assembler->Bind(&if_istypedarray);
    {
      Node* length = nullptr;
      {
        Variable var_length(assembler, MachineRepresentation::kTagged);
        Label if_isdetached(assembler, Label::kDeferred),
            if_isnotdetached(assembler), done(assembler);

        Node* buffer =
            assembler->LoadObjectField(array, JSTypedArray::kBufferOffset);
        assembler->Branch(assembler->IsDetachedBuffer(buffer), &if_isdetached,
                          &if_isnotdetached);

        assembler->Bind(&if_isnotdetached);
        {
          var_length.Bind(
              assembler->LoadObjectField(array, JSTypedArray::kLengthOffset));
          assembler->Goto(&done);
        }

        assembler->Bind(&if_isdetached);
        {
          // TODO(caitp): If IsDetached(buffer) is true, throw a TypeError, per
          // https://github.com/tc39/ecma262/issues/713
          var_length.Bind(assembler->SmiConstant(Smi::kZero));
          assembler->Goto(&done);
        }

        assembler->Bind(&done);
        length = var_length.value();
      }
      CSA_ASSERT(assembler, assembler->TaggedIsSmi(length));
      CSA_ASSERT(assembler, assembler->TaggedIsSmi(index));

      assembler->GotoUnless(assembler->SmiBelow(index, length), &set_done);

      Node* one = assembler->SmiConstant(Smi::FromInt(1));
      assembler->StoreObjectFieldNoWriteBarrier(
          iterator, JSArrayIterator::kNextIndexOffset,
          assembler->IntPtrAdd(assembler->BitcastTaggedToWord(index),
                               assembler->BitcastTaggedToWord(one)));
      var_done.Bind(assembler->FalseConstant());

      Node* elements = assembler->LoadElements(array);
      Node* base_ptr = assembler->LoadObjectField(
          elements, FixedTypedArrayBase::kBasePointerOffset);
      Node* external_ptr = assembler->LoadObjectField(
          elements, FixedTypedArrayBase::kExternalPointerOffset);
      Node* data_ptr = assembler->IntPtrAdd(base_ptr, external_ptr);

      static int32_t kInstanceType[] = {
          JS_TYPED_ARRAY_KEY_ITERATOR_TYPE,
          JS_UINT8_ARRAY_KEY_VALUE_ITERATOR_TYPE,
          JS_UINT8_CLAMPED_ARRAY_KEY_VALUE_ITERATOR_TYPE,
          JS_INT8_ARRAY_KEY_VALUE_ITERATOR_TYPE,
          JS_UINT16_ARRAY_KEY_VALUE_ITERATOR_TYPE,
          JS_INT16_ARRAY_KEY_VALUE_ITERATOR_TYPE,
          JS_UINT32_ARRAY_KEY_VALUE_ITERATOR_TYPE,
          JS_INT32_ARRAY_KEY_VALUE_ITERATOR_TYPE,
          JS_FLOAT32_ARRAY_KEY_VALUE_ITERATOR_TYPE,
          JS_FLOAT64_ARRAY_KEY_VALUE_ITERATOR_TYPE,
          JS_UINT8_ARRAY_VALUE_ITERATOR_TYPE,
          JS_UINT8_CLAMPED_ARRAY_VALUE_ITERATOR_TYPE,
          JS_INT8_ARRAY_VALUE_ITERATOR_TYPE,
          JS_UINT16_ARRAY_VALUE_ITERATOR_TYPE,
          JS_INT16_ARRAY_VALUE_ITERATOR_TYPE,
          JS_UINT32_ARRAY_VALUE_ITERATOR_TYPE,
          JS_INT32_ARRAY_VALUE_ITERATOR_TYPE,
          JS_FLOAT32_ARRAY_VALUE_ITERATOR_TYPE,
          JS_FLOAT64_ARRAY_VALUE_ITERATOR_TYPE,
      };

      Label uint8_values(assembler), int8_values(assembler),
          uint16_values(assembler), int16_values(assembler),
          uint32_values(assembler), int32_values(assembler),
          float32_values(assembler), float64_values(assembler);
      Label* kInstanceTypeHandlers[] = {
          &allocate_key_result, &uint8_values,  &uint8_values,
          &int8_values,         &uint16_values, &int16_values,
          &uint32_values,       &int32_values,  &float32_values,
          &float64_values,      &uint8_values,  &uint8_values,
          &int8_values,         &uint16_values, &int16_values,
          &uint32_values,       &int32_values,  &float32_values,
          &float64_values,
      };

      var_done.Bind(assembler->FalseConstant());
      assembler->Switch(instance_type, &throw_bad_receiver, kInstanceType,
                        kInstanceTypeHandlers, arraysize(kInstanceType));

      assembler->Bind(&uint8_values);
      {
        Node* value_uint8 = assembler->LoadFixedTypedArrayElement(
            data_ptr, index, UINT8_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS);
        var_value.Bind(assembler->SmiFromWord(value_uint8));
        assembler->Goto(&allocate_entry_if_needed);
      }

      assembler->Bind(&int8_values);
      {
        Node* value_int8 = assembler->LoadFixedTypedArrayElement(
            data_ptr, index, INT8_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS);
        var_value.Bind(assembler->SmiFromWord(value_int8));
        assembler->Goto(&allocate_entry_if_needed);
      }

      assembler->Bind(&uint16_values);
      {
        Node* value_uint16 = assembler->LoadFixedTypedArrayElement(
            data_ptr, index, UINT16_ELEMENTS,
            CodeStubAssembler::SMI_PARAMETERS);
        var_value.Bind(assembler->SmiFromWord(value_uint16));
        assembler->Goto(&allocate_entry_if_needed);
      }

      assembler->Bind(&int16_values);
      {
        Node* value_int16 = assembler->LoadFixedTypedArrayElement(
            data_ptr, index, INT16_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS);
        var_value.Bind(assembler->SmiFromWord(value_int16));
        assembler->Goto(&allocate_entry_if_needed);
      }

      assembler->Bind(&uint32_values);
      {
        Node* value_uint32 = assembler->LoadFixedTypedArrayElement(
            data_ptr, index, UINT32_ELEMENTS,
            CodeStubAssembler::SMI_PARAMETERS);
        var_value.Bind(assembler->ChangeUint32ToTagged(value_uint32));
        assembler->Goto(&allocate_entry_if_needed);
      }
      assembler->Bind(&int32_values);
      {
        Node* value_int32 = assembler->LoadFixedTypedArrayElement(
            data_ptr, index, INT32_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS);
        var_value.Bind(assembler->ChangeInt32ToTagged(value_int32));
        assembler->Goto(&allocate_entry_if_needed);
      }
      assembler->Bind(&float32_values);
      {
        Node* value_float32 = assembler->LoadFixedTypedArrayElement(
            data_ptr, index, FLOAT32_ELEMENTS,
            CodeStubAssembler::SMI_PARAMETERS);
        var_value.Bind(assembler->AllocateHeapNumberWithValue(
            assembler->ChangeFloat32ToFloat64(value_float32)));
        assembler->Goto(&allocate_entry_if_needed);
      }
      assembler->Bind(&float64_values);
      {
        Node* value_float64 = assembler->LoadFixedTypedArrayElement(
            data_ptr, index, FLOAT64_ELEMENTS,
            CodeStubAssembler::SMI_PARAMETERS);
        var_value.Bind(assembler->AllocateHeapNumberWithValue(value_float64));
        assembler->Goto(&allocate_entry_if_needed);
      }
    }
  }

  assembler->Bind(&set_done);
  {
    assembler->StoreObjectFieldNoWriteBarrier(
        iterator, JSArrayIterator::kIteratedObjectOffset,
        assembler->UndefinedConstant());
    assembler->Goto(&allocate_iterator_result);
  }

  assembler->Bind(&allocate_key_result);
  {
    var_value.Bind(index);
    var_done.Bind(assembler->FalseConstant());
    assembler->Goto(&allocate_iterator_result);
  }

  assembler->Bind(&allocate_entry_if_needed);
  {
    assembler->GotoIf(
        assembler->Int32GreaterThan(
            instance_type,
            assembler->Int32Constant(LAST_ARRAY_KEY_VALUE_ITERATOR_TYPE)),
        &allocate_iterator_result);

    Node* elements = assembler->AllocateFixedArray(FAST_ELEMENTS,
                                                   assembler->Int32Constant(2));
    assembler->StoreFixedArrayElement(elements, assembler->Int32Constant(0),
                                      index, SKIP_WRITE_BARRIER);
    assembler->StoreFixedArrayElement(elements, assembler->Int32Constant(1),
                                      var_value.value(), SKIP_WRITE_BARRIER);

    Node* entry = assembler->Allocate(JSArray::kSize);
    Node* map = assembler->LoadContextElement(
        assembler->LoadNativeContext(context),
        Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX);

    assembler->StoreMapNoWriteBarrier(entry, map);
    assembler->StoreObjectFieldRoot(entry, JSArray::kPropertiesOffset,
                                    Heap::kEmptyFixedArrayRootIndex);
    assembler->StoreObjectFieldNoWriteBarrier(entry, JSArray::kElementsOffset,
                                              elements);
    assembler->StoreObjectFieldNoWriteBarrier(
        entry, JSArray::kLengthOffset, assembler->SmiConstant(Smi::FromInt(2)));

    var_value.Bind(entry);
    assembler->Goto(&allocate_iterator_result);
  }

  assembler->Bind(&allocate_iterator_result);
  {
    Node* result = assembler->Allocate(JSIteratorResult::kSize);
    Node* map =
        assembler->LoadContextElement(assembler->LoadNativeContext(context),
                                      Context::ITERATOR_RESULT_MAP_INDEX);
    assembler->StoreMapNoWriteBarrier(result, map);
    assembler->StoreObjectFieldRoot(result, JSIteratorResult::kPropertiesOffset,
                                    Heap::kEmptyFixedArrayRootIndex);
    assembler->StoreObjectFieldRoot(result, JSIteratorResult::kElementsOffset,
                                    Heap::kEmptyFixedArrayRootIndex);
    assembler->StoreObjectFieldNoWriteBarrier(
        result, JSIteratorResult::kValueOffset, var_value.value());
    assembler->StoreObjectFieldNoWriteBarrier(
        result, JSIteratorResult::kDoneOffset, var_done.value());
    assembler->Return(result);
  }

  assembler->Bind(&throw_bad_receiver);
  {
    // The {receiver} is not a valid JSArrayIterator.
    Node* result = assembler->CallRuntime(
        Runtime::kThrowIncompatibleMethodReceiver, context,
        assembler->HeapConstant(assembler->factory()->NewStringFromAsciiChecked(
            "Array Iterator.prototype.next", TENURED)),
        iterator);
    assembler->Return(result);
  }
}

}  // namespace internal
}  // namespace v8