//===- CodeGenRegisters.h - Register and RegisterClass Info -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines structures to encapsulate information gleaned from the
// target register and register class definitions.
//
//===----------------------------------------------------------------------===//
#ifndef CODEGEN_REGISTERS_H
#define CODEGEN_REGISTERS_H
#include "SetTheory.h"
#include "llvm/TableGen/Record.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include <cstdlib>
#include <map>
#include <string>
#include <set>
#include <vector>
namespace llvm {
class CodeGenRegBank;
/// CodeGenRegister - Represents a register definition.
struct CodeGenRegister {
Record *TheDef;
unsigned EnumValue;
unsigned CostPerUse;
// Map SubRegIndex -> Register.
typedef std::map<Record*, CodeGenRegister*, LessRecord> SubRegMap;
CodeGenRegister(Record *R, unsigned Enum);
const std::string &getName() const;
// Get a map of sub-registers computed lazily.
// This includes unique entries for all sub-sub-registers.
const SubRegMap &getSubRegs(CodeGenRegBank&);
const SubRegMap &getSubRegs() const {
assert(SubRegsComplete && "Must precompute sub-registers");
return SubRegs;
}
// Add sub-registers to OSet following a pre-order defined by the .td file.
void addSubRegsPreOrder(SetVector<CodeGenRegister*> &OSet) const;
// List of super-registers in topological order, small to large.
typedef std::vector<CodeGenRegister*> SuperRegList;
// Get the list of super-registers.
// This is only valid after computeDerivedInfo has visited all registers.
const SuperRegList &getSuperRegs() const {
assert(SubRegsComplete && "Must precompute sub-registers");
return SuperRegs;
}
// Order CodeGenRegister pointers by EnumValue.
struct Less {
bool operator()(const CodeGenRegister *A,
const CodeGenRegister *B) const {
assert(A && B);
return A->EnumValue < B->EnumValue;
}
};
// Canonically ordered set.
typedef std::set<const CodeGenRegister*, Less> Set;
private:
bool SubRegsComplete;
SubRegMap SubRegs;
SuperRegList SuperRegs;
};
class CodeGenRegisterClass {
CodeGenRegister::Set Members;
// Allocation orders. Order[0] always contains all registers in Members.
std::vector<SmallVector<Record*, 16> > Orders;
// Bit mask of sub-classes including this, indexed by their EnumValue.
BitVector SubClasses;
// List of super-classes, topologocally ordered to have the larger classes
// first. This is the same as sorting by EnumValue.
SmallVector<CodeGenRegisterClass*, 4> SuperClasses;
Record *TheDef;
std::string Name;
// For a synthesized class, inherit missing properties from the nearest
// super-class.
void inheritProperties(CodeGenRegBank&);
// Map SubRegIndex -> sub-class
DenseMap<Record*, CodeGenRegisterClass*> SubClassWithSubReg;
public:
unsigned EnumValue;
std::string Namespace;
std::vector<MVT::SimpleValueType> VTs;
unsigned SpillSize;
unsigned SpillAlignment;
int CopyCost;
bool Allocatable;
// Map SubRegIndex -> RegisterClass
DenseMap<Record*,Record*> SubRegClasses;
std::string AltOrderSelect;
// Return the Record that defined this class, or NULL if the class was
// created by TableGen.
Record *getDef() const { return TheDef; }
const std::string &getName() const { return Name; }
std::string getQualifiedName() const;
const std::vector<MVT::SimpleValueType> &getValueTypes() const {return VTs;}
unsigned getNumValueTypes() const { return VTs.size(); }
MVT::SimpleValueType getValueTypeNum(unsigned VTNum) const {
if (VTNum < VTs.size())
return VTs[VTNum];
assert(0 && "VTNum greater than number of ValueTypes in RegClass!");
abort();
}
// Return true if this this class contains the register.
bool contains(const CodeGenRegister*) const;
// Returns true if RC is a subclass.
// RC is a sub-class of this class if it is a valid replacement for any
// instruction operand where a register of this classis required. It must
// satisfy these conditions:
//
// 1. All RC registers are also in this.
// 2. The RC spill size must not be smaller than our spill size.
// 3. RC spill alignment must be compatible with ours.
//
bool hasSubClass(const CodeGenRegisterClass *RC) const {
return SubClasses.test(RC->EnumValue);
}
// getSubClassWithSubReg - Returns the largest sub-class where all
// registers have a SubIdx sub-register.
CodeGenRegisterClass *getSubClassWithSubReg(Record *SubIdx) const {
return SubClassWithSubReg.lookup(SubIdx);
}
void setSubClassWithSubReg(Record *SubIdx, CodeGenRegisterClass *SubRC) {
SubClassWithSubReg[SubIdx] = SubRC;
}
// getSubClasses - Returns a constant BitVector of subclasses indexed by
// EnumValue.
// The SubClasses vector includs an entry for this class.
const BitVector &getSubClasses() const { return SubClasses; }
// getSuperClasses - Returns a list of super classes ordered by EnumValue.
// The array does not include an entry for this class.
ArrayRef<CodeGenRegisterClass*> getSuperClasses() const {
return SuperClasses;
}
// Returns an ordered list of class members.
// The order of registers is the same as in the .td file.
// No = 0 is the default allocation order, No = 1 is the first alternative.
ArrayRef<Record*> getOrder(unsigned No = 0) const {
return Orders[No];
}
// Return the total number of allocation orders available.
unsigned getNumOrders() const { return Orders.size(); }
// Get the set of registers. This set contains the same registers as
// getOrder(0).
const CodeGenRegister::Set &getMembers() const { return Members; }
CodeGenRegisterClass(CodeGenRegBank&, Record *R);
// A key representing the parts of a register class used for forming
// sub-classes. Note the ordering provided by this key is not the same as
// the topological order used for the EnumValues.
struct Key {
const CodeGenRegister::Set *Members;
unsigned SpillSize;
unsigned SpillAlignment;
Key(const Key &O)
: Members(O.Members),
SpillSize(O.SpillSize),
SpillAlignment(O.SpillAlignment) {}
Key(const CodeGenRegister::Set *M, unsigned S = 0, unsigned A = 0)
: Members(M), SpillSize(S), SpillAlignment(A) {}
Key(const CodeGenRegisterClass &RC)
: Members(&RC.getMembers()),
SpillSize(RC.SpillSize),
SpillAlignment(RC.SpillAlignment) {}
// Lexicographical order of (Members, SpillSize, SpillAlignment).
bool operator<(const Key&) const;
};
// Create a non-user defined register class.
CodeGenRegisterClass(StringRef Name, Key Props);
// Called by CodeGenRegBank::CodeGenRegBank().
static void computeSubClasses(CodeGenRegBank&);
};
// CodeGenRegBank - Represent a target's registers and the relations between
// them.
class CodeGenRegBank {
RecordKeeper &Records;
SetTheory Sets;
std::vector<Record*> SubRegIndices;
unsigned NumNamedIndices;
std::vector<CodeGenRegister*> Registers;
DenseMap<Record*, CodeGenRegister*> Def2Reg;
// Register classes.
std::vector<CodeGenRegisterClass*> RegClasses;
DenseMap<Record*, CodeGenRegisterClass*> Def2RC;
typedef std::map<CodeGenRegisterClass::Key, CodeGenRegisterClass*> RCKeyMap;
RCKeyMap Key2RC;
// Add RC to *2RC maps.
void addToMaps(CodeGenRegisterClass*);
// Infer missing register classes.
void computeInferredRegisterClasses();
// Composite SubRegIndex instances.
// Map (SubRegIndex, SubRegIndex) -> SubRegIndex.
typedef DenseMap<std::pair<Record*, Record*>, Record*> CompositeMap;
CompositeMap Composite;
// Populate the Composite map from sub-register relationships.
void computeComposites();
public:
CodeGenRegBank(RecordKeeper&);
SetTheory &getSets() { return Sets; }
// Sub-register indices. The first NumNamedIndices are defined by the user
// in the .td files. The rest are synthesized such that all sub-registers
// have a unique name.
const std::vector<Record*> &getSubRegIndices() { return SubRegIndices; }
unsigned getNumNamedIndices() { return NumNamedIndices; }
// Map a SubRegIndex Record to its enum value.
unsigned getSubRegIndexNo(Record *idx);
// Find or create a sub-register index representing the A+B composition.
Record *getCompositeSubRegIndex(Record *A, Record *B, bool create = false);
const std::vector<CodeGenRegister*> &getRegisters() { return Registers; }
// Find a register from its Record def.
CodeGenRegister *getReg(Record*);
ArrayRef<CodeGenRegisterClass*> getRegClasses() const {
return RegClasses;
}
// Find a register class from its def.
CodeGenRegisterClass *getRegClass(Record*);
/// getRegisterClassForRegister - Find the register class that contains the
/// specified physical register. If the register is not in a register
/// class, return null. If the register is in multiple classes, and the
/// classes have a superset-subset relationship and the same set of types,
/// return the superclass. Otherwise return null.
const CodeGenRegisterClass* getRegClassForRegister(Record *R);
// Computed derived records such as missing sub-register indices.
void computeDerivedInfo();
// Compute full overlap sets for every register. These sets include the
// rarely used aliases that are neither sub nor super-registers.
//
// Map[R1].count(R2) is reflexive and symmetric, but not transitive.
//
// If R1 is a sub-register of R2, Map[R1] is a subset of Map[R2].
void computeOverlaps(std::map<const CodeGenRegister*,
CodeGenRegister::Set> &Map);
};
}
#endif