/*
* elf_module.c
*
* Created on: Aug 11, 2008
* Author: Stefan Bucur <stefanb@zytor.com>
*/
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <elf.h>
#include <dprintf.h>
#include <core.h>
#include <linux/list.h>
#include <sys/module.h>
#include <sys/exec.h>
#include "elfutils.h"
#include "../common.h"
/*
*
* The implementation assumes that the loadable segments are present
* in the PHT sorted by their offsets, so that only forward seeks would
* be necessary.
*/
int load_segments(struct elf_module *module, Elf_Ehdr *elf_hdr) {
int i;
int res = 0;
char *pht = NULL;
char *sht = NULL;
Elf32_Phdr *cr_pht;
Elf32_Shdr *cr_sht;
Elf32_Addr min_addr = 0x00000000; // Min. ELF vaddr
Elf32_Addr max_addr = 0x00000000; // Max. ELF vaddr
Elf32_Word max_align = sizeof(void*); // Min. align of posix_memalign()
Elf32_Addr min_alloc, max_alloc; // Min. and max. aligned allocables
Elf32_Addr dyn_addr = 0x00000000;
// Get to the PHT
image_seek(elf_hdr->e_phoff, module);
// Load the PHT
pht = malloc(elf_hdr->e_phnum * elf_hdr->e_phentsize);
if (!pht)
return -1;
image_read(pht, elf_hdr->e_phnum * elf_hdr->e_phentsize, module);
// Compute the memory needings of the module
for (i=0; i < elf_hdr->e_phnum; i++) {
cr_pht = (Elf32_Phdr*)(pht + i * elf_hdr->e_phentsize);
switch (cr_pht->p_type) {
case PT_LOAD:
if (i == 0) {
min_addr = cr_pht->p_vaddr;
} else {
min_addr = MIN(min_addr, cr_pht->p_vaddr);
}
max_addr = MAX(max_addr, cr_pht->p_vaddr + cr_pht->p_memsz);
max_align = MAX(max_align, cr_pht->p_align);
break;
case PT_DYNAMIC:
dyn_addr = cr_pht->p_vaddr;
break;
default:
// Unsupported - ignore
break;
}
}
if (max_addr - min_addr == 0) {
// No loadable segments
DBG_PRINT("No loadable segments found\n");
goto out;
}
if (dyn_addr == 0) {
DBG_PRINT("No dynamic information segment found\n");
goto out;
}
// The minimum address that should be allocated
min_alloc = min_addr - (min_addr % max_align);
// The maximum address that should be allocated
max_alloc = max_addr - (max_addr % max_align);
if (max_addr % max_align > 0)
max_alloc += max_align;
if (elf_malloc(&module->module_addr,
max_align,
max_alloc-min_alloc) != 0) {
DBG_PRINT("Could not allocate segments\n");
goto out;
}
module->base_addr = (Elf32_Addr)(module->module_addr) - min_alloc;
module->module_size = max_alloc - min_alloc;
// Zero-initialize the memory
memset(module->module_addr, 0, module->module_size);
for (i = 0; i < elf_hdr->e_phnum; i++) {
cr_pht = (Elf32_Phdr*)(pht + i * elf_hdr->e_phentsize);
if (cr_pht->p_type == PT_LOAD) {
// Copy the segment at its destination
if (cr_pht->p_offset < module->u.l._cr_offset) {
// The segment contains data before the current offset
// It can be discarded without worry - it would contain only
// headers
Elf32_Off aux_off = module->u.l._cr_offset - cr_pht->p_offset;
if (image_read((char *)module_get_absolute(cr_pht->p_vaddr, module) + aux_off,
cr_pht->p_filesz - aux_off, module) < 0) {
res = -1;
goto out;
}
} else {
if (image_seek(cr_pht->p_offset, module) < 0) {
res = -1;
goto out;
}
if (image_read(module_get_absolute(cr_pht->p_vaddr, module),
cr_pht->p_filesz, module) < 0) {
res = -1;
goto out;
}
}
/*
DBG_PRINT("Loadable segment of size 0x%08x copied from vaddr 0x%08x at 0x%08x\n",
cr_pht->p_filesz,
cr_pht->p_vaddr,
(Elf32_Addr)module_get_absolute(cr_pht->p_vaddr, module));
*/
}
}
// Get to the SHT
image_seek(elf_hdr->e_shoff, module);
// Load the SHT
sht = malloc(elf_hdr->e_shnum * elf_hdr->e_shentsize);
if (!sht) {
res = -1;
goto out;
}
image_read(sht, elf_hdr->e_shnum * elf_hdr->e_shentsize, module);
// Setup the symtable size
for (i = 0; i < elf_hdr->e_shnum; i++) {
cr_sht = (Elf32_Shdr*)(sht + i * elf_hdr->e_shentsize);
if (cr_sht->sh_type == SHT_DYNSYM) {
module->symtable_size = cr_sht->sh_size;
break;
}
}
free(sht);
// Setup dynamic segment location
module->dyn_table = module_get_absolute(dyn_addr, module);
/*
DBG_PRINT("Base address: 0x%08x, aligned at 0x%08x\n", module->base_addr,
max_align);
DBG_PRINT("Module size: 0x%08x\n", module->module_size);
*/
out:
// Free up allocated memory
if (pht != NULL)
free(pht);
return res;
}
int perform_relocation(struct elf_module *module, Elf_Rel *rel) {
Elf32_Word *dest = module_get_absolute(rel->r_offset, module);
// The symbol reference index
Elf32_Word sym = ELF32_R_SYM(rel->r_info);
unsigned char type = ELF32_R_TYPE(rel->r_info);
// The symbol definition (if applicable)
Elf32_Sym *sym_def = NULL;
struct elf_module *sym_module = NULL;
Elf32_Addr sym_addr = 0x0;
if (sym > 0) {
// Find out details about the symbol
// The symbol reference
Elf32_Sym *sym_ref = symbol_get_entry(module, sym);
// The symbol definition
sym_def =
global_find_symbol(module->str_table + sym_ref->st_name,
&sym_module);
if (sym_def == NULL) {
DBG_PRINT("Cannot perform relocation for symbol %s\n",
module->str_table + sym_ref->st_name);
if (ELF32_ST_BIND(sym_ref->st_info) != STB_WEAK)
return -1;
// This must be a derivative-specific
// function. We're OK as long as we never
// execute the function.
sym_def = global_find_symbol("undefined_symbol", &sym_module);
}
// Compute the absolute symbol virtual address
sym_addr = (Elf32_Addr)module_get_absolute(sym_def->st_value, sym_module);
if (sym_module != module) {
// Create a dependency
enforce_dependency(sym_module, module);
}
}
switch (type) {
case R_386_NONE:
// Do nothing
break;
case R_386_32:
*dest += sym_addr;
break;
case R_386_PC32:
*dest += sym_addr - (Elf32_Addr)dest;
break;
case R_386_COPY:
if (sym_addr > 0) {
memcpy((void*)dest, (void*)sym_addr, sym_def->st_size);
}
break;
case R_386_GLOB_DAT:
case R_386_JMP_SLOT:
// Maybe TODO: Keep track of the GOT entries allocations
*dest = sym_addr;
break;
case R_386_RELATIVE:
*dest += module->base_addr;
break;
default:
DBG_PRINT("Relocation type %d not supported\n", type);
return -1;
}
return 0;
}
int resolve_symbols(struct elf_module *module) {
Elf32_Dyn *dyn_entry = module->dyn_table;
unsigned int i;
int res;
Elf32_Word plt_rel_size = 0;
char *plt_rel = NULL;
char *rel = NULL;
Elf32_Word rel_size = 0;
Elf32_Word rel_entry = 0;
// The current relocation
Elf32_Rel *crt_rel;
while (dyn_entry->d_tag != DT_NULL) {
switch(dyn_entry->d_tag) {
// PLT relocation information
case DT_PLTRELSZ:
plt_rel_size = dyn_entry->d_un.d_val;
break;
case DT_PLTREL:
if (dyn_entry->d_un.d_val != DT_REL) {
DBG_PRINT("Unsupported PLT relocation\n");
return -1;
}
case DT_JMPREL:
plt_rel = module_get_absolute(dyn_entry->d_un.d_ptr, module);
break;
// Standard relocation information
case DT_REL:
rel = module_get_absolute(dyn_entry->d_un.d_ptr, module);
break;
case DT_RELSZ:
rel_size = dyn_entry->d_un.d_val;
break;
case DT_RELENT:
rel_entry = dyn_entry->d_un.d_val;
break;
// Module initialization and termination
case DT_INIT:
// TODO Implement initialization functions
break;
case DT_FINI:
// TODO Implement finalization functions
break;
}
dyn_entry++;
}
if (rel_size > 0) {
// Process standard relocations
for (i = 0; i < rel_size/rel_entry; i++) {
crt_rel = (Elf32_Rel*)(rel + i*rel_entry);
res = perform_relocation(module, crt_rel);
if (res < 0)
return res;
}
}
if (plt_rel_size > 0) {
// TODO: Permit this lazily
// Process PLT relocations
for (i = 0; i < plt_rel_size/sizeof(Elf32_Rel); i++) {
crt_rel = (Elf32_Rel*)(plt_rel + i*sizeof(Elf32_Rel));
res = perform_relocation(module, crt_rel);
if (res < 0)
return res;
}
}
return 0;
}