// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/arm64/codegen-arm64.h"
#if V8_TARGET_ARCH_ARM64
#include "src/arm64/simulator-arm64.h"
#include "src/codegen.h"
#include "src/macro-assembler.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
return nullptr;
}
// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.
void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
masm->EnterFrame(StackFrame::INTERNAL);
DCHECK(!masm->has_frame());
masm->set_has_frame(true);
}
void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
masm->LeaveFrame(StackFrame::INTERNAL);
DCHECK(masm->has_frame());
masm->set_has_frame(false);
}
// -------------------------------------------------------------------------
// Code generators
void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
MacroAssembler* masm,
Register receiver,
Register key,
Register value,
Register target_map,
AllocationSiteMode mode,
Label* allocation_memento_found) {
ASM_LOCATION(
"ElementsTransitionGenerator::GenerateMapChangeElementsTransition");
DCHECK(!AreAliased(receiver, key, value, target_map));
if (mode == TRACK_ALLOCATION_SITE) {
DCHECK(allocation_memento_found != NULL);
__ JumpIfJSArrayHasAllocationMemento(receiver, x10, x11,
allocation_memento_found);
}
// Set transitioned map.
__ Str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ RecordWriteField(receiver,
HeapObject::kMapOffset,
target_map,
x10,
kLRHasNotBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
void ElementsTransitionGenerator::GenerateSmiToDouble(
MacroAssembler* masm,
Register receiver,
Register key,
Register value,
Register target_map,
AllocationSiteMode mode,
Label* fail) {
ASM_LOCATION("ElementsTransitionGenerator::GenerateSmiToDouble");
Label gc_required, only_change_map;
Register elements = x4;
Register length = x5;
Register array_size = x6;
Register array = x7;
Register scratch = x6;
// Verify input registers don't conflict with locals.
DCHECK(!AreAliased(receiver, key, value, target_map,
elements, length, array_size, array));
if (mode == TRACK_ALLOCATION_SITE) {
__ JumpIfJSArrayHasAllocationMemento(receiver, x10, x11, fail);
}
// Check for empty arrays, which only require a map transition and no changes
// to the backing store.
__ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ JumpIfRoot(elements, Heap::kEmptyFixedArrayRootIndex, &only_change_map);
__ Push(lr);
__ Ldrsw(length, UntagSmiFieldMemOperand(elements,
FixedArray::kLengthOffset));
// Allocate new FixedDoubleArray.
__ Lsl(array_size, length, kDoubleSizeLog2);
__ Add(array_size, array_size, FixedDoubleArray::kHeaderSize);
__ Allocate(array_size, array, x10, x11, &gc_required, DOUBLE_ALIGNMENT);
// Register array is non-tagged heap object.
// Set the destination FixedDoubleArray's length and map.
Register map_root = array_size;
__ LoadRoot(map_root, Heap::kFixedDoubleArrayMapRootIndex);
__ SmiTag(x11, length);
__ Str(x11, FieldMemOperand(array, FixedDoubleArray::kLengthOffset));
__ Str(map_root, FieldMemOperand(array, HeapObject::kMapOffset));
__ Str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch,
kLRHasBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
// Replace receiver's backing store with newly created FixedDoubleArray.
__ Move(x10, array);
__ Str(array, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ RecordWriteField(receiver, JSObject::kElementsOffset, x10, scratch,
kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
// Prepare for conversion loop.
Register src_elements = x10;
Register dst_elements = x11;
Register dst_end = x12;
__ Add(src_elements, elements, FixedArray::kHeaderSize - kHeapObjectTag);
__ Add(dst_elements, array, FixedDoubleArray::kHeaderSize - kHeapObjectTag);
__ Add(dst_end, dst_elements, Operand(length, LSL, kDoubleSizeLog2));
FPRegister nan_d = d1;
__ Fmov(nan_d, rawbits_to_double(kHoleNanInt64));
Label entry, done;
__ B(&entry);
__ Bind(&only_change_map);
__ Str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch,
kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ B(&done);
// Call into runtime if GC is required.
__ Bind(&gc_required);
__ Pop(lr);
__ B(fail);
// Iterate over the array, copying and coverting smis to doubles. If an
// element is non-smi, write a hole to the destination.
{
Label loop;
__ Bind(&loop);
__ Ldr(x13, MemOperand(src_elements, kPointerSize, PostIndex));
__ SmiUntagToDouble(d0, x13, kSpeculativeUntag);
__ Tst(x13, kSmiTagMask);
__ Fcsel(d0, d0, nan_d, eq);
__ Str(d0, MemOperand(dst_elements, kDoubleSize, PostIndex));
__ Bind(&entry);
__ Cmp(dst_elements, dst_end);
__ B(lt, &loop);
}
__ Pop(lr);
__ Bind(&done);
}
void ElementsTransitionGenerator::GenerateDoubleToObject(
MacroAssembler* masm,
Register receiver,
Register key,
Register value,
Register target_map,
AllocationSiteMode mode,
Label* fail) {
ASM_LOCATION("ElementsTransitionGenerator::GenerateDoubleToObject");
Register elements = x4;
Register array_size = x6;
Register array = x7;
Register length = x5;
// Verify input registers don't conflict with locals.
DCHECK(!AreAliased(receiver, key, value, target_map,
elements, array_size, array, length));
if (mode == TRACK_ALLOCATION_SITE) {
__ JumpIfJSArrayHasAllocationMemento(receiver, x10, x11, fail);
}
// Check for empty arrays, which only require a map transition and no changes
// to the backing store.
Label only_change_map;
__ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ JumpIfRoot(elements, Heap::kEmptyFixedArrayRootIndex, &only_change_map);
__ Push(lr);
// TODO(all): These registers may not need to be pushed. Examine
// RecordWriteStub and check whether it's needed.
__ Push(target_map, receiver, key, value);
__ Ldrsw(length, UntagSmiFieldMemOperand(elements,
FixedArray::kLengthOffset));
// Allocate new FixedArray.
Label gc_required;
__ Mov(array_size, FixedDoubleArray::kHeaderSize);
__ Add(array_size, array_size, Operand(length, LSL, kPointerSizeLog2));
__ Allocate(array_size, array, x10, x11, &gc_required, NO_ALLOCATION_FLAGS);
// Set destination FixedDoubleArray's length and map.
Register map_root = array_size;
__ LoadRoot(map_root, Heap::kFixedArrayMapRootIndex);
__ SmiTag(x11, length);
__ Str(x11, FieldMemOperand(array, FixedDoubleArray::kLengthOffset));
__ Str(map_root, FieldMemOperand(array, HeapObject::kMapOffset));
// Prepare for conversion loop.
Register src_elements = x10;
Register dst_elements = x11;
Register dst_end = x12;
Register the_hole = x14;
__ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
__ Add(src_elements, elements,
FixedDoubleArray::kHeaderSize - kHeapObjectTag);
__ Add(dst_elements, array, FixedArray::kHeaderSize - kHeapObjectTag);
__ Add(dst_end, dst_elements, Operand(length, LSL, kPointerSizeLog2));
// Allocating heap numbers in the loop below can fail and cause a jump to
// gc_required. We can't leave a partly initialized FixedArray behind,
// so pessimistically fill it with holes now.
Label initialization_loop, initialization_loop_entry;
__ B(&initialization_loop_entry);
__ bind(&initialization_loop);
__ Str(the_hole, MemOperand(dst_elements, kPointerSize, PostIndex));
__ bind(&initialization_loop_entry);
__ Cmp(dst_elements, dst_end);
__ B(lt, &initialization_loop);
__ Add(dst_elements, array, FixedArray::kHeaderSize - kHeapObjectTag);
Register heap_num_map = x15;
__ LoadRoot(heap_num_map, Heap::kHeapNumberMapRootIndex);
Label entry;
__ B(&entry);
// Call into runtime if GC is required.
__ Bind(&gc_required);
__ Pop(value, key, receiver, target_map);
__ Pop(lr);
__ B(fail);
{
Label loop, convert_hole;
__ Bind(&loop);
__ Ldr(x13, MemOperand(src_elements, kPointerSize, PostIndex));
__ Cmp(x13, kHoleNanInt64);
__ B(eq, &convert_hole);
// Non-hole double, copy value into a heap number.
Register heap_num = length;
Register scratch = array_size;
Register scratch2 = elements;
__ AllocateHeapNumber(heap_num, &gc_required, scratch, scratch2,
x13, heap_num_map);
__ Mov(x13, dst_elements);
__ Str(heap_num, MemOperand(dst_elements, kPointerSize, PostIndex));
__ RecordWrite(array, x13, heap_num, kLRHasBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
__ B(&entry);
// Replace the-hole NaN with the-hole pointer.
__ Bind(&convert_hole);
__ Str(the_hole, MemOperand(dst_elements, kPointerSize, PostIndex));
__ Bind(&entry);
__ Cmp(dst_elements, dst_end);
__ B(lt, &loop);
}
__ Pop(value, key, receiver, target_map);
// Replace receiver's backing store with newly created and filled FixedArray.
__ Str(array, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ RecordWriteField(receiver, JSObject::kElementsOffset, array, x13,
kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ Pop(lr);
__ Bind(&only_change_map);
__ Str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, x13,
kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
USE(isolate);
DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
// The sequence of instructions that is patched out for aging code is the
// following boilerplate stack-building prologue that is found both in
// FUNCTION and OPTIMIZED_FUNCTION code:
PatchingAssembler patcher(isolate, young_sequence_.start(),
young_sequence_.length() / kInstructionSize);
// The young sequence is the frame setup code for FUNCTION code types. It is
// generated by FullCodeGenerator::Generate.
MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher);
#ifdef DEBUG
const int length = kCodeAgeStubEntryOffset / kInstructionSize;
DCHECK(old_sequence_.length() >= kCodeAgeStubEntryOffset);
PatchingAssembler patcher_old(isolate, old_sequence_.start(), length);
MacroAssembler::EmitCodeAgeSequence(&patcher_old, NULL);
#endif
}
#ifdef DEBUG
bool CodeAgingHelper::IsOld(byte* candidate) const {
return memcmp(candidate, old_sequence_.start(), kCodeAgeStubEntryOffset) == 0;
}
#endif
bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
return MacroAssembler::IsYoungSequence(isolate, sequence);
}
void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
MarkingParity* parity) {
if (IsYoungSequence(isolate, sequence)) {
*age = kNoAgeCodeAge;
*parity = NO_MARKING_PARITY;
} else {
byte* target = sequence + kCodeAgeStubEntryOffset;
Code* stub = GetCodeFromTargetAddress(Memory::Address_at(target));
GetCodeAgeAndParity(stub, age, parity);
}
}
void Code::PatchPlatformCodeAge(Isolate* isolate,
byte* sequence,
Code::Age age,
MarkingParity parity) {
PatchingAssembler patcher(isolate, sequence,
kNoCodeAgeSequenceLength / kInstructionSize);
if (age == kNoAgeCodeAge) {
MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher);
} else {
Code * stub = GetCodeAgeStub(isolate, age, parity);
MacroAssembler::EmitCodeAgeSequence(&patcher, stub);
}
}
void StringCharLoadGenerator::Generate(MacroAssembler* masm,
Register string,
Register index,
Register result,
Label* call_runtime) {
DCHECK(string.Is64Bits() && index.Is32Bits() && result.Is64Bits());
// Fetch the instance type of the receiver into result register.
__ Ldr(result, FieldMemOperand(string, HeapObject::kMapOffset));
__ Ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
// We need special handling for indirect strings.
Label check_sequential;
__ TestAndBranchIfAllClear(result, kIsIndirectStringMask, &check_sequential);
// Dispatch on the indirect string shape: slice or cons.
Label cons_string;
__ TestAndBranchIfAllClear(result, kSlicedNotConsMask, &cons_string);
// Handle slices.
Label indirect_string_loaded;
__ Ldr(result.W(),
UntagSmiFieldMemOperand(string, SlicedString::kOffsetOffset));
__ Ldr(string, FieldMemOperand(string, SlicedString::kParentOffset));
__ Add(index, index, result.W());
__ B(&indirect_string_loaded);
// Handle cons strings.
// Check whether the right hand side is the empty string (i.e. if
// this is really a flat string in a cons string). If that is not
// the case we would rather go to the runtime system now to flatten
// the string.
__ Bind(&cons_string);
__ Ldr(result, FieldMemOperand(string, ConsString::kSecondOffset));
__ JumpIfNotRoot(result, Heap::kempty_stringRootIndex, call_runtime);
// Get the first of the two strings and load its instance type.
__ Ldr(string, FieldMemOperand(string, ConsString::kFirstOffset));
__ Bind(&indirect_string_loaded);
__ Ldr(result, FieldMemOperand(string, HeapObject::kMapOffset));
__ Ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
// Distinguish sequential and external strings. Only these two string
// representations can reach here (slices and flat cons strings have been
// reduced to the underlying sequential or external string).
Label external_string, check_encoding;
__ Bind(&check_sequential);
STATIC_ASSERT(kSeqStringTag == 0);
__ TestAndBranchIfAnySet(result, kStringRepresentationMask, &external_string);
// Prepare sequential strings
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ Add(string, string, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
__ B(&check_encoding);
// Handle external strings.
__ Bind(&external_string);
if (FLAG_debug_code) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
__ Tst(result, kIsIndirectStringMask);
__ Assert(eq, kExternalStringExpectedButNotFound);
}
// Rule out short external strings.
STATIC_ASSERT(kShortExternalStringTag != 0);
// TestAndBranchIfAnySet can emit Tbnz. Do not use it because call_runtime
// can be bound far away in deferred code.
__ Tst(result, kShortExternalStringMask);
__ B(ne, call_runtime);
__ Ldr(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));
Label one_byte, done;
__ Bind(&check_encoding);
STATIC_ASSERT(kTwoByteStringTag == 0);
__ TestAndBranchIfAnySet(result, kStringEncodingMask, &one_byte);
// Two-byte string.
__ Ldrh(result, MemOperand(string, index, SXTW, 1));
__ B(&done);
__ Bind(&one_byte);
// One-byte string.
__ Ldrb(result, MemOperand(string, index, SXTW));
__ Bind(&done);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_ARM64