C++程序  |  3012行  |  83.14 KB

/*
 * Copyright (c) 2001
 *	Fortress Technologies, Inc.  All rights reserved.
 *      Charlie Lenahan (clenahan@fortresstech.com)
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that: (1) source code distributions
 * retain the above copyright notice and this paragraph in its entirety, (2)
 * distributions including binary code include the above copyright notice and
 * this paragraph in its entirety in the documentation or other materials
 * provided with the distribution, and (3) all advertising materials mentioning
 * features or use of this software display the following acknowledgement:
 * ``This product includes software developed by the University of California,
 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
 * the University nor the names of its contributors may be used to endorse
 * or promote products derived from this software without specific prior
 * written permission.
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 */

#define NETDISSECT_REWORKED
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <tcpdump-stdinc.h>

#include <string.h>

#include "interface.h"
#include "addrtoname.h"

#include "extract.h"

#include "cpack.h"


/* Lengths of 802.11 header components. */
#define	IEEE802_11_FC_LEN		2
#define	IEEE802_11_DUR_LEN		2
#define	IEEE802_11_DA_LEN		6
#define	IEEE802_11_SA_LEN		6
#define	IEEE802_11_BSSID_LEN		6
#define	IEEE802_11_RA_LEN		6
#define	IEEE802_11_TA_LEN		6
#define	IEEE802_11_SEQ_LEN		2
#define	IEEE802_11_CTL_LEN		2
#define	IEEE802_11_IV_LEN		3
#define	IEEE802_11_KID_LEN		1

/* Frame check sequence length. */
#define	IEEE802_11_FCS_LEN		4

/* Lengths of beacon components. */
#define	IEEE802_11_TSTAMP_LEN		8
#define	IEEE802_11_BCNINT_LEN		2
#define	IEEE802_11_CAPINFO_LEN		2
#define	IEEE802_11_LISTENINT_LEN	2

#define	IEEE802_11_AID_LEN		2
#define	IEEE802_11_STATUS_LEN		2
#define	IEEE802_11_REASON_LEN		2

/* Length of previous AP in reassocation frame */
#define	IEEE802_11_AP_LEN		6

#define	T_MGMT 0x0  /* management */
#define	T_CTRL 0x1  /* control */
#define	T_DATA 0x2 /* data */
#define	T_RESV 0x3  /* reserved */

#define	ST_ASSOC_REQUEST   	0x0
#define	ST_ASSOC_RESPONSE 	0x1
#define	ST_REASSOC_REQUEST   	0x2
#define	ST_REASSOC_RESPONSE  	0x3
#define	ST_PROBE_REQUEST   	0x4
#define	ST_PROBE_RESPONSE   	0x5
/* RESERVED 			0x6  */
/* RESERVED 			0x7  */
#define	ST_BEACON   		0x8
#define	ST_ATIM			0x9
#define	ST_DISASSOC		0xA
#define	ST_AUTH			0xB
#define	ST_DEAUTH		0xC
#define	ST_ACTION		0xD
/* RESERVED 			0xE  */
/* RESERVED 			0xF  */

static const struct tok st_str[] = {
	{ ST_ASSOC_REQUEST,    "Assoc Request"    },
	{ ST_ASSOC_RESPONSE,   "Assoc Response"   },
	{ ST_REASSOC_REQUEST,  "ReAssoc Request"  },
	{ ST_REASSOC_RESPONSE, "ReAssoc Response" },
	{ ST_PROBE_REQUEST,    "Probe Request"    },
	{ ST_PROBE_RESPONSE,   "Probe Response"   },
	{ ST_BEACON,           "Beacon"           },
	{ ST_ATIM,             "ATIM"             },
	{ ST_DISASSOC,         "Disassociation"   },
	{ ST_AUTH,             "Authentication"   },
	{ ST_DEAUTH,           "DeAuthentication" },
	{ ST_ACTION,           "Action"           },
	{ 0, NULL }
};

#define CTRL_CONTROL_WRAPPER	0x7
#define	CTRL_BAR	0x8
#define	CTRL_BA		0x9
#define	CTRL_PS_POLL	0xA
#define	CTRL_RTS	0xB
#define	CTRL_CTS	0xC
#define	CTRL_ACK	0xD
#define	CTRL_CF_END	0xE
#define	CTRL_END_ACK	0xF

static const struct tok ctrl_str[] = {
	{ CTRL_CONTROL_WRAPPER, "Control Wrapper" },
	{ CTRL_BAR,             "BAR"             },
	{ CTRL_BA,              "BA"              },
	{ CTRL_PS_POLL,         "Power Save-Poll" },
	{ CTRL_RTS,             "Request-To-Send" },
	{ CTRL_CTS,             "Clear-To-Send"   },
	{ CTRL_ACK,             "Acknowledgment"  },
	{ CTRL_CF_END,          "CF-End"          },
	{ CTRL_END_ACK,         "CF-End+CF-Ack"   },
	{ 0, NULL }
};

#define	DATA_DATA			0x0
#define	DATA_DATA_CF_ACK		0x1
#define	DATA_DATA_CF_POLL		0x2
#define	DATA_DATA_CF_ACK_POLL		0x3
#define	DATA_NODATA			0x4
#define	DATA_NODATA_CF_ACK		0x5
#define	DATA_NODATA_CF_POLL		0x6
#define	DATA_NODATA_CF_ACK_POLL		0x7

#define DATA_QOS_DATA			0x8
#define DATA_QOS_DATA_CF_ACK		0x9
#define DATA_QOS_DATA_CF_POLL		0xA
#define DATA_QOS_DATA_CF_ACK_POLL	0xB
#define DATA_QOS_NODATA			0xC
#define DATA_QOS_CF_POLL_NODATA		0xE
#define DATA_QOS_CF_ACK_POLL_NODATA	0xF

/*
 * The subtype field of a data frame is, in effect, composed of 4 flag
 * bits - CF-Ack, CF-Poll, Null (means the frame doesn't actually have
 * any data), and QoS.
 */
#define DATA_FRAME_IS_CF_ACK(x)		((x) & 0x01)
#define DATA_FRAME_IS_CF_POLL(x)	((x) & 0x02)
#define DATA_FRAME_IS_NULL(x)		((x) & 0x04)
#define DATA_FRAME_IS_QOS(x)		((x) & 0x08)

/*
 * Bits in the frame control field.
 */
#define	FC_VERSION(fc)		((fc) & 0x3)
#define	FC_TYPE(fc)		(((fc) >> 2) & 0x3)
#define	FC_SUBTYPE(fc)		(((fc) >> 4) & 0xF)
#define	FC_TO_DS(fc)		((fc) & 0x0100)
#define	FC_FROM_DS(fc)		((fc) & 0x0200)
#define	FC_MORE_FLAG(fc)	((fc) & 0x0400)
#define	FC_RETRY(fc)		((fc) & 0x0800)
#define	FC_POWER_MGMT(fc)	((fc) & 0x1000)
#define	FC_MORE_DATA(fc)	((fc) & 0x2000)
#define	FC_WEP(fc)		((fc) & 0x4000)
#define	FC_ORDER(fc)		((fc) & 0x8000)

struct mgmt_header_t {
	uint16_t	fc;
	uint16_t 	duration;
	uint8_t		da[6];
	uint8_t		sa[6];
	uint8_t		bssid[6];
	uint16_t	seq_ctrl;
};

#define	MGMT_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
			 IEEE802_11_DA_LEN+IEEE802_11_SA_LEN+\
			 IEEE802_11_BSSID_LEN+IEEE802_11_SEQ_LEN)

#define	CAPABILITY_ESS(cap)	((cap) & 0x0001)
#define	CAPABILITY_IBSS(cap)	((cap) & 0x0002)
#define	CAPABILITY_CFP(cap)	((cap) & 0x0004)
#define	CAPABILITY_CFP_REQ(cap)	((cap) & 0x0008)
#define	CAPABILITY_PRIVACY(cap)	((cap) & 0x0010)

struct ssid_t {
	uint8_t		element_id;
	uint8_t		length;
	u_char		ssid[33];  /* 32 + 1 for null */
};

struct rates_t {
	uint8_t		element_id;
	uint8_t		length;
	uint8_t		rate[16];
};

struct challenge_t {
	uint8_t		element_id;
	uint8_t		length;
	uint8_t		text[254]; /* 1-253 + 1 for null */
};

struct fh_t {
	uint8_t		element_id;
	uint8_t		length;
	uint16_t	dwell_time;
	uint8_t		hop_set;
	uint8_t 	hop_pattern;
	uint8_t		hop_index;
};

struct ds_t {
	uint8_t		element_id;
	uint8_t		length;
	uint8_t		channel;
};

struct cf_t {
	uint8_t		element_id;
	uint8_t		length;
	uint8_t		count;
	uint8_t		period;
	uint16_t	max_duration;
	uint16_t	dur_remaing;
};

struct tim_t {
	uint8_t		element_id;
	uint8_t		length;
	uint8_t		count;
	uint8_t		period;
	uint8_t		bitmap_control;
	uint8_t		bitmap[251];
};

#define	E_SSID 		0
#define	E_RATES 	1
#define	E_FH	 	2
#define	E_DS 		3
#define	E_CF	 	4
#define	E_TIM	 	5
#define	E_IBSS 		6
/* reserved 		7 */
/* reserved 		8 */
/* reserved 		9 */
/* reserved 		10 */
/* reserved 		11 */
/* reserved 		12 */
/* reserved 		13 */
/* reserved 		14 */
/* reserved 		15 */
/* reserved 		16 */

#define	E_CHALLENGE 	16
/* reserved 		17 */
/* reserved 		18 */
/* reserved 		19 */
/* reserved 		16 */
/* reserved 		16 */


struct mgmt_body_t {
	uint8_t   	timestamp[IEEE802_11_TSTAMP_LEN];
	uint16_t  	beacon_interval;
	uint16_t 	listen_interval;
	uint16_t 	status_code;
	uint16_t 	aid;
	u_char		ap[IEEE802_11_AP_LEN];
	uint16_t	reason_code;
	uint16_t	auth_alg;
	uint16_t	auth_trans_seq_num;
	int		challenge_present;
	struct challenge_t  challenge;
	uint16_t	capability_info;
	int		ssid_present;
	struct ssid_t	ssid;
	int		rates_present;
	struct rates_t 	rates;
	int		ds_present;
	struct ds_t	ds;
	int		cf_present;
	struct cf_t	cf;
	int		fh_present;
	struct fh_t	fh;
	int		tim_present;
	struct tim_t	tim;
};

struct ctrl_rts_t {
	uint16_t	fc;
	uint16_t	duration;
	uint8_t		ra[6];
	uint8_t		ta[6];
	uint8_t		fcs[4];
};

#define	CTRL_RTS_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
			 IEEE802_11_RA_LEN+IEEE802_11_TA_LEN)

struct ctrl_cts_t {
	uint16_t	fc;
	uint16_t	duration;
	uint8_t		ra[6];
	uint8_t		fcs[4];
};

#define	CTRL_CTS_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)

struct ctrl_ack_t {
	uint16_t	fc;
	uint16_t	duration;
	uint8_t		ra[6];
	uint8_t		fcs[4];
};

#define	CTRL_ACK_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)

struct ctrl_ps_poll_t {
	uint16_t	fc;
	uint16_t	aid;
	uint8_t		bssid[6];
	uint8_t		ta[6];
	uint8_t		fcs[4];
};

#define	CTRL_PS_POLL_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_AID_LEN+\
				 IEEE802_11_BSSID_LEN+IEEE802_11_TA_LEN)

struct ctrl_end_t {
	uint16_t	fc;
	uint16_t	duration;
	uint8_t		ra[6];
	uint8_t		bssid[6];
	uint8_t		fcs[4];
};

#define	CTRL_END_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
			 IEEE802_11_RA_LEN+IEEE802_11_BSSID_LEN)

struct ctrl_end_ack_t {
	uint16_t	fc;
	uint16_t	duration;
	uint8_t		ra[6];
	uint8_t		bssid[6];
	uint8_t		fcs[4];
};

#define	CTRL_END_ACK_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
				 IEEE802_11_RA_LEN+IEEE802_11_BSSID_LEN)

struct ctrl_ba_t {
	uint16_t	fc;
	uint16_t	duration;
	uint8_t		ra[6];
	uint8_t		fcs[4];
};

#define	CTRL_BA_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)

struct ctrl_bar_t {
	uint16_t	fc;
	uint16_t	dur;
	uint8_t		ra[6];
	uint8_t		ta[6];
	uint16_t	ctl;
	uint16_t	seq;
	uint8_t		fcs[4];
};

#define	CTRL_BAR_HDRLEN		(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
				 IEEE802_11_RA_LEN+IEEE802_11_TA_LEN+\
				 IEEE802_11_CTL_LEN+IEEE802_11_SEQ_LEN)

struct meshcntl_t {
	uint8_t		flags;
	uint8_t		ttl;
	uint8_t		seq[4];
	uint8_t		addr4[6];
	uint8_t		addr5[6];
	uint8_t		addr6[6];
};

#define	IV_IV(iv)	((iv) & 0xFFFFFF)
#define	IV_PAD(iv)	(((iv) >> 24) & 0x3F)
#define	IV_KEYID(iv)	(((iv) >> 30) & 0x03)

/* $FreeBSD: src/sys/net80211/ieee80211_radiotap.h,v 1.5 2005/01/22 20:12:05 sam Exp $ */
/* NetBSD: ieee802_11_radio.h,v 1.2 2006/02/26 03:04:03 dyoung Exp  */

/*-
 * Copyright (c) 2003, 2004 David Young.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of David Young may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY DAVID YOUNG ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL DAVID
 * YOUNG BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
 * OF SUCH DAMAGE.
 */

/* A generic radio capture format is desirable. It must be
 * rigidly defined (e.g., units for fields should be given),
 * and easily extensible.
 *
 * The following is an extensible radio capture format. It is
 * based on a bitmap indicating which fields are present.
 *
 * I am trying to describe precisely what the application programmer
 * should expect in the following, and for that reason I tell the
 * units and origin of each measurement (where it applies), or else I
 * use sufficiently weaselly language ("is a monotonically nondecreasing
 * function of...") that I cannot set false expectations for lawyerly
 * readers.
 */

/*
 * The radio capture header precedes the 802.11 header.
 *
 * Note well: all radiotap fields are little-endian.
 */
struct ieee80211_radiotap_header {
	uint8_t		it_version;	/* Version 0. Only increases
					 * for drastic changes,
					 * introduction of compatible
					 * new fields does not count.
					 */
	uint8_t		it_pad;
	uint16_t       it_len;         /* length of the whole
					 * header in bytes, including
					 * it_version, it_pad,
					 * it_len, and data fields.
					 */
	uint32_t       it_present;     /* A bitmap telling which
					 * fields are present. Set bit 31
					 * (0x80000000) to extend the
					 * bitmap by another 32 bits.
					 * Additional extensions are made
					 * by setting bit 31.
					 */
};

/* Name                                 Data type       Units
 * ----                                 ---------       -----
 *
 * IEEE80211_RADIOTAP_TSFT              uint64_t       microseconds
 *
 *      Value in microseconds of the MAC's 64-bit 802.11 Time
 *      Synchronization Function timer when the first bit of the
 *      MPDU arrived at the MAC. For received frames, only.
 *
 * IEEE80211_RADIOTAP_CHANNEL           2 x uint16_t   MHz, bitmap
 *
 *      Tx/Rx frequency in MHz, followed by flags (see below).
 *	Note that IEEE80211_RADIOTAP_XCHANNEL must be used to
 *	represent an HT channel as there is not enough room in
 *	the flags word.
 *
 * IEEE80211_RADIOTAP_FHSS              uint16_t       see below
 *
 *      For frequency-hopping radios, the hop set (first byte)
 *      and pattern (second byte).
 *
 * IEEE80211_RADIOTAP_RATE              uint8_t        500kb/s or index
 *
 *      Tx/Rx data rate.  If bit 0x80 is set then it represents an
 *	an MCS index and not an IEEE rate.
 *
 * IEEE80211_RADIOTAP_DBM_ANTSIGNAL     int8_t          decibels from
 *                                                      one milliwatt (dBm)
 *
 *      RF signal power at the antenna, decibel difference from
 *      one milliwatt.
 *
 * IEEE80211_RADIOTAP_DBM_ANTNOISE      int8_t          decibels from
 *                                                      one milliwatt (dBm)
 *
 *      RF noise power at the antenna, decibel difference from one
 *      milliwatt.
 *
 * IEEE80211_RADIOTAP_DB_ANTSIGNAL      uint8_t        decibel (dB)
 *
 *      RF signal power at the antenna, decibel difference from an
 *      arbitrary, fixed reference.
 *
 * IEEE80211_RADIOTAP_DB_ANTNOISE       uint8_t        decibel (dB)
 *
 *      RF noise power at the antenna, decibel difference from an
 *      arbitrary, fixed reference point.
 *
 * IEEE80211_RADIOTAP_LOCK_QUALITY      uint16_t       unitless
 *
 *      Quality of Barker code lock. Unitless. Monotonically
 *      nondecreasing with "better" lock strength. Called "Signal
 *      Quality" in datasheets.  (Is there a standard way to measure
 *      this?)
 *
 * IEEE80211_RADIOTAP_TX_ATTENUATION    uint16_t       unitless
 *
 *      Transmit power expressed as unitless distance from max
 *      power set at factory calibration.  0 is max power.
 *      Monotonically nondecreasing with lower power levels.
 *
 * IEEE80211_RADIOTAP_DB_TX_ATTENUATION uint16_t       decibels (dB)
 *
 *      Transmit power expressed as decibel distance from max power
 *      set at factory calibration.  0 is max power.  Monotonically
 *      nondecreasing with lower power levels.
 *
 * IEEE80211_RADIOTAP_DBM_TX_POWER      int8_t          decibels from
 *                                                      one milliwatt (dBm)
 *
 *      Transmit power expressed as dBm (decibels from a 1 milliwatt
 *      reference). This is the absolute power level measured at
 *      the antenna port.
 *
 * IEEE80211_RADIOTAP_FLAGS             uint8_t        bitmap
 *
 *      Properties of transmitted and received frames. See flags
 *      defined below.
 *
 * IEEE80211_RADIOTAP_ANTENNA           uint8_t        antenna index
 *
 *      Unitless indication of the Rx/Tx antenna for this packet.
 *      The first antenna is antenna 0.
 *
 * IEEE80211_RADIOTAP_RX_FLAGS          uint16_t       bitmap
 *
 *     Properties of received frames. See flags defined below.
 *
 * IEEE80211_RADIOTAP_XCHANNEL          uint32_t	bitmap
 *					uint16_t	MHz
 *					uint8_t		channel number
 *					uint8_t		.5 dBm
 *
 *	Extended channel specification: flags (see below) followed by
 *	frequency in MHz, the corresponding IEEE channel number, and
 *	finally the maximum regulatory transmit power cap in .5 dBm
 *	units.  This property supersedes IEEE80211_RADIOTAP_CHANNEL
 *	and only one of the two should be present.
 *
 * IEEE80211_RADIOTAP_MCS		uint8_t		known
 *					uint8_t		flags
 *					uint8_t		mcs
 *
 *	Bitset indicating which fields have known values, followed
 *	by bitset of flag values, followed by the MCS rate index as
 *	in IEEE 802.11n.
 *
 * IEEE80211_RADIOTAP_VENDOR_NAMESPACE
 *					uint8_t  OUI[3]
 *                                   uint8_t  subspace
 *                                   uint16_t length
 *
 *     The Vendor Namespace Field contains three sub-fields. The first
 *     sub-field is 3 bytes long. It contains the vendor's IEEE 802
 *     Organizationally Unique Identifier (OUI). The fourth byte is a
 *     vendor-specific "namespace selector."
 *
 */
enum ieee80211_radiotap_type {
	IEEE80211_RADIOTAP_TSFT = 0,
	IEEE80211_RADIOTAP_FLAGS = 1,
	IEEE80211_RADIOTAP_RATE = 2,
	IEEE80211_RADIOTAP_CHANNEL = 3,
	IEEE80211_RADIOTAP_FHSS = 4,
	IEEE80211_RADIOTAP_DBM_ANTSIGNAL = 5,
	IEEE80211_RADIOTAP_DBM_ANTNOISE = 6,
	IEEE80211_RADIOTAP_LOCK_QUALITY = 7,
	IEEE80211_RADIOTAP_TX_ATTENUATION = 8,
	IEEE80211_RADIOTAP_DB_TX_ATTENUATION = 9,
	IEEE80211_RADIOTAP_DBM_TX_POWER = 10,
	IEEE80211_RADIOTAP_ANTENNA = 11,
	IEEE80211_RADIOTAP_DB_ANTSIGNAL = 12,
	IEEE80211_RADIOTAP_DB_ANTNOISE = 13,
	IEEE80211_RADIOTAP_RX_FLAGS = 14,
	/* NB: gap for netbsd definitions */
	IEEE80211_RADIOTAP_XCHANNEL = 18,
	IEEE80211_RADIOTAP_MCS = 19,
	IEEE80211_RADIOTAP_NAMESPACE = 29,
	IEEE80211_RADIOTAP_VENDOR_NAMESPACE = 30,
	IEEE80211_RADIOTAP_EXT = 31
};

/* channel attributes */
#define	IEEE80211_CHAN_TURBO	0x00010	/* Turbo channel */
#define	IEEE80211_CHAN_CCK	0x00020	/* CCK channel */
#define	IEEE80211_CHAN_OFDM	0x00040	/* OFDM channel */
#define	IEEE80211_CHAN_2GHZ	0x00080	/* 2 GHz spectrum channel. */
#define	IEEE80211_CHAN_5GHZ	0x00100	/* 5 GHz spectrum channel */
#define	IEEE80211_CHAN_PASSIVE	0x00200	/* Only passive scan allowed */
#define	IEEE80211_CHAN_DYN	0x00400	/* Dynamic CCK-OFDM channel */
#define	IEEE80211_CHAN_GFSK	0x00800	/* GFSK channel (FHSS PHY) */
#define	IEEE80211_CHAN_GSM	0x01000	/* 900 MHz spectrum channel */
#define	IEEE80211_CHAN_STURBO	0x02000	/* 11a static turbo channel only */
#define	IEEE80211_CHAN_HALF	0x04000	/* Half rate channel */
#define	IEEE80211_CHAN_QUARTER	0x08000	/* Quarter rate channel */
#define	IEEE80211_CHAN_HT20	0x10000	/* HT 20 channel */
#define	IEEE80211_CHAN_HT40U	0x20000	/* HT 40 channel w/ ext above */
#define	IEEE80211_CHAN_HT40D	0x40000	/* HT 40 channel w/ ext below */

/* Useful combinations of channel characteristics, borrowed from Ethereal */
#define IEEE80211_CHAN_A \
        (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
#define IEEE80211_CHAN_B \
        (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
#define IEEE80211_CHAN_G \
        (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)
#define IEEE80211_CHAN_TA \
        (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_TURBO)
#define IEEE80211_CHAN_TG \
        (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN  | IEEE80211_CHAN_TURBO)


/* For IEEE80211_RADIOTAP_FLAGS */
#define	IEEE80211_RADIOTAP_F_CFP	0x01	/* sent/received
						 * during CFP
						 */
#define	IEEE80211_RADIOTAP_F_SHORTPRE	0x02	/* sent/received
						 * with short
						 * preamble
						 */
#define	IEEE80211_RADIOTAP_F_WEP	0x04	/* sent/received
						 * with WEP encryption
						 */
#define	IEEE80211_RADIOTAP_F_FRAG	0x08	/* sent/received
						 * with fragmentation
						 */
#define	IEEE80211_RADIOTAP_F_FCS	0x10	/* frame includes FCS */
#define	IEEE80211_RADIOTAP_F_DATAPAD	0x20	/* frame has padding between
						 * 802.11 header and payload
						 * (to 32-bit boundary)
						 */
#define	IEEE80211_RADIOTAP_F_BADFCS	0x40	/* does not pass FCS check */

/* For IEEE80211_RADIOTAP_RX_FLAGS */
#define IEEE80211_RADIOTAP_F_RX_BADFCS	0x0001	/* frame failed crc check */
#define IEEE80211_RADIOTAP_F_RX_PLCP_CRC	0x0002	/* frame failed PLCP CRC check */

/* For IEEE80211_RADIOTAP_MCS known */
#define IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN		0x01
#define IEEE80211_RADIOTAP_MCS_MCS_INDEX_KNOWN		0x02	/* MCS index field */
#define IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN	0x04
#define IEEE80211_RADIOTAP_MCS_HT_FORMAT_KNOWN		0x08
#define IEEE80211_RADIOTAP_MCS_FEC_TYPE_KNOWN		0x10
#define IEEE80211_RADIOTAP_MCS_STBC_KNOWN		0x20

/* For IEEE80211_RADIOTAP_MCS flags */
#define IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK	0x03
#define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20	0
#define IEEE80211_RADIOTAP_MCS_BANDWIDTH_40	1
#define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20L	2
#define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20U	3
#define IEEE80211_RADIOTAP_MCS_SHORT_GI		0x04 /* short guard interval */
#define IEEE80211_RADIOTAP_MCS_HT_GREENFIELD	0x08
#define IEEE80211_RADIOTAP_MCS_FEC_LDPC		0x10
#define IEEE80211_RADIOTAP_MCS_STBC_MASK	0x60
#define		IEEE80211_RADIOTAP_MCS_STBC_1	1
#define		IEEE80211_RADIOTAP_MCS_STBC_2	2
#define		IEEE80211_RADIOTAP_MCS_STBC_3	3
#define IEEE80211_RADIOTAP_MCS_STBC_SHIFT	5

static const char tstr[] = "[|802.11]";

/* Radiotap state */
/*  This is used to save state when parsing/processing parameters */
struct radiotap_state
{
	uint32_t	present;

	uint8_t		rate;
};

#define PRINT_SSID(p) \
	if (p.ssid_present) { \
		ND_PRINT((ndo, " (")); \
		fn_print(ndo, p.ssid.ssid, NULL); \
		ND_PRINT((ndo, ")")); \
	}

#define PRINT_RATE(_sep, _r, _suf) \
	ND_PRINT((ndo, "%s%2.1f%s", _sep, (.5 * ((_r) & 0x7f)), _suf))
#define PRINT_RATES(p) \
	if (p.rates_present) { \
		int z; \
		const char *sep = " ["; \
		for (z = 0; z < p.rates.length ; z++) { \
			PRINT_RATE(sep, p.rates.rate[z], \
				(p.rates.rate[z] & 0x80 ? "*" : "")); \
			sep = " "; \
		} \
		if (p.rates.length != 0) \
			ND_PRINT((ndo, " Mbit]")); \
	}

#define PRINT_DS_CHANNEL(p) \
	if (p.ds_present) \
		ND_PRINT((ndo, " CH: %u", p.ds.channel)); \
	ND_PRINT((ndo, "%s", \
	    CAPABILITY_PRIVACY(p.capability_info) ? ", PRIVACY" : ""));

#define MAX_MCS_INDEX	76

/*
 * Indices are:
 *
 *	the MCS index (0-76);
 *
 *	0 for 20 MHz, 1 for 40 MHz;
 *
 *	0 for a long guard interval, 1 for a short guard interval.
 */
static const float ieee80211_float_htrates[MAX_MCS_INDEX+1][2][2] = {
	/* MCS  0  */
	{	/* 20 Mhz */ {    6.5,		/* SGI */    7.2, },
		/* 40 Mhz */ {   13.5,		/* SGI */   15.0, },
	},

	/* MCS  1  */
	{	/* 20 Mhz */ {   13.0,		/* SGI */   14.4, },
		/* 40 Mhz */ {   27.0,		/* SGI */   30.0, },
	},

	/* MCS  2  */
	{	/* 20 Mhz */ {   19.5,		/* SGI */   21.7, },
		/* 40 Mhz */ {   40.5,		/* SGI */   45.0, },
	},

	/* MCS  3  */
	{	/* 20 Mhz */ {   26.0,		/* SGI */   28.9, },
		/* 40 Mhz */ {   54.0,		/* SGI */   60.0, },
	},

	/* MCS  4  */
	{	/* 20 Mhz */ {   39.0,		/* SGI */   43.3, },
		/* 40 Mhz */ {   81.0,		/* SGI */   90.0, },
	},

	/* MCS  5  */
	{	/* 20 Mhz */ {   52.0,		/* SGI */   57.8, },
		/* 40 Mhz */ {  108.0,		/* SGI */  120.0, },
	},

	/* MCS  6  */
	{	/* 20 Mhz */ {   58.5,		/* SGI */   65.0, },
		/* 40 Mhz */ {  121.5,		/* SGI */  135.0, },
	},

	/* MCS  7  */
	{	/* 20 Mhz */ {   65.0,		/* SGI */   72.2, },
		/* 40 Mhz */ {   135.0,		/* SGI */  150.0, },
	},

	/* MCS  8  */
	{	/* 20 Mhz */ {   13.0,		/* SGI */   14.4, },
		/* 40 Mhz */ {   27.0,		/* SGI */   30.0, },
	},

	/* MCS  9  */
	{	/* 20 Mhz */ {   26.0,		/* SGI */   28.9, },
		/* 40 Mhz */ {   54.0,		/* SGI */   60.0, },
	},

	/* MCS 10  */
	{	/* 20 Mhz */ {   39.0,		/* SGI */   43.3, },
		/* 40 Mhz */ {   81.0,		/* SGI */   90.0, },
	},

	/* MCS 11  */
	{	/* 20 Mhz */ {   52.0,		/* SGI */   57.8, },
		/* 40 Mhz */ {  108.0,		/* SGI */  120.0, },
	},

	/* MCS 12  */
	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
	},

	/* MCS 13  */
	{	/* 20 Mhz */ {  104.0,		/* SGI */  115.6, },
		/* 40 Mhz */ {  216.0,		/* SGI */  240.0, },
	},

	/* MCS 14  */
	{	/* 20 Mhz */ {  117.0,		/* SGI */  130.0, },
		/* 40 Mhz */ {  243.0,		/* SGI */  270.0, },
	},

	/* MCS 15  */
	{	/* 20 Mhz */ {  130.0,		/* SGI */  144.4, },
		/* 40 Mhz */ {  270.0,		/* SGI */  300.0, },
	},

	/* MCS 16  */
	{	/* 20 Mhz */ {   19.5,		/* SGI */   21.7, },
		/* 40 Mhz */ {   40.5,		/* SGI */   45.0, },
	},

	/* MCS 17  */
	{	/* 20 Mhz */ {   39.0,		/* SGI */   43.3, },
		/* 40 Mhz */ {   81.0,		/* SGI */   90.0, },
	},

	/* MCS 18  */
	{	/* 20 Mhz */ {   58.5,		/* SGI */   65.0, },
		/* 40 Mhz */ {  121.5,		/* SGI */  135.0, },
	},

	/* MCS 19  */
	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
	},

	/* MCS 20  */
	{	/* 20 Mhz */ {  117.0,		/* SGI */  130.0, },
		/* 40 Mhz */ {  243.0,		/* SGI */  270.0, },
	},

	/* MCS 21  */
	{	/* 20 Mhz */ {  156.0,		/* SGI */  173.3, },
		/* 40 Mhz */ {  324.0,		/* SGI */  360.0, },
	},

	/* MCS 22  */
	{	/* 20 Mhz */ {  175.5,		/* SGI */  195.0, },
		/* 40 Mhz */ {  364.5,		/* SGI */  405.0, },
	},

	/* MCS 23  */
	{	/* 20 Mhz */ {  195.0,		/* SGI */  216.7, },
		/* 40 Mhz */ {  405.0,		/* SGI */  450.0, },
	},

	/* MCS 24  */
	{	/* 20 Mhz */ {   26.0,		/* SGI */   28.9, },
		/* 40 Mhz */ {   54.0,		/* SGI */   60.0, },
	},

	/* MCS 25  */
	{	/* 20 Mhz */ {   52.0,		/* SGI */   57.8, },
		/* 40 Mhz */ {  108.0,		/* SGI */  120.0, },
	},

	/* MCS 26  */
	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
	},

	/* MCS 27  */
	{	/* 20 Mhz */ {  104.0,		/* SGI */  115.6, },
		/* 40 Mhz */ {  216.0,		/* SGI */  240.0, },
	},

	/* MCS 28  */
	{	/* 20 Mhz */ {  156.0,		/* SGI */  173.3, },
		/* 40 Mhz */ {  324.0,		/* SGI */  360.0, },
	},

	/* MCS 29  */
	{	/* 20 Mhz */ {  208.0,		/* SGI */  231.1, },
		/* 40 Mhz */ {  432.0,		/* SGI */  480.0, },
	},

	/* MCS 30  */
	{	/* 20 Mhz */ {  234.0,		/* SGI */  260.0, },
		/* 40 Mhz */ {  486.0,		/* SGI */  540.0, },
	},

	/* MCS 31  */
	{	/* 20 Mhz */ {  260.0,		/* SGI */  288.9, },
		/* 40 Mhz */ {  540.0,		/* SGI */  600.0, },
	},

	/* MCS 32  */
	{	/* 20 Mhz */ {    0.0,		/* SGI */    0.0, }, /* not valid */
		/* 40 Mhz */ {    6.0,		/* SGI */    6.7, },
	},

	/* MCS 33  */
	{	/* 20 Mhz */ {   39.0,		/* SGI */   43.3, },
		/* 40 Mhz */ {   81.0,		/* SGI */   90.0, },
	},

	/* MCS 34  */
	{	/* 20 Mhz */ {   52.0,		/* SGI */   57.8, },
		/* 40 Mhz */ {  108.0,		/* SGI */  120.0, },
	},

	/* MCS 35  */
	{	/* 20 Mhz */ {   65.0,		/* SGI */   72.2, },
		/* 40 Mhz */ {  135.0,		/* SGI */  150.0, },
	},

	/* MCS 36  */
	{	/* 20 Mhz */ {   58.5,		/* SGI */   65.0, },
		/* 40 Mhz */ {  121.5,		/* SGI */  135.0, },
	},

	/* MCS 37  */
	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
	},

	/* MCS 38  */
	{	/* 20 Mhz */ {   97.5,		/* SGI */  108.3, },
		/* 40 Mhz */ {  202.5,		/* SGI */  225.0, },
	},

	/* MCS 39  */
	{	/* 20 Mhz */ {   52.0,		/* SGI */   57.8, },
		/* 40 Mhz */ {  108.0,		/* SGI */  120.0, },
	},

	/* MCS 40  */
	{	/* 20 Mhz */ {   65.0,		/* SGI */   72.2, },
		/* 40 Mhz */ {  135.0,		/* SGI */  150.0, },
	},

	/* MCS 41  */
	{	/* 20 Mhz */ {   65.0,		/* SGI */   72.2, },
		/* 40 Mhz */ {  135.0,		/* SGI */  150.0, },
	},

	/* MCS 42  */
	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
	},

	/* MCS 43  */
	{	/* 20 Mhz */ {   91.0,		/* SGI */  101.1, },
		/* 40 Mhz */ {  189.0,		/* SGI */  210.0, },
	},

	/* MCS 44  */
	{	/* 20 Mhz */ {   91.0,		/* SGI */  101.1, },
		/* 40 Mhz */ {  189.0,		/* SGI */  210.0, },
	},

	/* MCS 45  */
	{	/* 20 Mhz */ {  104.0,		/* SGI */  115.6, },
		/* 40 Mhz */ {  216.0,		/* SGI */  240.0, },
	},

	/* MCS 46  */
	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
	},

	/* MCS 47  */
	{	/* 20 Mhz */ {   97.5,		/* SGI */  108.3, },
		/* 40 Mhz */ {  202.5,		/* SGI */  225.0, },
	},

	/* MCS 48  */
	{	/* 20 Mhz */ {   97.5,		/* SGI */  108.3, },
		/* 40 Mhz */ {  202.5,		/* SGI */  225.0, },
	},

	/* MCS 49  */
	{	/* 20 Mhz */ {  117.0,		/* SGI */  130.0, },
		/* 40 Mhz */ {  243.0,		/* SGI */  270.0, },
	},

	/* MCS 50  */
	{	/* 20 Mhz */ {  136.5,		/* SGI */  151.7, },
		/* 40 Mhz */ {  283.5,		/* SGI */  315.0, },
	},

	/* MCS 51  */
	{	/* 20 Mhz */ {  136.5,		/* SGI */  151.7, },
		/* 40 Mhz */ {  283.5,		/* SGI */  315.0, },
	},

	/* MCS 52  */
	{	/* 20 Mhz */ {  156.0,		/* SGI */  173.3, },
		/* 40 Mhz */ {  324.0,		/* SGI */  360.0, },
	},

	/* MCS 53  */
	{	/* 20 Mhz */ {   65.0,		/* SGI */   72.2, },
		/* 40 Mhz */ {  135.0,		/* SGI */  150.0, },
	},

	/* MCS 54  */
	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
	},

	/* MCS 55  */
	{	/* 20 Mhz */ {   91.0,		/* SGI */  101.1, },
		/* 40 Mhz */ {  189.0,		/* SGI */  210.0, },
	},

	/* MCS 56  */
	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
	},

	/* MCS 57  */
	{	/* 20 Mhz */ {   91.0,		/* SGI */  101.1, },
		/* 40 Mhz */ {  189.0,		/* SGI */  210.0, },
	},

	/* MCS 58  */
	{	/* 20 Mhz */ {  104.0,		/* SGI */  115.6, },
		/* 40 Mhz */ {  216.0,		/* SGI */  240.0, },
	},

	/* MCS 59  */
	{	/* 20 Mhz */ {  117.0,		/* SGI */  130.0, },
		/* 40 Mhz */ {  243.0,		/* SGI */  270.0, },
	},

	/* MCS 60  */
	{	/* 20 Mhz */ {  104.0,		/* SGI */  115.6, },
		/* 40 Mhz */ {  216.0,		/* SGI */  240.0, },
	},

	/* MCS 61  */
	{	/* 20 Mhz */ {  117.0,		/* SGI */  130.0, },
		/* 40 Mhz */ {  243.0,		/* SGI */  270.0, },
	},

	/* MCS 62  */
	{	/* 20 Mhz */ {  130.0,		/* SGI */  144.4, },
		/* 40 Mhz */ {  270.0,		/* SGI */  300.0, },
	},

	/* MCS 63  */
	{	/* 20 Mhz */ {  130.0,		/* SGI */  144.4, },
		/* 40 Mhz */ {  270.0,		/* SGI */  300.0, },
	},

	/* MCS 64  */
	{	/* 20 Mhz */ {  143.0,		/* SGI */  158.9, },
		/* 40 Mhz */ {  297.0,		/* SGI */  330.0, },
	},

	/* MCS 65  */
	{	/* 20 Mhz */ {   97.5,		/* SGI */  108.3, },
		/* 40 Mhz */ {  202.5,		/* SGI */  225.0, },
	},

	/* MCS 66  */
	{	/* 20 Mhz */ {  117.0,		/* SGI */  130.0, },
		/* 40 Mhz */ {  243.0,		/* SGI */  270.0, },
	},

	/* MCS 67  */
	{	/* 20 Mhz */ {  136.5,		/* SGI */  151.7, },
		/* 40 Mhz */ {  283.5,		/* SGI */  315.0, },
	},

	/* MCS 68  */
	{	/* 20 Mhz */ {  117.0,		/* SGI */  130.0, },
		/* 40 Mhz */ {  243.0,		/* SGI */  270.0, },
	},

	/* MCS 69  */
	{	/* 20 Mhz */ {  136.5,		/* SGI */  151.7, },
		/* 40 Mhz */ {  283.5,		/* SGI */  315.0, },
	},

	/* MCS 70  */
	{	/* 20 Mhz */ {  156.0,		/* SGI */  173.3, },
		/* 40 Mhz */ {  324.0,		/* SGI */  360.0, },
	},

	/* MCS 71  */
	{	/* 20 Mhz */ {  175.5,		/* SGI */  195.0, },
		/* 40 Mhz */ {  364.5,		/* SGI */  405.0, },
	},

	/* MCS 72  */
	{	/* 20 Mhz */ {  156.0,		/* SGI */  173.3, },
		/* 40 Mhz */ {  324.0,		/* SGI */  360.0, },
	},

	/* MCS 73  */
	{	/* 20 Mhz */ {  175.5,		/* SGI */  195.0, },
		/* 40 Mhz */ {  364.5,		/* SGI */  405.0, },
	},

	/* MCS 74  */
	{	/* 20 Mhz */ {  195.0,		/* SGI */  216.7, },
		/* 40 Mhz */ {  405.0,		/* SGI */  450.0, },
	},

	/* MCS 75  */
	{	/* 20 Mhz */ {  195.0,		/* SGI */  216.7, },
		/* 40 Mhz */ {  405.0,		/* SGI */  450.0, },
	},

	/* MCS 76  */
	{	/* 20 Mhz */ {  214.5,		/* SGI */  238.3, },
		/* 40 Mhz */ {  445.5,		/* SGI */  495.0, },
	},
};

static const char *auth_alg_text[]={"Open System","Shared Key","EAP"};
#define NUM_AUTH_ALGS	(sizeof auth_alg_text / sizeof auth_alg_text[0])

static const char *status_text[] = {
	"Successful",						/*  0 */
	"Unspecified failure",					/*  1 */
	"Reserved",						/*  2 */
	"Reserved",						/*  3 */
	"Reserved",						/*  4 */
	"Reserved",						/*  5 */
	"Reserved",						/*  6 */
	"Reserved",						/*  7 */
	"Reserved",						/*  8 */
	"Reserved",						/*  9 */
	"Cannot Support all requested capabilities in the Capability "
	  "Information field",	  				/* 10 */
	"Reassociation denied due to inability to confirm that association "
	  "exists",						/* 11 */
	"Association denied due to reason outside the scope of the "
	  "standard",						/* 12 */
	"Responding station does not support the specified authentication "
	  "algorithm ",						/* 13 */
	"Received an Authentication frame with authentication transaction "
	  "sequence number out of expected sequence",		/* 14 */
	"Authentication rejected because of challenge failure",	/* 15 */
	"Authentication rejected due to timeout waiting for next frame in "
	  "sequence",	  					/* 16 */
	"Association denied because AP is unable to handle additional"
	  "associated stations",	  			/* 17 */
	"Association denied due to requesting station not supporting all of "
	  "the data rates in BSSBasicRateSet parameter",	/* 18 */
	"Association denied due to requesting station not supporting "
	  "short preamble operation",				/* 19 */
	"Association denied due to requesting station not supporting "
	  "PBCC encoding",					/* 20 */
	"Association denied due to requesting station not supporting "
	  "channel agility",					/* 21 */
	"Association request rejected because Spectrum Management "
	  "capability is required",				/* 22 */
	"Association request rejected because the information in the "
	  "Power Capability element is unacceptable",		/* 23 */
	"Association request rejected because the information in the "
	  "Supported Channels element is unacceptable",		/* 24 */
	"Association denied due to requesting station not supporting "
	  "short slot operation",				/* 25 */
	"Association denied due to requesting station not supporting "
	  "DSSS-OFDM operation",				/* 26 */
	"Association denied because the requested STA does not support HT "
	  "features",						/* 27 */
	"Reserved",						/* 28 */
	"Association denied because the requested STA does not support "
	  "the PCO transition time required by the AP",		/* 29 */
	"Reserved",						/* 30 */
	"Reserved",						/* 31 */
	"Unspecified, QoS-related failure",			/* 32 */
	"Association denied due to QAP having insufficient bandwidth "
	  "to handle another QSTA",				/* 33 */
	"Association denied due to excessive frame loss rates and/or "
	  "poor conditions on current operating channel",	/* 34 */
	"Association (with QBSS) denied due to requesting station not "
	  "supporting the QoS facility",			/* 35 */
	"Association denied due to requesting station not supporting "
	  "Block Ack",						/* 36 */
	"The request has been declined",			/* 37 */
	"The request has not been successful as one or more parameters "
	  "have invalid values",				/* 38 */
	"The TS has not been created because the request cannot be honored. "
	  "Try again with the suggested changes to the TSPEC",	/* 39 */
	"Invalid Information Element",				/* 40 */
	"Group Cipher is not valid",				/* 41 */
	"Pairwise Cipher is not valid",				/* 42 */
	"AKMP is not valid",					/* 43 */
	"Unsupported RSN IE version",				/* 44 */
	"Invalid RSN IE Capabilities",				/* 45 */
	"Cipher suite is rejected per security policy",		/* 46 */
	"The TS has not been created. However, the HC may be capable of "
	  "creating a TS, in response to a request, after the time indicated "
	  "in the TS Delay element",				/* 47 */
	"Direct Link is not allowed in the BSS by policy",	/* 48 */
	"Destination STA is not present within this QBSS.",	/* 49 */
	"The Destination STA is not a QSTA.",			/* 50 */

};
#define NUM_STATUSES	(sizeof status_text / sizeof status_text[0])

static const char *reason_text[] = {
	"Reserved",						/* 0 */
	"Unspecified reason",					/* 1 */
	"Previous authentication no longer valid",  		/* 2 */
	"Deauthenticated because sending station is leaving (or has left) "
	  "IBSS or ESS",					/* 3 */
	"Disassociated due to inactivity",			/* 4 */
	"Disassociated because AP is unable to handle all currently "
	  " associated stations",				/* 5 */
	"Class 2 frame received from nonauthenticated station", /* 6 */
	"Class 3 frame received from nonassociated station",	/* 7 */
	"Disassociated because sending station is leaving "
	  "(or has left) BSS",					/* 8 */
	"Station requesting (re)association is not authenticated with "
	  "responding station",					/* 9 */
	"Disassociated because the information in the Power Capability "
	  "element is unacceptable",				/* 10 */
	"Disassociated because the information in the SupportedChannels "
	  "element is unacceptable",				/* 11 */
	"Invalid Information Element",				/* 12 */
	"Reserved",						/* 13 */
	"Michael MIC failure",					/* 14 */
	"4-Way Handshake timeout",				/* 15 */
	"Group key update timeout",				/* 16 */
	"Information element in 4-Way Handshake different from (Re)Association"
	  "Request/Probe Response/Beacon",			/* 17 */
	"Group Cipher is not valid",				/* 18 */
	"AKMP is not valid",					/* 20 */
	"Unsupported RSN IE version",				/* 21 */
	"Invalid RSN IE Capabilities",				/* 22 */
	"IEEE 802.1X Authentication failed",			/* 23 */
	"Cipher suite is rejected per security policy",		/* 24 */
	"Reserved",						/* 25 */
	"Reserved",						/* 26 */
	"Reserved",						/* 27 */
	"Reserved",						/* 28 */
	"Reserved",						/* 29 */
	"Reserved",						/* 30 */
	"TS deleted because QoS AP lacks sufficient bandwidth for this "
	  "QoS STA due to a change in BSS service characteristics or "
	  "operational mode (e.g. an HT BSS change from 40 MHz channel "
	  "to 20 MHz channel)",					/* 31 */
	"Disassociated for unspecified, QoS-related reason",	/* 32 */
	"Disassociated because QoS AP lacks sufficient bandwidth for this "
	  "QoS STA",						/* 33 */
	"Disassociated because of excessive number of frames that need to be "
          "acknowledged, but are not acknowledged for AP transmissions "
	  "and/or poor channel conditions",			/* 34 */
	"Disassociated because STA is transmitting outside the limits "
	  "of its TXOPs",					/* 35 */
	"Requested from peer STA as the STA is leaving the BSS "
	  "(or resetting)",					/* 36 */
	"Requested from peer STA as it does not want to use the "
	  "mechanism",						/* 37 */
	"Requested from peer STA as the STA received frames using the "
	  "mechanism for which a set up is required",		/* 38 */
	"Requested from peer STA due to time out",		/* 39 */
	"Reserved",						/* 40 */
	"Reserved",						/* 41 */
	"Reserved",						/* 42 */
	"Reserved",						/* 43 */
	"Reserved",						/* 44 */
	"Peer STA does not support the requested cipher suite",	/* 45 */
	"Association denied due to requesting STA not supporting HT "
	  "features",						/* 46 */
};
#define NUM_REASONS	(sizeof reason_text / sizeof reason_text[0])

static int
wep_print(netdissect_options *ndo,
          const u_char *p)
{
	uint32_t iv;

	if (!ND_TTEST2(*p, IEEE802_11_IV_LEN + IEEE802_11_KID_LEN))
		return 0;
	iv = EXTRACT_LE_32BITS(p);

	ND_PRINT((ndo, "Data IV:%3x Pad %x KeyID %x", IV_IV(iv), IV_PAD(iv),
	    IV_KEYID(iv)));

	return 1;
}

static int
parse_elements(netdissect_options *ndo,
               struct mgmt_body_t *pbody, const u_char *p, int offset,
               u_int length)
{
	u_int elementlen;
	struct ssid_t ssid;
	struct challenge_t challenge;
	struct rates_t rates;
	struct ds_t ds;
	struct cf_t cf;
	struct tim_t tim;

	/*
	 * We haven't seen any elements yet.
	 */
	pbody->challenge_present = 0;
	pbody->ssid_present = 0;
	pbody->rates_present = 0;
	pbody->ds_present = 0;
	pbody->cf_present = 0;
	pbody->tim_present = 0;

	while (length != 0) {
		/* Make sure we at least have the element ID and length. */
		if (!ND_TTEST2(*(p + offset), 2))
			return 0;
		if (length < 2)
			return 0;
		elementlen = *(p + offset + 1);

		/* Make sure we have the entire element. */
		if (!ND_TTEST2(*(p + offset + 2), elementlen))
			return 0;
		if (length < elementlen + 2)
			return 0;

		switch (*(p + offset)) {
		case E_SSID:
			memcpy(&ssid, p + offset, 2);
			offset += 2;
			length -= 2;
			if (ssid.length != 0) {
				if (ssid.length > sizeof(ssid.ssid) - 1)
					return 0;
				if (!ND_TTEST2(*(p + offset), ssid.length))
					return 0;
				if (length < ssid.length)
					return 0;
				memcpy(&ssid.ssid, p + offset, ssid.length);
				offset += ssid.length;
				length -= ssid.length;
			}
			ssid.ssid[ssid.length] = '\0';
			/*
			 * Present and not truncated.
			 *
			 * If we haven't already seen an SSID IE,
			 * copy this one, otherwise ignore this one,
			 * so we later report the first one we saw.
			 */
			if (!pbody->ssid_present) {
				pbody->ssid = ssid;
				pbody->ssid_present = 1;
			}
			break;
		case E_CHALLENGE:
			memcpy(&challenge, p + offset, 2);
			offset += 2;
			length -= 2;
			if (challenge.length != 0) {
				if (challenge.length >
				    sizeof(challenge.text) - 1)
					return 0;
				if (!ND_TTEST2(*(p + offset), challenge.length))
					return 0;
				if (length < challenge.length)
					return 0;
				memcpy(&challenge.text, p + offset,
				    challenge.length);
				offset += challenge.length;
				length -= challenge.length;
			}
			challenge.text[challenge.length] = '\0';
			/*
			 * Present and not truncated.
			 *
			 * If we haven't already seen a challenge IE,
			 * copy this one, otherwise ignore this one,
			 * so we later report the first one we saw.
			 */
			if (!pbody->challenge_present) {
				pbody->challenge = challenge;
				pbody->challenge_present = 1;
			}
			break;
		case E_RATES:
			memcpy(&rates, p + offset, 2);
			offset += 2;
			length -= 2;
			if (rates.length != 0) {
				if (rates.length > sizeof rates.rate)
					return 0;
				if (!ND_TTEST2(*(p + offset), rates.length))
					return 0;
				if (length < rates.length)
					return 0;
				memcpy(&rates.rate, p + offset, rates.length);
				offset += rates.length;
				length -= rates.length;
			}
			/*
			 * Present and not truncated.
			 *
			 * If we haven't already seen a rates IE,
			 * copy this one if it's not zero-length,
			 * otherwise ignore this one, so we later
			 * report the first one we saw.
			 *
			 * We ignore zero-length rates IEs as some
			 * devices seem to put a zero-length rates
			 * IE, followed by an SSID IE, followed by
			 * a non-zero-length rates IE into frames,
			 * even though IEEE Std 802.11-2007 doesn't
			 * seem to indicate that a zero-length rates
			 * IE is valid.
			 */
			if (!pbody->rates_present && rates.length != 0) {
				pbody->rates = rates;
				pbody->rates_present = 1;
			}
			break;
		case E_DS:
			memcpy(&ds, p + offset, 2);
			offset += 2;
			length -= 2;
			if (ds.length != 1) {
				offset += ds.length;
				length -= ds.length;
				break;
			}
			ds.channel = *(p + offset);
			offset += 1;
			length -= 1;
			/*
			 * Present and not truncated.
			 *
			 * If we haven't already seen a DS IE,
			 * copy this one, otherwise ignore this one,
			 * so we later report the first one we saw.
			 */
			if (!pbody->ds_present) {
				pbody->ds = ds;
				pbody->ds_present = 1;
			}
			break;
		case E_CF:
			memcpy(&cf, p + offset, 2);
			offset += 2;
			length -= 2;
			if (cf.length != 6) {
				offset += cf.length;
				length -= cf.length;
				break;
			}
			memcpy(&cf.count, p + offset, 6);
			offset += 6;
			length -= 6;
			/*
			 * Present and not truncated.
			 *
			 * If we haven't already seen a CF IE,
			 * copy this one, otherwise ignore this one,
			 * so we later report the first one we saw.
			 */
			if (!pbody->cf_present) {
				pbody->cf = cf;
				pbody->cf_present = 1;
			}
			break;
		case E_TIM:
			memcpy(&tim, p + offset, 2);
			offset += 2;
			length -= 2;
			if (tim.length <= 3) {
				offset += tim.length;
				length -= tim.length;
				break;
			}
			if (tim.length - 3 > (int)sizeof tim.bitmap)
				return 0;
			memcpy(&tim.count, p + offset, 3);
			offset += 3;
			length -= 3;

			memcpy(tim.bitmap, p + (tim.length - 3),
			    (tim.length - 3));
			offset += tim.length - 3;
			length -= tim.length - 3;
			/*
			 * Present and not truncated.
			 *
			 * If we haven't already seen a TIM IE,
			 * copy this one, otherwise ignore this one,
			 * so we later report the first one we saw.
			 */
			if (!pbody->tim_present) {
				pbody->tim = tim;
				pbody->tim_present = 1;
			}
			break;
		default:
#if 0
			ND_PRINT((ndo, "(1) unhandled element_id (%d)  ",
			    *(p + offset)));
#endif
			offset += 2 + elementlen;
			length -= 2 + elementlen;
			break;
		}
	}

	/* No problems found. */
	return 1;
}

/*********************************************************************************
 * Print Handle functions for the management frame types
 *********************************************************************************/

static int
handle_beacon(netdissect_options *ndo,
              const u_char *p, u_int length)
{
	struct mgmt_body_t pbody;
	int offset = 0;
	int ret;

	memset(&pbody, 0, sizeof(pbody));

	if (!ND_TTEST2(*p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
	    IEEE802_11_CAPINFO_LEN))
		return 0;
	if (length < IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
	    IEEE802_11_CAPINFO_LEN)
		return 0;
	memcpy(&pbody.timestamp, p, IEEE802_11_TSTAMP_LEN);
	offset += IEEE802_11_TSTAMP_LEN;
	length -= IEEE802_11_TSTAMP_LEN;
	pbody.beacon_interval = EXTRACT_LE_16BITS(p+offset);
	offset += IEEE802_11_BCNINT_LEN;
	length -= IEEE802_11_BCNINT_LEN;
	pbody.capability_info = EXTRACT_LE_16BITS(p+offset);
	offset += IEEE802_11_CAPINFO_LEN;
	length -= IEEE802_11_CAPINFO_LEN;

	ret = parse_elements(ndo, &pbody, p, offset, length);

	PRINT_SSID(pbody);
	PRINT_RATES(pbody);
	ND_PRINT((ndo, " %s",
	    CAPABILITY_ESS(pbody.capability_info) ? "ESS" : "IBSS"));
	PRINT_DS_CHANNEL(pbody);

	return ret;
}

static int
handle_assoc_request(netdissect_options *ndo,
                     const u_char *p, u_int length)
{
	struct mgmt_body_t pbody;
	int offset = 0;
	int ret;

	memset(&pbody, 0, sizeof(pbody));

	if (!ND_TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN))
		return 0;
	if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN)
		return 0;
	pbody.capability_info = EXTRACT_LE_16BITS(p);
	offset += IEEE802_11_CAPINFO_LEN;
	length -= IEEE802_11_CAPINFO_LEN;
	pbody.listen_interval = EXTRACT_LE_16BITS(p+offset);
	offset += IEEE802_11_LISTENINT_LEN;
	length -= IEEE802_11_LISTENINT_LEN;

	ret = parse_elements(ndo, &pbody, p, offset, length);

	PRINT_SSID(pbody);
	PRINT_RATES(pbody);
	return ret;
}

static int
handle_assoc_response(netdissect_options *ndo,
                      const u_char *p, u_int length)
{
	struct mgmt_body_t pbody;
	int offset = 0;
	int ret;

	memset(&pbody, 0, sizeof(pbody));

	if (!ND_TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_STATUS_LEN +
	    IEEE802_11_AID_LEN))
		return 0;
	if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_STATUS_LEN +
	    IEEE802_11_AID_LEN)
		return 0;
	pbody.capability_info = EXTRACT_LE_16BITS(p);
	offset += IEEE802_11_CAPINFO_LEN;
	length -= IEEE802_11_CAPINFO_LEN;
	pbody.status_code = EXTRACT_LE_16BITS(p+offset);
	offset += IEEE802_11_STATUS_LEN;
	length -= IEEE802_11_STATUS_LEN;
	pbody.aid = EXTRACT_LE_16BITS(p+offset);
	offset += IEEE802_11_AID_LEN;
	length -= IEEE802_11_AID_LEN;

	ret = parse_elements(ndo, &pbody, p, offset, length);

	ND_PRINT((ndo, " AID(%x) :%s: %s", ((uint16_t)(pbody.aid << 2 )) >> 2 ,
	    CAPABILITY_PRIVACY(pbody.capability_info) ? " PRIVACY " : "",
	    (pbody.status_code < NUM_STATUSES
		? status_text[pbody.status_code]
		: "n/a")));

	return ret;
}

static int
handle_reassoc_request(netdissect_options *ndo,
                       const u_char *p, u_int length)
{
	struct mgmt_body_t pbody;
	int offset = 0;
	int ret;

	memset(&pbody, 0, sizeof(pbody));

	if (!ND_TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN +
	    IEEE802_11_AP_LEN))
		return 0;
	if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN +
	    IEEE802_11_AP_LEN)
		return 0;
	pbody.capability_info = EXTRACT_LE_16BITS(p);
	offset += IEEE802_11_CAPINFO_LEN;
	length -= IEEE802_11_CAPINFO_LEN;
	pbody.listen_interval = EXTRACT_LE_16BITS(p+offset);
	offset += IEEE802_11_LISTENINT_LEN;
	length -= IEEE802_11_LISTENINT_LEN;
	memcpy(&pbody.ap, p+offset, IEEE802_11_AP_LEN);
	offset += IEEE802_11_AP_LEN;
	length -= IEEE802_11_AP_LEN;

	ret = parse_elements(ndo, &pbody, p, offset, length);

	PRINT_SSID(pbody);
	ND_PRINT((ndo, " AP : %s", etheraddr_string(ndo,  pbody.ap )));

	return ret;
}

static int
handle_reassoc_response(netdissect_options *ndo,
                        const u_char *p, u_int length)
{
	/* Same as a Association Reponse */
	return handle_assoc_response(ndo, p, length);
}

static int
handle_probe_request(netdissect_options *ndo,
                     const u_char *p, u_int length)
{
	struct mgmt_body_t  pbody;
	int offset = 0;
	int ret;

	memset(&pbody, 0, sizeof(pbody));

	ret = parse_elements(ndo, &pbody, p, offset, length);

	PRINT_SSID(pbody);
	PRINT_RATES(pbody);

	return ret;
}

static int
handle_probe_response(netdissect_options *ndo,
                      const u_char *p, u_int length)
{
	struct mgmt_body_t  pbody;
	int offset = 0;
	int ret;

	memset(&pbody, 0, sizeof(pbody));

	if (!ND_TTEST2(*p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
	    IEEE802_11_CAPINFO_LEN))
		return 0;
	if (length < IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
	    IEEE802_11_CAPINFO_LEN)
		return 0;
	memcpy(&pbody.timestamp, p, IEEE802_11_TSTAMP_LEN);
	offset += IEEE802_11_TSTAMP_LEN;
	length -= IEEE802_11_TSTAMP_LEN;
	pbody.beacon_interval = EXTRACT_LE_16BITS(p+offset);
	offset += IEEE802_11_BCNINT_LEN;
	length -= IEEE802_11_BCNINT_LEN;
	pbody.capability_info = EXTRACT_LE_16BITS(p+offset);
	offset += IEEE802_11_CAPINFO_LEN;
	length -= IEEE802_11_CAPINFO_LEN;

	ret = parse_elements(ndo, &pbody, p, offset, length);

	PRINT_SSID(pbody);
	PRINT_RATES(pbody);
	PRINT_DS_CHANNEL(pbody);

	return ret;
}

static int
handle_atim(void)
{
	/* the frame body for ATIM is null. */
	return 1;
}

static int
handle_disassoc(netdissect_options *ndo,
                const u_char *p, u_int length)
{
	struct mgmt_body_t  pbody;

	memset(&pbody, 0, sizeof(pbody));

	if (!ND_TTEST2(*p, IEEE802_11_REASON_LEN))
		return 0;
	if (length < IEEE802_11_REASON_LEN)
		return 0;
	pbody.reason_code = EXTRACT_LE_16BITS(p);

	ND_PRINT((ndo, ": %s",
	    (pbody.reason_code < NUM_REASONS)
		? reason_text[pbody.reason_code]
		: "Reserved"));

	return 1;
}

static int
handle_auth(netdissect_options *ndo,
            const u_char *p, u_int length)
{
	struct mgmt_body_t  pbody;
	int offset = 0;
	int ret;

	memset(&pbody, 0, sizeof(pbody));

	if (!ND_TTEST2(*p, 6))
		return 0;
	if (length < 6)
		return 0;
	pbody.auth_alg = EXTRACT_LE_16BITS(p);
	offset += 2;
	length -= 2;
	pbody.auth_trans_seq_num = EXTRACT_LE_16BITS(p + offset);
	offset += 2;
	length -= 2;
	pbody.status_code = EXTRACT_LE_16BITS(p + offset);
	offset += 2;
	length -= 2;

	ret = parse_elements(ndo, &pbody, p, offset, length);

	if ((pbody.auth_alg == 1) &&
	    ((pbody.auth_trans_seq_num == 2) ||
	     (pbody.auth_trans_seq_num == 3))) {
		ND_PRINT((ndo, " (%s)-%x [Challenge Text] %s",
		    (pbody.auth_alg < NUM_AUTH_ALGS)
			? auth_alg_text[pbody.auth_alg]
			: "Reserved",
		    pbody.auth_trans_seq_num,
		    ((pbody.auth_trans_seq_num % 2)
		        ? ((pbody.status_code < NUM_STATUSES)
			       ? status_text[pbody.status_code]
			       : "n/a") : "")));
		return ret;
	}
	ND_PRINT((ndo, " (%s)-%x: %s",
	    (pbody.auth_alg < NUM_AUTH_ALGS)
		? auth_alg_text[pbody.auth_alg]
		: "Reserved",
	    pbody.auth_trans_seq_num,
	    (pbody.auth_trans_seq_num % 2)
	        ? ((pbody.status_code < NUM_STATUSES)
		    ? status_text[pbody.status_code]
	            : "n/a")
	        : ""));

	return ret;
}

static int
handle_deauth(netdissect_options *ndo,
              const struct mgmt_header_t *pmh, const u_char *p, u_int length)
{
	struct mgmt_body_t  pbody;
	const char *reason = NULL;

	memset(&pbody, 0, sizeof(pbody));

	if (!ND_TTEST2(*p, IEEE802_11_REASON_LEN))
		return 0;
	if (length < IEEE802_11_REASON_LEN)
		return 0;
	pbody.reason_code = EXTRACT_LE_16BITS(p);

	reason = (pbody.reason_code < NUM_REASONS)
			? reason_text[pbody.reason_code]
			: "Reserved";

	if (ndo->ndo_eflag) {
		ND_PRINT((ndo, ": %s", reason));
	} else {
		ND_PRINT((ndo, " (%s): %s", etheraddr_string(ndo, pmh->sa), reason));
	}
	return 1;
}

#define	PRINT_HT_ACTION(v) (\
	(v) == 0 ? ND_PRINT((ndo, "TxChWidth")) : \
	(v) == 1 ? ND_PRINT((ndo, "MIMOPwrSave")) : \
		   ND_PRINT((ndo, "Act#%d", (v))) \
)
#define	PRINT_BA_ACTION(v) (\
	(v) == 0 ? ND_PRINT((ndo, "ADDBA Request")) : \
	(v) == 1 ? ND_PRINT((ndo, "ADDBA Response")) : \
	(v) == 2 ? ND_PRINT((ndo, "DELBA")) : \
		   ND_PRINT((ndo, "Act#%d", (v))) \
)
#define	PRINT_MESHLINK_ACTION(v) (\
	(v) == 0 ? ND_PRINT((ndo, "Request")) : \
	(v) == 1 ? ND_PRINT((ndo, "Report")) : \
		   ND_PRINT((ndo, "Act#%d", (v))) \
)
#define	PRINT_MESHPEERING_ACTION(v) (\
	(v) == 0 ? ND_PRINT((ndo, "Open")) : \
	(v) == 1 ? ND_PRINT((ndo, "Confirm")) : \
	(v) == 2 ? ND_PRINT((ndo, "Close")) : \
		   ND_PRINT((ndo, "Act#%d", (v))) \
)
#define	PRINT_MESHPATH_ACTION(v) (\
	(v) == 0 ? ND_PRINT((ndo, "Request")) : \
	(v) == 1 ? ND_PRINT((ndo, "Report")) : \
	(v) == 2 ? ND_PRINT((ndo, "Error")) : \
	(v) == 3 ? ND_PRINT((ndo, "RootAnnouncement")) : \
		   ND_PRINT((ndo, "Act#%d", (v))) \
)

#define PRINT_MESH_ACTION(v) (\
	(v) == 0 ? ND_PRINT((ndo, "MeshLink")) : \
	(v) == 1 ? ND_PRINT((ndo, "HWMP")) : \
	(v) == 2 ? ND_PRINT((ndo, "Gate Announcement")) : \
	(v) == 3 ? ND_PRINT((ndo, "Congestion Control")) : \
	(v) == 4 ? ND_PRINT((ndo, "MCCA Setup Request")) : \
	(v) == 5 ? ND_PRINT((ndo, "MCCA Setup Reply")) : \
	(v) == 6 ? ND_PRINT((ndo, "MCCA Advertisement Request")) : \
	(v) == 7 ? ND_PRINT((ndo, "MCCA Advertisement")) : \
	(v) == 8 ? ND_PRINT((ndo, "MCCA Teardown")) : \
	(v) == 9 ? ND_PRINT((ndo, "TBTT Adjustment Request")) : \
	(v) == 10 ? ND_PRINT((ndo, "TBTT Adjustment Response")) : \
		   ND_PRINT((ndo, "Act#%d", (v))) \
)
#define PRINT_MULTIHOP_ACTION(v) (\
	(v) == 0 ? ND_PRINT((ndo, "Proxy Update")) : \
	(v) == 1 ? ND_PRINT((ndo, "Proxy Update Confirmation")) : \
		   ND_PRINT((ndo, "Act#%d", (v))) \
)
#define PRINT_SELFPROT_ACTION(v) (\
	(v) == 1 ? ND_PRINT((ndo, "Peering Open")) : \
	(v) == 2 ? ND_PRINT((ndo, "Peering Confirm")) : \
	(v) == 3 ? ND_PRINT((ndo, "Peering Close")) : \
	(v) == 4 ? ND_PRINT((ndo, "Group Key Inform")) : \
	(v) == 5 ? ND_PRINT((ndo, "Group Key Acknowledge")) : \
		   ND_PRINT((ndo, "Act#%d", (v))) \
)

static int
handle_action(netdissect_options *ndo,
              const struct mgmt_header_t *pmh, const u_char *p, u_int length)
{
	if (!ND_TTEST2(*p, 2))
		return 0;
	if (length < 2)
		return 0;
	if (ndo->ndo_eflag) {
		ND_PRINT((ndo, ": "));
	} else {
		ND_PRINT((ndo, " (%s): ", etheraddr_string(ndo, pmh->sa)));
	}
	switch (p[0]) {
	case 0: ND_PRINT((ndo, "Spectrum Management Act#%d", p[1])); break;
	case 1: ND_PRINT((ndo, "QoS Act#%d", p[1])); break;
	case 2: ND_PRINT((ndo, "DLS Act#%d", p[1])); break;
	case 3: ND_PRINT((ndo, "BA ")); PRINT_BA_ACTION(p[1]); break;
	case 7: ND_PRINT((ndo, "HT ")); PRINT_HT_ACTION(p[1]); break;
	case 13: ND_PRINT((ndo, "MeshAction ")); PRINT_MESH_ACTION(p[1]); break;
	case 14:
		ND_PRINT((ndo, "MultiohopAction "));
		PRINT_MULTIHOP_ACTION(p[1]); break;
	case 15:
		ND_PRINT((ndo, "SelfprotectAction "));
		PRINT_SELFPROT_ACTION(p[1]); break;
	case 127: ND_PRINT((ndo, "Vendor Act#%d", p[1])); break;
	default:
		ND_PRINT((ndo, "Reserved(%d) Act#%d", p[0], p[1]));
		break;
	}
	return 1;
}


/*********************************************************************************
 * Print Body funcs
 *********************************************************************************/


static int
mgmt_body_print(netdissect_options *ndo,
                uint16_t fc, const struct mgmt_header_t *pmh,
                const u_char *p, u_int length)
{
	ND_PRINT((ndo, "%s", tok2str(st_str, "Unhandled Management subtype(%x)", FC_SUBTYPE(fc))));
	switch (FC_SUBTYPE(fc)) {
	case ST_ASSOC_REQUEST:
		return handle_assoc_request(ndo, p, length);
	case ST_ASSOC_RESPONSE:
		return handle_assoc_response(ndo, p, length);
	case ST_REASSOC_REQUEST:
		return handle_reassoc_request(ndo, p, length);
	case ST_REASSOC_RESPONSE:
		return handle_reassoc_response(ndo, p, length);
	case ST_PROBE_REQUEST:
		return handle_probe_request(ndo, p, length);
	case ST_PROBE_RESPONSE:
		return handle_probe_response(ndo, p, length);
	case ST_BEACON:
		return handle_beacon(ndo, p, length);
	case ST_ATIM:
		return handle_atim();
	case ST_DISASSOC:
		return handle_disassoc(ndo, p, length);
	case ST_AUTH:
		if (!ND_TTEST2(*p, 3))
			return 0;
		if ((p[0] == 0 ) && (p[1] == 0) && (p[2] == 0)) {
			ND_PRINT((ndo, "Authentication (Shared-Key)-3 "));
			return wep_print(ndo, p);
		}
		return handle_auth(ndo, p, length);
	case ST_DEAUTH:
		return handle_deauth(ndo, pmh, p, length);
	case ST_ACTION:
		return handle_action(ndo, pmh, p, length);
	default:
		return 1;
	}
}


/*********************************************************************************
 * Handles printing all the control frame types
 *********************************************************************************/

static int
ctrl_body_print(netdissect_options *ndo,
                uint16_t fc, const u_char *p)
{
	ND_PRINT((ndo, "%s", tok2str(ctrl_str, "Unknown Ctrl Subtype", FC_SUBTYPE(fc))));
	switch (FC_SUBTYPE(fc)) {
	case CTRL_CONTROL_WRAPPER:
		/* XXX - requires special handling */
		break;
	case CTRL_BAR:
		if (!ND_TTEST2(*p, CTRL_BAR_HDRLEN))
			return 0;
		if (!ndo->ndo_eflag)
			ND_PRINT((ndo, " RA:%s TA:%s CTL(%x) SEQ(%u) ",
			    etheraddr_string(ndo, ((const struct ctrl_bar_t *)p)->ra),
			    etheraddr_string(ndo, ((const struct ctrl_bar_t *)p)->ta),
			    EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->ctl)),
			    EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->seq))));
		break;
	case CTRL_BA:
		if (!ND_TTEST2(*p, CTRL_BA_HDRLEN))
			return 0;
		if (!ndo->ndo_eflag)
			ND_PRINT((ndo, " RA:%s ",
			    etheraddr_string(ndo, ((const struct ctrl_ba_t *)p)->ra)));
		break;
	case CTRL_PS_POLL:
		if (!ND_TTEST2(*p, CTRL_PS_POLL_HDRLEN))
			return 0;
		ND_PRINT((ndo, " AID(%x)",
		    EXTRACT_LE_16BITS(&(((const struct ctrl_ps_poll_t *)p)->aid))));
		break;
	case CTRL_RTS:
		if (!ND_TTEST2(*p, CTRL_RTS_HDRLEN))
			return 0;
		if (!ndo->ndo_eflag)
			ND_PRINT((ndo, " TA:%s ",
			    etheraddr_string(ndo, ((const struct ctrl_rts_t *)p)->ta)));
		break;
	case CTRL_CTS:
		if (!ND_TTEST2(*p, CTRL_CTS_HDRLEN))
			return 0;
		if (!ndo->ndo_eflag)
			ND_PRINT((ndo, " RA:%s ",
			    etheraddr_string(ndo, ((const struct ctrl_cts_t *)p)->ra)));
		break;
	case CTRL_ACK:
		if (!ND_TTEST2(*p, CTRL_ACK_HDRLEN))
			return 0;
		if (!ndo->ndo_eflag)
			ND_PRINT((ndo, " RA:%s ",
			    etheraddr_string(ndo, ((const struct ctrl_ack_t *)p)->ra)));
		break;
	case CTRL_CF_END:
		if (!ND_TTEST2(*p, CTRL_END_HDRLEN))
			return 0;
		if (!ndo->ndo_eflag)
			ND_PRINT((ndo, " RA:%s ",
			    etheraddr_string(ndo, ((const struct ctrl_end_t *)p)->ra)));
		break;
	case CTRL_END_ACK:
		if (!ND_TTEST2(*p, CTRL_END_ACK_HDRLEN))
			return 0;
		if (!ndo->ndo_eflag)
			ND_PRINT((ndo, " RA:%s ",
			    etheraddr_string(ndo, ((const struct ctrl_end_ack_t *)p)->ra)));
		break;
	}
	return 1;
}

/*
 * Print Header funcs
 */

/*
 *  Data Frame - Address field contents
 *
 *  To Ds  | From DS | Addr 1 | Addr 2 | Addr 3 | Addr 4
 *    0    |  0      |  DA    | SA     | BSSID  | n/a
 *    0    |  1      |  DA    | BSSID  | SA     | n/a
 *    1    |  0      |  BSSID | SA     | DA     | n/a
 *    1    |  1      |  RA    | TA     | DA     | SA
 */

static void
data_header_print(netdissect_options *ndo,
                  uint16_t fc, const u_char *p, const uint8_t **srcp,
                  const uint8_t **dstp)
{
	u_int subtype = FC_SUBTYPE(fc);

	if (DATA_FRAME_IS_CF_ACK(subtype) || DATA_FRAME_IS_CF_POLL(subtype) ||
	    DATA_FRAME_IS_QOS(subtype)) {
		ND_PRINT((ndo, "CF "));
		if (DATA_FRAME_IS_CF_ACK(subtype)) {
			if (DATA_FRAME_IS_CF_POLL(subtype))
				ND_PRINT((ndo, "Ack/Poll"));
			else
				ND_PRINT((ndo, "Ack"));
		} else {
			if (DATA_FRAME_IS_CF_POLL(subtype))
				ND_PRINT((ndo, "Poll"));
		}
		if (DATA_FRAME_IS_QOS(subtype))
			ND_PRINT((ndo, "+QoS"));
		ND_PRINT((ndo, " "));
	}

#define ADDR1  (p + 4)
#define ADDR2  (p + 10)
#define ADDR3  (p + 16)
#define ADDR4  (p + 24)

	if (!FC_TO_DS(fc) && !FC_FROM_DS(fc)) {
		if (srcp != NULL)
			*srcp = ADDR2;
		if (dstp != NULL)
			*dstp = ADDR1;
		if (!ndo->ndo_eflag)
			return;
		ND_PRINT((ndo, "DA:%s SA:%s BSSID:%s ",
		    etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
		    etheraddr_string(ndo, ADDR3)));
	} else if (!FC_TO_DS(fc) && FC_FROM_DS(fc)) {
		if (srcp != NULL)
			*srcp = ADDR3;
		if (dstp != NULL)
			*dstp = ADDR1;
		if (!ndo->ndo_eflag)
			return;
		ND_PRINT((ndo, "DA:%s BSSID:%s SA:%s ",
		    etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
		    etheraddr_string(ndo, ADDR3)));
	} else if (FC_TO_DS(fc) && !FC_FROM_DS(fc)) {
		if (srcp != NULL)
			*srcp = ADDR2;
		if (dstp != NULL)
			*dstp = ADDR3;
		if (!ndo->ndo_eflag)
			return;
		ND_PRINT((ndo, "BSSID:%s SA:%s DA:%s ",
		    etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
		    etheraddr_string(ndo, ADDR3)));
	} else if (FC_TO_DS(fc) && FC_FROM_DS(fc)) {
		if (srcp != NULL)
			*srcp = ADDR4;
		if (dstp != NULL)
			*dstp = ADDR3;
		if (!ndo->ndo_eflag)
			return;
		ND_PRINT((ndo, "RA:%s TA:%s DA:%s SA:%s ",
		    etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
		    etheraddr_string(ndo, ADDR3), etheraddr_string(ndo, ADDR4)));
	}

#undef ADDR1
#undef ADDR2
#undef ADDR3
#undef ADDR4
}

static void
mgmt_header_print(netdissect_options *ndo,
                  const u_char *p, const uint8_t **srcp, const uint8_t **dstp)
{
	const struct mgmt_header_t *hp = (const struct mgmt_header_t *) p;

	if (srcp != NULL)
		*srcp = hp->sa;
	if (dstp != NULL)
		*dstp = hp->da;
	if (!ndo->ndo_eflag)
		return;

	ND_PRINT((ndo, "BSSID:%s DA:%s SA:%s ",
	    etheraddr_string(ndo, (hp)->bssid), etheraddr_string(ndo, (hp)->da),
	    etheraddr_string(ndo, (hp)->sa)));
}

static void
ctrl_header_print(netdissect_options *ndo,
                  uint16_t fc, const u_char *p, const uint8_t **srcp,
                  const uint8_t **dstp)
{
	if (srcp != NULL)
		*srcp = NULL;
	if (dstp != NULL)
		*dstp = NULL;
	if (!ndo->ndo_eflag)
		return;

	switch (FC_SUBTYPE(fc)) {
	case CTRL_BAR:
		ND_PRINT((ndo, " RA:%s TA:%s CTL(%x) SEQ(%u) ",
		    etheraddr_string(ndo, ((const struct ctrl_bar_t *)p)->ra),
		    etheraddr_string(ndo, ((const struct ctrl_bar_t *)p)->ta),
		    EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->ctl)),
		    EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->seq))));
		break;
	case CTRL_BA:
		ND_PRINT((ndo, "RA:%s ",
		    etheraddr_string(ndo, ((const struct ctrl_ba_t *)p)->ra)));
		break;
	case CTRL_PS_POLL:
		ND_PRINT((ndo, "BSSID:%s TA:%s ",
		    etheraddr_string(ndo, ((const struct ctrl_ps_poll_t *)p)->bssid),
		    etheraddr_string(ndo, ((const struct ctrl_ps_poll_t *)p)->ta)));
		break;
	case CTRL_RTS:
		ND_PRINT((ndo, "RA:%s TA:%s ",
		    etheraddr_string(ndo, ((const struct ctrl_rts_t *)p)->ra),
		    etheraddr_string(ndo, ((const struct ctrl_rts_t *)p)->ta)));
		break;
	case CTRL_CTS:
		ND_PRINT((ndo, "RA:%s ",
		    etheraddr_string(ndo, ((const struct ctrl_cts_t *)p)->ra)));
		break;
	case CTRL_ACK:
		ND_PRINT((ndo, "RA:%s ",
		    etheraddr_string(ndo, ((const struct ctrl_ack_t *)p)->ra)));
		break;
	case CTRL_CF_END:
		ND_PRINT((ndo, "RA:%s BSSID:%s ",
		    etheraddr_string(ndo, ((const struct ctrl_end_t *)p)->ra),
		    etheraddr_string(ndo, ((const struct ctrl_end_t *)p)->bssid)));
		break;
	case CTRL_END_ACK:
		ND_PRINT((ndo, "RA:%s BSSID:%s ",
		    etheraddr_string(ndo, ((const struct ctrl_end_ack_t *)p)->ra),
		    etheraddr_string(ndo, ((const struct ctrl_end_ack_t *)p)->bssid)));
		break;
	default:
		ND_PRINT((ndo, "(H) Unknown Ctrl Subtype"));
		break;
	}
}

static int
extract_header_length(netdissect_options *ndo,
                      uint16_t fc)
{
	int len;

	switch (FC_TYPE(fc)) {
	case T_MGMT:
		return MGMT_HDRLEN;
	case T_CTRL:
		switch (FC_SUBTYPE(fc)) {
		case CTRL_BAR:
			return CTRL_BAR_HDRLEN;
		case CTRL_PS_POLL:
			return CTRL_PS_POLL_HDRLEN;
		case CTRL_RTS:
			return CTRL_RTS_HDRLEN;
		case CTRL_CTS:
			return CTRL_CTS_HDRLEN;
		case CTRL_ACK:
			return CTRL_ACK_HDRLEN;
		case CTRL_CF_END:
			return CTRL_END_HDRLEN;
		case CTRL_END_ACK:
			return CTRL_END_ACK_HDRLEN;
		default:
			return 0;
		}
	case T_DATA:
		len = (FC_TO_DS(fc) && FC_FROM_DS(fc)) ? 30 : 24;
		if (DATA_FRAME_IS_QOS(FC_SUBTYPE(fc)))
			len += 2;
		return len;
	default:
		ND_PRINT((ndo, "unknown IEEE802.11 frame type (%d)", FC_TYPE(fc)));
		return 0;
	}
}

static int
extract_mesh_header_length(const u_char *p)
{
	return (p[0] &~ 3) ? 0 : 6*(1 + (p[0] & 3));
}

/*
 * Print the 802.11 MAC header if eflag is set, and set "*srcp" and "*dstp"
 * to point to the source and destination MAC addresses in any case if
 * "srcp" and "dstp" aren't null.
 */
static void
ieee_802_11_hdr_print(netdissect_options *ndo,
                      uint16_t fc, const u_char *p, u_int hdrlen,
                      u_int meshdrlen, const uint8_t **srcp,
                      const uint8_t **dstp)
{
	if (ndo->ndo_vflag) {
		if (FC_MORE_DATA(fc))
			ND_PRINT((ndo, "More Data "));
		if (FC_MORE_FLAG(fc))
			ND_PRINT((ndo, "More Fragments "));
		if (FC_POWER_MGMT(fc))
			ND_PRINT((ndo, "Pwr Mgmt "));
		if (FC_RETRY(fc))
			ND_PRINT((ndo, "Retry "));
		if (FC_ORDER(fc))
			ND_PRINT((ndo, "Strictly Ordered "));
		if (FC_WEP(fc))
			ND_PRINT((ndo, "WEP Encrypted "));
		if (FC_TYPE(fc) != T_CTRL || FC_SUBTYPE(fc) != CTRL_PS_POLL)
			ND_PRINT((ndo, "%dus ",
			    EXTRACT_LE_16BITS(
			        &((const struct mgmt_header_t *)p)->duration)));
	}
	if (meshdrlen != 0) {
		const struct meshcntl_t *mc =
		    (const struct meshcntl_t *)&p[hdrlen - meshdrlen];
		int ae = mc->flags & 3;

		ND_PRINT((ndo, "MeshData (AE %d TTL %u seq %u", ae, mc->ttl,
		    EXTRACT_LE_32BITS(mc->seq)));
		if (ae > 0)
			ND_PRINT((ndo, " A4:%s", etheraddr_string(ndo, mc->addr4)));
		if (ae > 1)
			ND_PRINT((ndo, " A5:%s", etheraddr_string(ndo, mc->addr5)));
		if (ae > 2)
			ND_PRINT((ndo, " A6:%s", etheraddr_string(ndo, mc->addr6)));
		ND_PRINT((ndo, ") "));
	}

	switch (FC_TYPE(fc)) {
	case T_MGMT:
		mgmt_header_print(ndo, p, srcp, dstp);
		break;
	case T_CTRL:
		ctrl_header_print(ndo, fc, p, srcp, dstp);
		break;
	case T_DATA:
		data_header_print(ndo, fc, p, srcp, dstp);
		break;
	default:
		ND_PRINT((ndo, "(header) unknown IEEE802.11 frame type (%d)",
		    FC_TYPE(fc)));
		*srcp = NULL;
		*dstp = NULL;
		break;
	}
}

#ifndef roundup2
#define	roundup2(x, y)	(((x)+((y)-1))&(~((y)-1))) /* if y is powers of two */
#endif

static u_int
ieee802_11_print(netdissect_options *ndo,
                 const u_char *p, u_int length, u_int orig_caplen, int pad,
                 u_int fcslen)
{
	uint16_t fc;
	u_int caplen, hdrlen, meshdrlen;
	const uint8_t *src, *dst;
	u_short extracted_ethertype;

	caplen = orig_caplen;
	/* Remove FCS, if present */
	if (length < fcslen) {
		ND_PRINT((ndo, "%s", tstr));
		return caplen;
	}
	length -= fcslen;
	if (caplen > length) {
		/* Amount of FCS in actual packet data, if any */
		fcslen = caplen - length;
		caplen -= fcslen;
		ndo->ndo_snapend -= fcslen;
	}

	if (caplen < IEEE802_11_FC_LEN) {
		ND_PRINT((ndo, "%s", tstr));
		return orig_caplen;
	}

	fc = EXTRACT_LE_16BITS(p);
	hdrlen = extract_header_length(ndo, fc);
	if (pad)
		hdrlen = roundup2(hdrlen, 4);
	if (ndo->ndo_Hflag && FC_TYPE(fc) == T_DATA &&
	    DATA_FRAME_IS_QOS(FC_SUBTYPE(fc))) {
		meshdrlen = extract_mesh_header_length(p+hdrlen);
		hdrlen += meshdrlen;
	} else
		meshdrlen = 0;


	if (caplen < hdrlen) {
		ND_PRINT((ndo, "%s", tstr));
		return hdrlen;
	}

	ieee_802_11_hdr_print(ndo, fc, p, hdrlen, meshdrlen, &src, &dst);

	/*
	 * Go past the 802.11 header.
	 */
	length -= hdrlen;
	caplen -= hdrlen;
	p += hdrlen;

	switch (FC_TYPE(fc)) {
	case T_MGMT:
		if (!mgmt_body_print(ndo, fc,
		    (const struct mgmt_header_t *)(p - hdrlen), p, length)) {
			ND_PRINT((ndo, "%s", tstr));
			return hdrlen;
		}
		break;
	case T_CTRL:
		if (!ctrl_body_print(ndo, fc, p - hdrlen)) {
			ND_PRINT((ndo, "%s", tstr));
			return hdrlen;
		}
		break;
	case T_DATA:
		if (DATA_FRAME_IS_NULL(FC_SUBTYPE(fc)))
			return hdrlen;	/* no-data frame */
		/* There may be a problem w/ AP not having this bit set */
		if (FC_WEP(fc)) {
			if (!wep_print(ndo, p)) {
				ND_PRINT((ndo, "%s", tstr));
				return hdrlen;
			}
		} else if (llc_print(ndo, p, length, caplen, dst, src,
		    &extracted_ethertype) == 0) {
			/*
			 * Some kinds of LLC packet we cannot
			 * handle intelligently
			 */
			if (!ndo->ndo_eflag)
				ieee_802_11_hdr_print(ndo, fc, p - hdrlen, hdrlen,
				    meshdrlen, NULL, NULL);
			if (extracted_ethertype)
				ND_PRINT((ndo, "(LLC %s) ",
				    etherproto_string(
				        htons(extracted_ethertype))));
			if (!ndo->ndo_suppress_default_print)
				ND_DEFAULTPRINT(p, caplen);
		}
		break;
	default:
		ND_PRINT((ndo, "unknown 802.11 frame type (%d)", FC_TYPE(fc)));
		break;
	}

	return hdrlen;
}

/*
 * This is the top level routine of the printer.  'p' points
 * to the 802.11 header of the packet, 'h->ts' is the timestamp,
 * 'h->len' is the length of the packet off the wire, and 'h->caplen'
 * is the number of bytes actually captured.
 */
u_int
ieee802_11_if_print(netdissect_options *ndo,
                    const struct pcap_pkthdr *h, const u_char *p)
{
	return ieee802_11_print(ndo, p, h->len, h->caplen, 0, 0);
}

#define	IEEE80211_CHAN_FHSS \
	(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_GFSK)
#define	IEEE80211_CHAN_A \
	(IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
#define	IEEE80211_CHAN_B \
	(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
#define	IEEE80211_CHAN_PUREG \
	(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_OFDM)
#define	IEEE80211_CHAN_G \
	(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)

#define	IS_CHAN_FHSS(flags) \
	((flags & IEEE80211_CHAN_FHSS) == IEEE80211_CHAN_FHSS)
#define	IS_CHAN_A(flags) \
	((flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A)
#define	IS_CHAN_B(flags) \
	((flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B)
#define	IS_CHAN_PUREG(flags) \
	((flags & IEEE80211_CHAN_PUREG) == IEEE80211_CHAN_PUREG)
#define	IS_CHAN_G(flags) \
	((flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G)
#define	IS_CHAN_ANYG(flags) \
	(IS_CHAN_PUREG(flags) || IS_CHAN_G(flags))

static void
print_chaninfo(netdissect_options *ndo,
               int freq, int flags)
{
	ND_PRINT((ndo, "%u MHz", freq));
	if (IS_CHAN_FHSS(flags))
		ND_PRINT((ndo, " FHSS"));
	if (IS_CHAN_A(flags)) {
		if (flags & IEEE80211_CHAN_HALF)
			ND_PRINT((ndo, " 11a/10Mhz"));
		else if (flags & IEEE80211_CHAN_QUARTER)
			ND_PRINT((ndo, " 11a/5Mhz"));
		else
			ND_PRINT((ndo, " 11a"));
	}
	if (IS_CHAN_ANYG(flags)) {
		if (flags & IEEE80211_CHAN_HALF)
			ND_PRINT((ndo, " 11g/10Mhz"));
		else if (flags & IEEE80211_CHAN_QUARTER)
			ND_PRINT((ndo, " 11g/5Mhz"));
		else
			ND_PRINT((ndo, " 11g"));
	} else if (IS_CHAN_B(flags))
		ND_PRINT((ndo, " 11b"));
	if (flags & IEEE80211_CHAN_TURBO)
		ND_PRINT((ndo, " Turbo"));
	if (flags & IEEE80211_CHAN_HT20)
		ND_PRINT((ndo, " ht/20"));
	else if (flags & IEEE80211_CHAN_HT40D)
		ND_PRINT((ndo, " ht/40-"));
	else if (flags & IEEE80211_CHAN_HT40U)
		ND_PRINT((ndo, " ht/40+"));
	ND_PRINT((ndo, " "));
}

static int
print_radiotap_field(netdissect_options *ndo,
                     struct cpack_state *s, uint32_t bit, uint8_t *flags,
                     struct radiotap_state *state, uint32_t presentflags)
{
	union {
		int8_t		i8;
		uint8_t		u8;
		int16_t		i16;
		uint16_t	u16;
		uint32_t	u32;
		uint64_t	u64;
	} u, u2, u3, u4;
	int rc;

	switch (bit) {
	case IEEE80211_RADIOTAP_FLAGS:
		rc = cpack_uint8(s, &u.u8);
		if (rc != 0)
			break;
		*flags = u.u8;
		break;
	case IEEE80211_RADIOTAP_RATE:
		rc = cpack_uint8(s, &u.u8);
		if (rc != 0)
			break;

		/* Save state rate */
		state->rate = u.u8;
		break;
	case IEEE80211_RADIOTAP_DB_ANTSIGNAL:
	case IEEE80211_RADIOTAP_DB_ANTNOISE:
	case IEEE80211_RADIOTAP_ANTENNA:
		rc = cpack_uint8(s, &u.u8);
		break;
	case IEEE80211_RADIOTAP_DBM_ANTSIGNAL:
	case IEEE80211_RADIOTAP_DBM_ANTNOISE:
		rc = cpack_int8(s, &u.i8);
		break;
	case IEEE80211_RADIOTAP_CHANNEL:
		rc = cpack_uint16(s, &u.u16);
		if (rc != 0)
			break;
		rc = cpack_uint16(s, &u2.u16);
		break;
	case IEEE80211_RADIOTAP_FHSS:
	case IEEE80211_RADIOTAP_LOCK_QUALITY:
	case IEEE80211_RADIOTAP_TX_ATTENUATION:
	case IEEE80211_RADIOTAP_RX_FLAGS:
		rc = cpack_uint16(s, &u.u16);
		break;
	case IEEE80211_RADIOTAP_DB_TX_ATTENUATION:
		rc = cpack_uint8(s, &u.u8);
		break;
	case IEEE80211_RADIOTAP_DBM_TX_POWER:
		rc = cpack_int8(s, &u.i8);
		break;
	case IEEE80211_RADIOTAP_TSFT:
		rc = cpack_uint64(s, &u.u64);
		break;
	case IEEE80211_RADIOTAP_XCHANNEL:
		rc = cpack_uint32(s, &u.u32);
		if (rc != 0)
			break;
		rc = cpack_uint16(s, &u2.u16);
		if (rc != 0)
			break;
		rc = cpack_uint8(s, &u3.u8);
		if (rc != 0)
			break;
		rc = cpack_uint8(s, &u4.u8);
		break;
	case IEEE80211_RADIOTAP_MCS:
		rc = cpack_uint8(s, &u.u8);
		if (rc != 0)
			break;
		rc = cpack_uint8(s, &u2.u8);
		if (rc != 0)
			break;
		rc = cpack_uint8(s, &u3.u8);
		break;
	case IEEE80211_RADIOTAP_VENDOR_NAMESPACE: {
		uint8_t vns[3];
		uint16_t length;
		uint8_t subspace;

		if ((cpack_align_and_reserve(s, 2)) == NULL) {
			rc = -1;
			break;
		}

		rc = cpack_uint8(s, &vns[0]);
		if (rc != 0)
			break;
		rc = cpack_uint8(s, &vns[1]);
		if (rc != 0)
			break;
		rc = cpack_uint8(s, &vns[2]);
		if (rc != 0)
			break;
		rc = cpack_uint8(s, &subspace);
		if (rc != 0)
			break;
		rc = cpack_uint16(s, &length);
		if (rc != 0)
			break;

		/* Skip up to length */
		s->c_next += length;
		break;
	}
	default:
		/* this bit indicates a field whose
		 * size we do not know, so we cannot
		 * proceed.  Just print the bit number.
		 */
		ND_PRINT((ndo, "[bit %u] ", bit));
		return -1;
	}

	if (rc != 0) {
		ND_PRINT((ndo, "%s", tstr));
		return rc;
	}

	/* Preserve the state present flags */
	state->present = presentflags;

	switch (bit) {
	case IEEE80211_RADIOTAP_CHANNEL:
		/*
		 * If CHANNEL and XCHANNEL are both present, skip
		 * CHANNEL.
		 */
		if (presentflags & (1 << IEEE80211_RADIOTAP_XCHANNEL))
			break;
		print_chaninfo(ndo, u.u16, u2.u16);
		break;
	case IEEE80211_RADIOTAP_FHSS:
		ND_PRINT((ndo, "fhset %d fhpat %d ", u.u16 & 0xff, (u.u16 >> 8) & 0xff));
		break;
	case IEEE80211_RADIOTAP_RATE:
		/*
		 * XXX On FreeBSD rate & 0x80 means we have an MCS. On
		 * Linux and AirPcap it does not.  (What about
		 * Mac OS X, NetBSD, OpenBSD, and DragonFly BSD?)
		 *
		 * This is an issue either for proprietary extensions
		 * to 11a or 11g, which do exist, or for 11n
		 * implementations that stuff a rate value into
		 * this field, which also appear to exist.
		 *
		 * We currently handle that by assuming that
		 * if the 0x80 bit is set *and* the remaining
		 * bits have a value between 0 and 15 it's
		 * an MCS value, otherwise it's a rate.  If
		 * there are cases where systems that use
		 * "0x80 + MCS index" for MCS indices > 15,
		 * or stuff a rate value here between 64 and
		 * 71.5 Mb/s in here, we'll need a preference
		 * setting.  Such rates do exist, e.g. 11n
		 * MCS 7 at 20 MHz with a long guard interval.
		 */
		if (u.u8 >= 0x80 && u.u8 <= 0x8f) {
			/*
			 * XXX - we don't know the channel width
			 * or guard interval length, so we can't
			 * convert this to a data rate.
			 *
			 * If you want us to show a data rate,
			 * use the MCS field, not the Rate field;
			 * the MCS field includes not only the
			 * MCS index, it also includes bandwidth
			 * and guard interval information.
			 *
			 * XXX - can we get the channel width
			 * from XChannel and the guard interval
			 * information from Flags, at least on
			 * FreeBSD?
			 */
			ND_PRINT((ndo, "MCS %u ", u.u8 & 0x7f));
		} else
			ND_PRINT((ndo, "%2.1f Mb/s ", .5 * u.u8));
		break;
	case IEEE80211_RADIOTAP_DBM_ANTSIGNAL:
		ND_PRINT((ndo, "%ddB signal ", u.i8));
		break;
	case IEEE80211_RADIOTAP_DBM_ANTNOISE:
		ND_PRINT((ndo, "%ddB noise ", u.i8));
		break;
	case IEEE80211_RADIOTAP_DB_ANTSIGNAL:
		ND_PRINT((ndo, "%ddB signal ", u.u8));
		break;
	case IEEE80211_RADIOTAP_DB_ANTNOISE:
		ND_PRINT((ndo, "%ddB noise ", u.u8));
		break;
	case IEEE80211_RADIOTAP_LOCK_QUALITY:
		ND_PRINT((ndo, "%u sq ", u.u16));
		break;
	case IEEE80211_RADIOTAP_TX_ATTENUATION:
		ND_PRINT((ndo, "%d tx power ", -(int)u.u16));
		break;
	case IEEE80211_RADIOTAP_DB_TX_ATTENUATION:
		ND_PRINT((ndo, "%ddB tx power ", -(int)u.u8));
		break;
	case IEEE80211_RADIOTAP_DBM_TX_POWER:
		ND_PRINT((ndo, "%ddBm tx power ", u.i8));
		break;
	case IEEE80211_RADIOTAP_FLAGS:
		if (u.u8 & IEEE80211_RADIOTAP_F_CFP)
			ND_PRINT((ndo, "cfp "));
		if (u.u8 & IEEE80211_RADIOTAP_F_SHORTPRE)
			ND_PRINT((ndo, "short preamble "));
		if (u.u8 & IEEE80211_RADIOTAP_F_WEP)
			ND_PRINT((ndo, "wep "));
		if (u.u8 & IEEE80211_RADIOTAP_F_FRAG)
			ND_PRINT((ndo, "fragmented "));
		if (u.u8 & IEEE80211_RADIOTAP_F_BADFCS)
			ND_PRINT((ndo, "bad-fcs "));
		break;
	case IEEE80211_RADIOTAP_ANTENNA:
		ND_PRINT((ndo, "antenna %d ", u.u8));
		break;
	case IEEE80211_RADIOTAP_TSFT:
		ND_PRINT((ndo, "%" PRIu64 "us tsft ", u.u64));
		break;
	case IEEE80211_RADIOTAP_RX_FLAGS:
		/* Do nothing for now */
		break;
	case IEEE80211_RADIOTAP_XCHANNEL:
		print_chaninfo(ndo, u2.u16, u.u32);
		break;
	case IEEE80211_RADIOTAP_MCS: {
		static const char *bandwidth[4] = {
			"20 MHz",
			"40 MHz",
			"20 MHz (L)",
			"20 MHz (U)"
		};
		float htrate;

		if (u.u8 & IEEE80211_RADIOTAP_MCS_MCS_INDEX_KNOWN) {
			/*
			 * We know the MCS index.
			 */
			if (u3.u8 <= MAX_MCS_INDEX) {
				/*
				 * And it's in-range.
				 */
				if (u.u8 & (IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN|IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN)) {
					/*
					 * And we know both the bandwidth and
					 * the guard interval, so we can look
					 * up the rate.
					 */
					htrate =
						ieee80211_float_htrates \
							[u3.u8] \
							[((u2.u8 & IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK) == IEEE80211_RADIOTAP_MCS_BANDWIDTH_40 ? 1 : 0)] \
							[((u2.u8 & IEEE80211_RADIOTAP_MCS_SHORT_GI) ? 1 : 0)];
				} else {
					/*
					 * We don't know both the bandwidth
					 * and the guard interval, so we can
					 * only report the MCS index.
					 */
					htrate = 0.0;
				}
			} else {
				/*
				 * The MCS value is out of range.
				 */
				htrate = 0.0;
			}
			if (htrate != 0.0) {
				/*
				 * We have the rate.
				 * Print it.
				 */
				ND_PRINT((ndo, "%.1f Mb/s MCS %u ", htrate, u3.u8));
			} else {
				/*
				 * We at least have the MCS index.
				 * Print it.
				 */
				ND_PRINT((ndo, "MCS %u ", u3.u8));
			}
		}
		if (u.u8 & IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN) {
			ND_PRINT((ndo, "%s ",
				bandwidth[u2.u8 & IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK]));
		}
		if (u.u8 & IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN) {
			ND_PRINT((ndo, "%s GI ",
				(u2.u8 & IEEE80211_RADIOTAP_MCS_SHORT_GI) ?
				"short" : "lon"));
		}
		if (u.u8 & IEEE80211_RADIOTAP_MCS_HT_FORMAT_KNOWN) {
			ND_PRINT((ndo, "%s ",
				(u2.u8 & IEEE80211_RADIOTAP_MCS_HT_GREENFIELD) ?
				"greenfield" : "mixed"));
		}
		if (u.u8 & IEEE80211_RADIOTAP_MCS_FEC_TYPE_KNOWN) {
			ND_PRINT((ndo, "%s FEC ",
				(u2.u8 & IEEE80211_RADIOTAP_MCS_FEC_LDPC) ?
				"LDPC" : "BCC"));
		}
		if (u.u8 & IEEE80211_RADIOTAP_MCS_STBC_KNOWN) {
			ND_PRINT((ndo, "RX-STBC%u ",
				(u2.u8 & IEEE80211_RADIOTAP_MCS_STBC_MASK) >> IEEE80211_RADIOTAP_MCS_STBC_SHIFT));
		}

		break;
		}
	}
	return 0;
}

static u_int
ieee802_11_radio_print(netdissect_options *ndo,
                       const u_char *p, u_int length, u_int caplen)
{
#define	BITNO_32(x) (((x) >> 16) ? 16 + BITNO_16((x) >> 16) : BITNO_16((x)))
#define	BITNO_16(x) (((x) >> 8) ? 8 + BITNO_8((x) >> 8) : BITNO_8((x)))
#define	BITNO_8(x) (((x) >> 4) ? 4 + BITNO_4((x) >> 4) : BITNO_4((x)))
#define	BITNO_4(x) (((x) >> 2) ? 2 + BITNO_2((x) >> 2) : BITNO_2((x)))
#define	BITNO_2(x) (((x) & 2) ? 1 : 0)
#define	BIT(n)	(1U << n)
#define	IS_EXTENDED(__p)	\
	    (EXTRACT_LE_32BITS(__p) & BIT(IEEE80211_RADIOTAP_EXT)) != 0

	struct cpack_state cpacker;
	struct ieee80211_radiotap_header *hdr;
	uint32_t present, next_present;
	uint32_t presentflags = 0;
	uint32_t *presentp, *last_presentp;
	enum ieee80211_radiotap_type bit;
	int bit0;
	u_int len;
	uint8_t flags;
	int pad;
	u_int fcslen;
	struct radiotap_state state;

	if (caplen < sizeof(*hdr)) {
		ND_PRINT((ndo, "%s", tstr));
		return caplen;
	}

	hdr = (struct ieee80211_radiotap_header *)p;

	len = EXTRACT_LE_16BITS(&hdr->it_len);

	if (caplen < len) {
		ND_PRINT((ndo, "%s", tstr));
		return caplen;
	}
	cpack_init(&cpacker, (uint8_t *)hdr, len); /* align against header start */
	cpack_advance(&cpacker, sizeof(*hdr)); /* includes the 1st bitmap */
	for (last_presentp = &hdr->it_present;
	     IS_EXTENDED(last_presentp) &&
	     (u_char*)(last_presentp + 1) <= p + len;
	     last_presentp++)
	  cpack_advance(&cpacker, sizeof(hdr->it_present)); /* more bitmaps */

	/* are there more bitmap extensions than bytes in header? */
	if (IS_EXTENDED(last_presentp)) {
		ND_PRINT((ndo, "%s", tstr));
		return caplen;
	}

	/* Assume no flags */
	flags = 0;
	/* Assume no Atheros padding between 802.11 header and body */
	pad = 0;
	/* Assume no FCS at end of frame */
	fcslen = 0;
	for (bit0 = 0, presentp = &hdr->it_present; presentp <= last_presentp;
	     presentp++, bit0 += 32) {
		presentflags = EXTRACT_LE_32BITS(presentp);

		/* Clear state. */
		memset(&state, 0, sizeof(state));

		for (present = EXTRACT_LE_32BITS(presentp); present;
		     present = next_present) {
			/* clear the least significant bit that is set */
			next_present = present & (present - 1);

			/* extract the least significant bit that is set */
			bit = (enum ieee80211_radiotap_type)
			    (bit0 + BITNO_32(present ^ next_present));

			if (print_radiotap_field(ndo, &cpacker, bit, &flags, &state, presentflags) != 0)
				goto out;
		}
	}

out:
	if (flags & IEEE80211_RADIOTAP_F_DATAPAD)
		pad = 1;	/* Atheros padding */
	if (flags & IEEE80211_RADIOTAP_F_FCS)
		fcslen = 4;	/* FCS at end of packet */
	return len + ieee802_11_print(ndo, p + len, length - len, caplen - len, pad,
	    fcslen);
#undef BITNO_32
#undef BITNO_16
#undef BITNO_8
#undef BITNO_4
#undef BITNO_2
#undef BIT
}

static u_int
ieee802_11_avs_radio_print(netdissect_options *ndo,
                           const u_char *p, u_int length, u_int caplen)
{
	uint32_t caphdr_len;

	if (caplen < 8) {
		ND_PRINT((ndo, "%s", tstr));
		return caplen;
	}

	caphdr_len = EXTRACT_32BITS(p + 4);
	if (caphdr_len < 8) {
		/*
		 * Yow!  The capture header length is claimed not
		 * to be large enough to include even the version
		 * cookie or capture header length!
		 */
		ND_PRINT((ndo, "%s", tstr));
		return caplen;
	}

	if (caplen < caphdr_len) {
		ND_PRINT((ndo, "%s", tstr));
		return caplen;
	}

	return caphdr_len + ieee802_11_print(ndo, p + caphdr_len,
	    length - caphdr_len, caplen - caphdr_len, 0, 0);
}

#define PRISM_HDR_LEN		144

#define WLANCAP_MAGIC_COOKIE_BASE 0x80211000
#define WLANCAP_MAGIC_COOKIE_V1	0x80211001
#define WLANCAP_MAGIC_COOKIE_V2	0x80211002

/*
 * For DLT_PRISM_HEADER; like DLT_IEEE802_11, but with an extra header,
 * containing information such as radio information, which we
 * currently ignore.
 *
 * If, however, the packet begins with WLANCAP_MAGIC_COOKIE_V1 or
 * WLANCAP_MAGIC_COOKIE_V2, it's really DLT_IEEE802_11_RADIO_AVS
 * (currently, on Linux, there's no ARPHRD_ type for
 * DLT_IEEE802_11_RADIO_AVS, as there is a ARPHRD_IEEE80211_PRISM
 * for DLT_PRISM_HEADER, so ARPHRD_IEEE80211_PRISM is used for
 * the AVS header, and the first 4 bytes of the header are used to
 * indicate whether it's a Prism header or an AVS header).
 */
u_int
prism_if_print(netdissect_options *ndo,
               const struct pcap_pkthdr *h, const u_char *p)
{
	u_int caplen = h->caplen;
	u_int length = h->len;
	uint32_t msgcode;

	if (caplen < 4) {
		ND_PRINT((ndo, "%s", tstr));
		return caplen;
	}

	msgcode = EXTRACT_32BITS(p);
	if (msgcode == WLANCAP_MAGIC_COOKIE_V1 ||
	    msgcode == WLANCAP_MAGIC_COOKIE_V2)
		return ieee802_11_avs_radio_print(ndo, p, length, caplen);

	if (caplen < PRISM_HDR_LEN) {
		ND_PRINT((ndo, "%s", tstr));
		return caplen;
	}

	return PRISM_HDR_LEN + ieee802_11_print(ndo, p + PRISM_HDR_LEN,
	    length - PRISM_HDR_LEN, caplen - PRISM_HDR_LEN, 0, 0);
}

/*
 * For DLT_IEEE802_11_RADIO; like DLT_IEEE802_11, but with an extra
 * header, containing information such as radio information.
 */
u_int
ieee802_11_radio_if_print(netdissect_options *ndo,
                          const struct pcap_pkthdr *h, const u_char *p)
{
	return ieee802_11_radio_print(ndo, p, h->len, h->caplen);
}

/*
 * For DLT_IEEE802_11_RADIO_AVS; like DLT_IEEE802_11, but with an
 * extra header, containing information such as radio information,
 * which we currently ignore.
 */
u_int
ieee802_11_radio_avs_if_print(netdissect_options *ndo,
                              const struct pcap_pkthdr *h, const u_char *p)
{
	return ieee802_11_avs_radio_print(ndo, p, h->len, h->caplen);
}